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Abstract—The Collaborative Sensing Language (CSL) is a
high-level feedback control language for mobile sensor networks
(MSN). It specifies MSN controllers to accomplish network
objectives with a dynamically changing ad-hoc resource pool.
Furthermore, CSL is designed to allow the updating of controllers
during execution (patching). This enables hierarchical control
with simpler controllers at lower levels. The CSL Execution
Engine contains the intelligence to allocate resources to tasks
dynamically and adjust in real time to resource motion, this
enables CSL controllers to be simple, intuitive and scalable.
Experimental results show that the CSL Execution Engine
performs these services with the addition of very little overhead.

I. INTRODUCTION

This paper introduces the Collaborative Sensing Language
(CSL), a language for the feedback control of distributed ad-
hoc mobile sensor networks (MSN). CSL is comprised of
two sub-languages: CSL-MCL the declarative Mission Control
Language, and CSL-RPL the imperative Run-time Patching
Language. The syntax of the language, its interactions, its
motivations, and results from its initial implementation will
all be discussed.

CSL’s research efforts, and its two sub-languages, are mo-
tivated by two coupled problems: the need to program con-
trollers for distributed ad-hoc mobile sensor networks [1]-[8],
and the desired ability to significantly change those controllers
during execution [9], [10]. Both abilities simplify the control
of mobile sensor networks and are therefore necessary parts
of CSL.

The first problem arises due to human-user limitations. A
single user cannot properly control the low-level details of
multiple resources concurrently. In the CSL philosophy, the
user should control network objectives and receive information
relevant to the objectives. This is further complicated if a net-
work may have variable dimension, i.e., sensors and channels
come and go. Therefore a goal oriented network controller
interacting with a dynamic network should be weakly coupled
to the size of the network. A tightly coupled controller, i.e.,
one reacting at fine grain to changes in network dimension,
would be too complex to scale. MCL controllers are very
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weakly coupled for scalable execution by large networks. MCL
controllers do not specify the allocation of tasks to platforms,
coordination structures between collaborating platforms, or
lower-level platform controllers. All of this is embedded in the
CSL Execution Engine. It is part of the network intelligence,
similar to the Internet which autonomously adapts to the loss
of a router without troubling its applications. This helps reduce
the cognitive workload required of the user.

The second problem requires the run-time patching of
controllers and has value in many ways. Controllers are
typically continuously operating components; think of air
traffic management systems, traffic signal control systems, or
Google servers. Updates should be run-time updates unless
one assumes it is acceptable to leave the plant without control
for some time. In the MSN context, the ability to change
controllers at run time can lead to simpler controllers. Instead
of defining a controller able to accommodate all eventualities,
one may set up the current controller for a short horizon, and
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patch it to a new controller if the state changes in unforeseen
ways.

One alternative would be to develop a specific compiled
controller that is executed, when changes are necessary to it
the system must be halted, a new controller compiled, loaded
and re-executed as in [3], [6]. This may be viable in several
situations, but not in a continuously operating mobile sensor
network.

The run-time patching idea fits naturally with hierarchical
control. A higher-level controller can change a lower-level
controller at run time based on its broader understanding of
the state and the intended system performance.

MCL is intended to describe a controller for the mobile
sensor network. The MCL syntax is like a standard Petri
net, but its semantics are somewhat different. A sentence in
MCL declares a specific controller for the MSN. The CSL-
MCL Execution Engine interprets and executes the MCL to
form a MSN controller within the “Publisher” component of
the system. The MSN controller goes into feedback coupling
with the MSN in the classical way as illustrated by Fig-
ure 1. The MSN is viewed as the plant, sending observations
(Task_State) to the MSN controller, which in turn sends
actuation commands (an updated Task_State) to the plant.
The complete CSL state contains the Task_State as well as
a Resource_State and a Token_State. For a MCL controller,
changes in the Resource_State (sensors moving) cause changes
in the Task_State (tasks being executed). The completion of
tasks cause changes in the Token_State which in turn causes
changes in the Task_State (new tasks to be completed). The
new tasks cause changes in the Resource_State (new tasks
allocated to resources). This process is illustrated in Figure 1.

MCL is a declarative language targeting a network model
of computation. This means two things:

1) Tasks can execute concurrently unless constrained by
resource availability or the MCL program.

2) The set of resources is interpreted as a finite but ar-
bitrarily large set of objects. This ad-hoc set changes
dynamically during program execution as sensors move
within, join or leave the network.

