
©
 C

. K
ir

sc
h

20
09

an incremental soft real-time garbage collector designed for memory constrained
devices, which cannot provide hard guarantees on maximum pause time and
CPU utilization, but comes with low space overhead and tight space bounds.
Stopless [21] is another garbage collector with soft guarantees on response times.
It provides low latency while preserving lock-freedom, supporting atomic opera-
tions, controlling fragmentation by compaction, and supporting multiprocessor
platforms. The main contribution of Stopless is a compaction algorithm which
moves objects in the heap concurrently with program execution. Exact bounds
for response times, as well as fragmentation, are missing in Stopless.

We remark that CF, like many of the above mentioned systems, is based on
segregated lists. Approaches that are not based on segregated lists, but rather on
data structures which maintain locality of objects, are known to perform better
when accessing objects by utilizing memory caches more effectively. However,
the use of segregated lists enables providing and trading-off temporal and