The first point distinguishes MCL from Petri-net-based lan-
guages such as [5], [11]. The second point differentiates MCL
from the mission definition language CCL [1], [2] and the
MARS2020 demonstration [3] which used predefined groups.
It also distinguishes MCL from [4], [12]. The SHIFT simu-
lation language is designed for controllers targeting networks
[13]. Its “exists” and “all” quantifiers appear in CSL. CSL is
currently less expressive to enable an initial implementation.

The run-time patching language (RPL) is intended to patch
the MSN controller dynamically. Thus the MSN controller
can be changed on-the-fly as it is operating. This is done
by patching an already operating MCL program at run time.
An external controller or operator, as shown in Figure 1, can
dispatch an RPL program to the CSL Execution Engine to
reduce, grow or otherwise alter the MSN controller at run
time.

CSL-RPL is an imperative language, and as such, a sentence
in RPL is interpreted at run time to act on the current MSN
controller and transform it into a new MSN controller. This
enables hierarchical control of the MSN. The computation
mapping the old MSN controller to the new controller is the
semantics of RPL. The on-the-fly re-programming of control
differentiates CSL from Mission Lab [6], MRL [7], and most
others specification languages such as [8], [14]-[16].

These other specification languages assume the desired
behaviors are fully known before execution. They then create a
program to execute a set objectives, compile the program, load
the compiled code onto the resources, but then do not provide
the capability to adapt to unpredictable changes in situation
or objectives. These languages are satisfactory in closed envi-
ronments where the environmental conditions and objectives
are well known, for example an automated warehouse. They
are also useful for situations where the network can be shut-
down, behaviors changed, code re-compiled, and the system
re-started. This model, however, would not work well for envi-
ronments with rapid changes in conditions and objectives, such
as Mobile Sensor Networks used for battlefield intelligence.

Section II introduces the declarative CSL-MCL to represent
the MSN controller. Section III introduces CSL-RPL which is
used to change the controller described in Section II. Section
IV describes a first generation implementation of the CSL
Execution Engine and its associated simulation environment.
Section V provides experimental results which show that the
overhead associated with the first generation CSL Execution
Engine is reasonably low. Improving the network perfor-
mance reduces to attaining improved solutions for the NP-
hard travelling salesman problem. Finally, Section VI provides
conclusions and future work.

II. CSL-MCL

CSL-MCL allows users to specify rich, state-dependent,
evolving network missions using high-level descriptions. The
CSL Execution Engine automatically handles lower-level func-
tions like resource allocation and reliable task completion
[17], [18]. CSL-MCL programs can be created and modified
graphically (or textually by a user/higher-level controller) and
stored in the XML-based CSL-MCL syntax that is executed
as described below. XML was chosen to improve interoper-
ability between languages and operating systems and also to
enable web services for machine-machine and human-machine
interactions.

Mission 7 Mission 8
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A. Mission Controller Specification

MCL programs are composed of missions. Figure 2 shows
a program with two missions, named Mission 7 and Mission
8, represented by the two boxes. A mission is an instance of
a mission type. Mission 7 is of type “visit point”. The point
to be visited is a run-time parameter and is specified when
instantiating Mission 7 from the type “visit point”. Mission 8
is of type “patrol line”.

A mission type denotes a type of sensor behavior with
parameter values to be set during the mission’s run-time
creation. The sensors in the network must know how to execute
the CSL mission types, but each may do so in a different
manner with a different low-level controller. For example, both
a UAV and a UGV can visit a point, but they do so in different
fashions. Table I lists the current mission types. They are travel
and track for 0, 1, or 2 dimensions. Travel missions finish once
all of the points or area has been traversed. Track missions do
not end until terminated by an external controller using RPL.

Missions execute by associated tasks. For example, Mission
7 in Figure 2 has three tasks. All the tasks within a given
mission (box) have identical behaviors. Thus tasks 1, 5, and 33
of Mission 7 represent three different visits to the same point.
The three tasks may be executed by one, two, or three different
mobile sensors. This allows new copies of the task to be
created without ending previous executions or removing their
historical execution information. This is useful for missions
that are cyclical where a user may not want to terminate the
completion of one task to start the execution of an identical
copy. The filled/empty nature of the circles next to the tasks
will be discussed shortly.

Missions can be specified to execute concurrently or se-
quentially. Missions 7 and 8 in Figure 2 would execute con-
currently. Figure 3 shows how to force sequential execution.
This is done, in a Petri net style, by connecting both missions
to a transition. As in Petri nets, transitions are the gates that
control the flow of tasks. The direction of the flow is controlled
through the placement of input and output arcs. The non-
Petri net aspects are the condition on the input arc and certain
aspects of the actions discussed shortly.

Input arcs are directed links from missions to transitions.
Input arcs are associated with a condition/action pair. Condi-
tions are guards on the input arcs. In order for a transition to
fire, which will be discussed shortly, all conditions on all input
arcs to that transition must be satisfied. This is analogous to
a compound if-then statement: if a AND if § AND if v ...
then FIRE. The satisfaction of each input arc is part of the
compound if clause and is based on the current state of the
connected mission. Once the conjunction of all input arcs is

TABLE I
CURRENT PRIMITIVES

Type 0-D 1-D 2-D
Travel | visit point visit line sweep area
Track | loiter point | patrol line | patrol area
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Fig. 3. Mission Controller with Sequencing

satisfied, the transition can be fired, and all of the associated
actions can be taken on the connected input missions.

Conditions return booleans that are either true or false
signifying if the condition is met or not. The first generation
implementation has pre-programmed conditions based on the
state of tasks (To Do, Assigned, Done, Cancelled) and global
timers. For example, one can program a condition such as
“when any one of the tasks in Mission 7 is done”. In future
implementations of CSL this will be expanded so that any
external function may also produce a boolean for a condition
expression based on the CSL state. This would allow for
more complex expressions such as “if you see a white Chevy
Tahoe in a picture captured”, which requires image processing
external to CSL.

These pre-programmed conditions are evaluated over the
state of tasks with tokens in the mission box. A filled circle in
a mission box next to a task number indicates a token. A token
is always associated to a task but not all tasks are associated to
tokens. For example, in Figure 3, only tasks 17 and 33 have
tokens. The lack of a token (empty white circle) in Task 1
and Task 5 indicates that the tokens in these tasks have been
removed by past firings of Transition 4. The lack of a token in
Task 25 could be due to an RPL command (such as cancel).
The token is used as a flag to signal if a task has or has not
already been used to fire a transition. This is needed since
once certain conditions are satisfied by a given task, they will
always be true. For example, “if Task 1 is done” is always true
once Task 1 is completed. The presence of the token records
that the task has not yet been used to fire a transition and may
do so in the future. The list of all tokens is the third state item,
the Token_State.

Actions on an input arc specify the removal of tokens. Note
that the removal of tokens has no impact on the state of any
task. Tokens merely regulate the temporal creation of tasks.
Thus in Figure 2, tasks 1, 5, and 33 may all be executing
even though only Task 33 has a token. The other tokens may
have been removed by the user with RPL.

An action on an input arc can remove one token or all
tokens when a transition fires. In traditional Petri nets, a
single token is removed for each unit-weight input arc when
a transition fires, other fixed arc weightings are possible to
remove multiple tokens. A CSL input arc with the action
remove(all) can remove an arbitrary number of tokens, namely
however many exist in that mission, which may not be known
a priori.

Input arcs remove tokens while output arcs add them. When



a transition “fires” each output arc creates a token and task in
the mission to which it is going. This is like a unit weight
Petri net.

The syntax for representing CSL-MCL Automations is
formally represented using an XML format. The following
example is a mission with id=7, that is defined to be a visit
point. The mission is then followed by a token/task.
<MISSION mid="7">

<TRAVEL DIMENSION="0" REFERENCE="INERTIAL” >
<POINT LAT="35.7163" LON="-120.7679" />
</TRAVEL>

</MISSION>
<TOKEN mid="7" id="352" />

This XML format must conform to the CSL-MCL document
type definition (DTD), a brief part of which is below.
<!ELEMENT MISSION (( TRANSITION* , JARC* , OARC* ,
MISSION* ) |TRAVEL |TRACK)>

<!ATTLIST MISSION
mid ID # REQUIRED>

The document type definition (DTD) contains elements for
missions, transitions, input arcs, conditions, actions, output
arcs, and tokens. Figure 4 shows, on the right, the Class
Diagram representation of the DTD. The lowest level missions
are composed of a single primitive behavior (travel or track)
which contains a list of points. An integer number of these
missions are embedded in a higher level mission which may
also contain an arbitrary number of order elements (transitions,
input arcs, output arcs). These combinations form the Petri
net-like graphical representation, as shown in Figure 3.

The execution of this controller creates or removes the
tokens associated with individual missions. These tokens are

a link to the tasks in the distributed system. Also seen in
Figure 4, the tasks are associated to the resources that execute
the tasks. As these resources complete tasks, they change the
task’s state, which in turn influences the conditions on the
input arcs, which may cause a transition to fire.

B. State Representation

During the execution of a CSL-MCL program there must
be some concept of state. This CSL-MCL state contains three
items: the state of the automation (Token_State), the state of
the tasks (Task_State) and the state of the sensor resources
(Resource_State).

The state of all tasks in the system, known as the Task_State,
has evolved from [17], [18]. The Task_State contains the
definitions and execution information for the tasks that are
created by the MCL controller then assigned and executed by
the mobile sensor network. It enables the user to understand
the recent and expected network progress. CSL’s Task_State
structure again represented using an XML DTD, but is instead
shown in the left of Figure 4.

The first element represents the Task_State. Each Task_State
message contains the set of tasks and an agent_ID and
send_time to determine by whom and when the message
was sent. The second element represents the syntax for an
individual task. Each task has a required unique identifier
and is associated with a single mission. Each task also has
a creation time. During execution the previously mentioned
fields stay fixed; however, the status, agent_ID, step, and cost
all change. When this change last occurred is recorded in
the status_time. The agent_ID is the identifier of the agent
assigned to this task. The step is which step the task is in
the agent’s multi-step plan, and the cost is the cost (based

—
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on distance) to complete that individual step. The Task_State
contains all of the required information to describe the state
of the current list of tasks active in the mobile sensor network.
The second state item described is referred to as the
Resource_State. This is again shown on the left of Figure 4. It
includes: agent locations, task assignments and vehicle status
(fuel, battery, errors, etc.). It is important for a complete
understanding of the physical system state. For example, an
CSL-MCL controller should not ask for 30 geographically
sparse locations to be visited with a single UAV, but if there are
several UAVs, this may be a reasonable request. The resources
available may also change during execution since UAVs can
join, leave, and move. All of this feedback information is
available in the CSL format for display. The Resource_State’s
portion of the CSL-MCL DTD is shown below.
<!ELEMENT Resource_State (RESOURCE*)>
<!ATTLIST Resource_State

agent_ID CDATA # REQUIRED
send_time CDATA # REQUIRED>

<!ELEMENT RESOURCE EMPTY >
<!ATTLIST RESOURCE

agent_id ID # REQUIRED

task_id IDREF # IMPLIED

status (idle |assigned) # REQUIRED
status_time CDATA # REQUIRED
lat CDATA # REQUIRED

lon CDATA # REQUIRED

alt CDATA # REQUIRED

pitch CDATA # IMPLIED

roll CDATA # IMPLIED

yaw CDATA # IMPLIED

velocity CDATA # IMPLIED
fuel_level CDATA # IMPLIED
battery_level CDATA # IMPLIED
error_message CDATA # IMPLIED>

Again, the structure breaks down into two different ele-
ments. The first element, Resource_ State, is the overall list
of resources (in the current implementation UAVs but in the
future hopefully UGVs, AUVs and stationary sensors) and the
associated information of who this message is from (agent_ID)
and when it was sent (send_time). The second element is
the actual structure for individual resources. Obviously infor-
mation like the agent’s ID, status, and position are required.
Here the status_time indicates the last time any of the fields
were updated, not just changes in the assigned/idle nature of
the resource. Other information may also be available and
transmitted, such as the task assigned (if one is), orientation,
and other resource information like fuel and battery levels.

The third and final state item is the token distribution.
The current CSL-MCL implementation utilizes Petri nets as a
representation model for this automation, so the Token_State
is the distribution of tokens in the Petri net. Other alternative
models for representing the automation could be utilized, but
the Petri net adequately represented the concurrent nature of
task creation.

C. Mission Evolution

Mission evolution will be illustrated with several examples.
Figure 5 defines a mission starting with a visit line (e.g. a
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Fig. 5. Mission Controller with Constrained Concurrency

border) followed by visits to two separate points.

Assume the operator wants two UAVs to visit the border,
this is specified by placing two tasks with tokens in Mission
1. This is done using an RPL command explained in the next
section. If there are at least two idle sensors in the network the
CSL Execution Engine will ensure the two tasks are picked
up and executed concurrently by a pair of sensors. Since the
condition on the arc explicitly states that it is the mission that
must be done (i.e. onStatus = done with scope=mission instead
of scope=task) once the states of both tasks 1 and 2 are done,
the transition is fired.

In Figure 5, when tasks 1 and 2 are done, the corresponding
input arc action removes both tokens in Mission 1. The two
output arcs add one new token and task to Missions 2 and 3
respectively. The two new tasks would then be automatically
allocated to network sensors by the CSL Execution Engine.
Note that the CSL input arc action remove(all) cannot be
mapped to a Petri Net arc with non-unit weight since the
number of tokens to be removed is not known a priori.

Mission 1 Mission 2

- Wisit Area ...
@ Task 2
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@ Task 1
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Fig. 6. Modified Repeated Script



For a second example, refer to Figure 6. Assume only
one UAV is available and two areas must be visited every 5
minutes. At the beginning (top) of execution of Figure 6 there
is only Task 1 and Task 2. Since there is only one UAYV, it must
visit Area 1 and then Area 2 (or in the other order). After 5
minutes, tasks 3 and 4 are created and again they are visited
one after the other. The order in which they are visited is
determined by the task allocation mechanism, Section IV.B. If
instead there are two or more available UAVs the tasks would
be executed in parallel. While the intent is for the tasks to be
completed in parallel, if the system is limited by its resources
it does the best it can to accomplish the objectives as quickly

as possible.
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The mission evolution can also be described as traces of
the state. The CSL-MCL state can be represented by the triple
(r,t,a) where “r” is the state of the resources, “t” is the state of
the tasks, and “a” is the Token_State (state of the automation).
Figure 7 illustrates the evolution of Figure 6 for the single
UAV case.

The system begins at some initial state with some initial
position, set of tokens and set of tasks. Assume that the
resource is initially closest to Task 2. It first becomes assigned
to Task 2 changing 19 to r; and ty to t;, the assignment
is recorded in both locations for bi-directionality. The UAV
then moves to complete the task, this motion changes the
Resource_State. Once the task is completed the Task_State
changes and the resource begins to move again to Task 1. The
UAV completes the Task 1 and then begins to loiter. Finally,
the 5 minute cycle time is reached and the Publisher fires the
transition to create a new set of tasks, which will repeat the
same process.

ITII. CSL-RPL

The Run-time Patching Language enables operators to
modify the mission controller dynamically by editing the
corresponding MCL at run time. This is illustrated using the
example in Figure 8.

At the beginning of the run shown in Figure 8, ty to the
left, there is no controller and no tasks are being executed. At
time t; the user/high-level controller decides to request that an
area be patrolled. MSN state feedback and video streams are
provided to the user. Eventually, at time to, the user identifies
an object of interest at a location. Then at t3 the user may use
RPL to terminate the area patrol and add a visit point to look at
the location of interest. At t5 the visit location may be updated,
possibly to modify its GPS coordinates because the object has
moved. Finally, more information continues to stream in even

after the task is finished at tg. For a more specific example
imagine searching an area for a specific truck and a suspected
convict, once the truck is seen in the area, revisit the truck.
Now consider that the user may not have specified the correct
point, mistakes do happen, so simply update the task to what
was intended. The ability to patch the mission controller during
execution enables hierarchical control, correcting for mistakes
made and adjusting for unpredictable situations. This helps to
reduce the need for complex controllers that anticipate every
feasible outcome.

RPL is an imperative language with three commands: add,
delete, and update. An RPL program is a sequence of such
commands. Using these commands an external controller or
operator can change the current mission controller at run
time, while the controller is running in feedback with the
sensor network. More specifically, the imperatives can add,
delete, or modify the syntactic elements in MCL, i.e., mission
definitions, transitions, input arcs, and output arcs. This is very
similar to [9] which uses patching to modify lower-level real-
time controllers.

Setting up the first mission controller and endowing it with
the initial tokens is also done via RPL. The Null controller
is the valid starting controller and all controllers are derived
from it by a combination of RPL programs.

A run-time mission update is not the same as a delete
followed by an add. When a mission is deleted, all tasks
associated with it are cancelled. The sensors executing those
tasks are released back to the allocation system which may
allocate them to other tasks. Adding the mission back will
then re-engage the allocation system in once again allocating
a possibly new set of sensors to the mission. By contrast,
an update could modify task parameters without affecting the
allocation of sensors to the mission being updated.

The updating option is available only for missions and in-
coming arcs since there is no information carried on transitions
and outgoing arcs that would make updating them necessary.
A transition is defined only by a unique identifier, which has
no information to be updated. An outgoing arc is defined by
an identifier, the transition that it is from and the mission that
it is to. Updating any outgoing arc is the same as deleting and
then adding a new outgoing arc, so in this situation updating is
equivalent to a delete followed by an add. With updates users

— User 7 High-Level Centroller

Delete: Patrol Area
Add: Visit Point

‘_I/—'>
]
=

Receive Feedback:
State and
Video Streams

L1 | | I | 1
LI 1 1 I | 1
t; time

Add: Patrol Area

4}
Q
=

Receive Feedback:
State and
Video Streams

Update: Visit Point

{—'}
Q
=

Receive Feedback:
State and
Video Streams

RPL
RPL
RPL

Run-Time Patching Example



can modify mission parameters that should be stored (e.g. the
GPS locations defining an area for a mission of type search
area), arc actions and arc conditions during the execution of
the mission controller.

Again, RPL’s syntax is defined using an XML DTD:

<!ELEMENT ADD_ACTION (MISSION |[TRANSITION [IARC |OARC
|TOKEN |TASK)>

<!ELEMENT DELETE_ACTION EMPTY >
<!ATTLIST DELETE_ACTION
id ID # REQUIRED>

<!ELEMENT UPDATE_ACTION (MISSION [IARC)>
<!ATTLIST UPDATE_ACTION
id ID # REQUIRED>

This contains the three elements of add, delete, and update.
For each addition, the MCL structure to be added is passed.
For each deletion, the identifier of the element to be deleted
is passed. For each update, the new updated MCL structure to
replace/update an existing structure is passed.

IV. CSL EXECUTION ENGINE

The CSL Execution Engine accepts RPL files, interprets
them into MCL-based controllers and executes these con-
trollers. This Execution Engine contains the Publisher which
observes the state information, implements the MCL controller
and updates the state, see Figure 1. The Publisher outputs
updated state information, including a list of tasks in the
Task_State, that is the input to the Collaborative Control
System (CCS) which performs the task allocation [17].

A. Publisher

The CSL Publisher is provided all of the information
from the Collaborative Control System about the tasks. The
Publisher monitors this information along with RPL changes
to appropriately add, update, and delete tasks to the set of
tasks being executed by the Collaborative Control System.

The Publisher has a well-defined operational loop. The loop
begins with checking for RPL commands changing the mission
controller. Secondly, it checks to see if any transition can
be fired. If one can be fired, it is, and old tasks/tokens are
removed and new tasks/tokens are added. Finally, the Publisher
then checks for updates of the CSL state (Task_State and
Resource_State) written by the CCS.

At the beginning of the loop, the Publisher checks for any
incremental changes to the current control program. Incremen-
tal changes are made by adding a new RPL file to a RPL folder.
These files start at 1.xml and proceed upwards to 2.xml, etc.
These files can be generated by any source and are simply
required to be in the appropriate CSL syntax, as validated by
the appropriate document type definition or schema file.

Currently the incremental change files can be made man-
ually using WordPad, over the Internet using the CSL Web
Server (using XML-based web services), or with the CSL GUL
The Publisher checks if the next expected file exists. If so, it is
parsed with a standard XML parser and the MCL-based MSN
controller is updated. Since the controller is defined similarly

Fig. 9. Mission status visualized using Google Earth

to Petri nets, the current controller definition is stored as lists
of missions, transitions, input arcs, output arcs and tokens.
If the next incremental file does not yet exist, the Publisher
moves to checking for a “fireable” transition. Also, only one
incremental update is read per cycle to prevent multiple files
from occupying the entire cycle’s duration.

Once any RPL updates have been read, the Publisher runs
through the transition list and checks if there is a transition
where all of the incoming arc’s associated conditions are
satisfied. If not, it moves on to checking for status updates.
If there is one such transition, the transition is fired and
tokens/tasks are appropriately added and removed. Also, at
most 1 transition may be fired per cycle.

Once RPL changes and transition firings have occurred,
the Publisher remains in a communications mode. Here it
transmits to the CCS and listens for responses from the CCS.
The entire cycle is repeated once .25 seconds have elapsed.
The 4 Hz frequency was chosen to coincide with the GPS
refresh rate on the UAVs. This provides that changes in scripts
and transitions being fired must occur at least .25 seconds
apart. This rate could be increased, but mission updates are
created by the user and will very rarely come quicker than
once a second. Even if updates do come in rapid bursts, the
folder where RPL update files are submitted acts as a buffer
and stores these files until they can be read. Similarly, the
creation of tasks will rarely occur on the order of a second.

B. Collaborative Control System (CCS)

The Collaborative Control System accepts a list of tasks
(Task_State) and allocates individual tasks to UAVs with
a distributed multi-step greedy algorithm based on Dubins
distances. It provides an efficient allocation mechanism for
assigning tasks to UAVs. The costs are continuously recom-
puted and redistributed among the network using a distributed
composition protocol. This helps adapt to changes in network
topology. When UAVs enter, they begin to bid on tasks. When
UAVs exit, they stop bidding on tasks, and their tasks are
reallocated. If a UAV suddenly stops responding, a timeout



based on cost of the task being previously performed is
enforced.

Once an individual UAV selects a task, it utilizes its on-
board low-level controllers to physically execute the task.
These low-level controllers could be different on each vehicle,
but they will attempt to complete the same CSL primitive
behavior types, e.g. visit point. While executing, the UAVs
broadcast the CSL state information (Task_State and Re-
source_State) to each other as part of the CCS protocol
to determine allocations. It is also provided as feedback to
the CSL Execution Engine (Publisher) and as feedback to
the user to be displayed in whatever manner. The current
implementation displays this information in a Google-Earth-
based display, shown in Figure 9. For more information on
the CCS see [18].

C. UC Berkeley UAV Fleet

The University of California Berkeley’s Center for Collabo-
rative Control of Unmanned Vehicles (C3UV) has a fleet that
currently includes five Sig Rascal 110s, Figure 10, and five
Bat IVs from MLB Technology. The Rascals are a smaller (6
ft wingspan) hour-flight platform used for much of the testing
and demonstrations. The Bat IVs are a larger (12 ft wingspan)
8 hour platform with onboard generators to provide power for
a payload that can contain up to 25 pounds.

Each of these platforms has been developed to interact
with a PC-104 computer stack, using the QNX 6.3 operating
system, and a Piccolo autopilot from Cloudcap technologies.
The Piccolo autopilot performs all of the low-level actuation
and provides a waypoint and turn-rate interface to the PC-
104 stack. The Piccolo communicates its information (GPS,
orientation, servo values) down to a ground station through a
900 MHz channel, for monitoring during experiments.

The PC-104 computer stacks, Figure 10, contain the on-
board CCS control code to determine task allocations. They
also have mid-level controllers that accept tasks and produce
turn-rate commands for the Piccolo autopilots. These are the
implementations of the controllers that execute each type of
task listed in Table I. These values are passed to the Piccolo
over a serial connection.

In order to communicate within the mobile sensor network
the PC-104s are on an ad-hoc 802.11b network, operating
over 2.4 GHz. The Task_State and Resource_State utilize this
connection to spread their information throughout the MSN
and to the groundstation. The PC-104 also connects to several
peripherals to collect image, video, or sensor streams.

The groundstation computer connects to the MSN over
the 2.4 GHz ad-hoc network to learn the Task_ State and
Resource_State. The “Publisher” component resides on this
machine and compares the Task_State to its MSN controller to
determine if the Task_State should be updated. This computer
also typically runs either a CSL GUI or a CSL Web Server,
although these could be run on other locally networked com-
puters as well. If an CSL Web Server is used it is typically
connected to the external Internet for access via any Internet
device.

Fig. 11.

Simulated Belly-Mounted Camera Feed

D. Hardware-In-Loop Simulations

Since acquiring the airspace to fly experiments is not always
easily attainable or necessary, having a high-fidelity simulation
environment is quite desirable. The C3UV Hardware-In-Loop
simulation environment (HIL) satisfies this need. A 6 degree-
of-freedom simulator (written by Cloudcap) provides ‘““fake”
position and orientation data to the Piccolo autopilot. In
essence, the autopilot thinks it is flying and accepts and issues
all commands just as it would during a “real” experiment.
These commands are monitored by the simulator which re-
sponds as the dynamics would dictate. The only component
missing is the physical UAV itself.

All of the computing hardware and code is used, in real
time, to respond to the simulation. It provides a very realistic
environment. A Google-Earth-based “belly-mounted camera
view” has been written to fake the video stream seen by the
UAV, see Figure 11. In totality, all of the code and hardware is
run as it would during a real experiment and all of the feedback
and information that would be available is still available.

E. Demonstrations

The Generation I CSL Execution Engine has been thor-
oughly tested in Hardware-In-Loop simulations. It was also



Fig. 12.

Collected Picture of Runway at Camp Roberts, CA

demonstrated in the Fall 2007, Spring 2008 Tactical Network
Topology (TNT) Program at Camp Roberts, CA, and Fall
2008 Large Tactical Sensor Networks (LTSN) Demonstration
in Quantico, VA. Figure 9 shows the CSL integrated Google
Earth Feedback display that was used in conjunction with
Firefox, Internet Explorer, and Safari on an I-Phone to task the
CSL Network via the CSL Web Server interface. Figure 12
shows a photograph collected of the Camp Roberts, CA
runway during the Spring 2008 TNT demonstration.

V. EXPERIMENTAL RESULTS

To test the performance of the Generation I CSL Execution
Engine, a Hardware-In-Loop simulation was run with the
purpose of measuring the overhead time that CSL adds to
the system.

The simulation was run with three UAVs executing visit
point missions. The starting positions of the UAVs, as well as
the locations of the visit points, were randomly generated with
a uniform distribution over a 10km by 10km area. Missions
were created in batches: over the course of one minute, the
missions were generated following a Poisson process with a
probability of .1 that a task will be created at any given second.
After one minute, all the missions were allowed to be executed
until completion before a new batch was sent into the system.
The simulation was run for 32 batches; the number of points
generated in the simulation was between 2 and 10 tasks for
each batch.

An example of a batch’s execution is shown in Figure 13.
The UAVs start at initial positions and fly Dubins paths
through the points to be visited. This is compared to the point-
mass modelled optimal solution that has no turn dynamics.

TABLE 11
CSL PERFORMANCE

Process Percent of Time | Mean (sec) | Std. Dev. (sec)
CSL (1) 0.92 3.59 92

TSP (2) 0.77 3.01 2.46
Flying (3) 98.31 384.74 223.03
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Fig. 13. Example Batch Trajectories

Figure 14 shows the non-dimensionalized break-down of the
total running time of an average mission. This includes three
processes.

1) The web server processing the http request and publish-
ing tasks to the planes

2) The planes determining amongst themselves which one
is assigned to the mission (performed in CCS)

3) The plane assigned to the mission flying to the location
and completing the task

The time to execute Process 1 can be considered the
overhead added by CSL’s infrastructure to the running time of
the overall system. Process 2 is dependent on the computation
time required to perform an allocation for the open multi-
agent traveling salesman problem. The computation of the
open multi-agent traveling salesman is a NP-hard problem,
and more importantly, it is not solvable in a reasonable
time for the planes to effectively accomplish their missions.
Therefore, the implementation employs a heuristic algorithm
which minimizes the total time necessary to complete all
missions [17], [18]. The time to execute Process 3 is dependent

Break-Down of Average Task Time

W CSL Publishing Time
TSP Computation Time
DFlying time

Fig. 14. Distribution of Total Execution Time



on the trajectory taken to reach the destination, subject to a
given flying velocity, turning radius, and environmental factors
such as wind speed and direction.

As seen in Table II the average additional overhead associ-
ated with CSL and the heuristic traveling salesman allocation
is negligible in comparison to the time required to physically
execute the tasks. This is to be expected, the time required
to send a web service request over the Internet, and have
it “published” should be minimal in comparison to the time
required to physically perform a task. Also, the standard
deviations provide significant insight. The standard deviations
for creation and assignment of tasks were small, again as
expected since the time required to send a message via the
Internet should not vary drastically. The standard deviation
of time required to complete a task once it is assigned is
quite large, but this is merely due to the random nature and
distribution of tasks.

Since over 98 percent of the execution time comes as a result
of physical motion, the performance of the system is highly
dependent on the success of its heuristic allocation mechanism.
The details of this multi-step greedy approach are available in
[17]. As this allocation approaches optimal, the overall system
performance approaches optimal. Reducing the amount of time
required for Process 1 and Process 2 overhead would improve
the performance, but only slightly. Developing more tightly
bounded sub-optimal solutions to the open traveling salesman
allocation problem is a continuing field of research.

VI. CONCLUSIONS

CSL, a high-level feedback control language for mobile
sensor networks, was informally explained. CSL was shown
to enable the specification of reactive network missions. The
CSL Execution Engine automatically allocates resources to
accomplish these user defined network objectives. This allows
users to concentrate on what information they desire and not
on the specifics of how to obtain it.

CSL’s implementation was shown to add a reasonably low
overhead to the execution time required to complete the
objectives. The non-optimality of the performance was shown
to stem from the inability to solve the NP-hard open traveling
salesman problem efficiently during execution.

CSL also emphasizes and proposes adaptability through
patching. As new information is available from the network,
the user may modify the network objectives without inter-
rupting the execution. This enables hierarchical control, error
correction, and the ability to adapt to unexpected events within
the mobile sensor network.

Current research efforts include extending the language
to multiple users; the web services already accept multiple
connections but permissions need to be developed. Extending
the conditions to allow external functions to read the CSL state
and produce boolean condition values is also of high priority.
Also of interest, model checking, safety verification, or timing
estimates could be included before any RPL changes are sent
to the Publisher to inform users of how changes will affect the
network. Finally, the distribution of the Publisher component

is being investigated to create more of a peer-to-peer network
interaction.
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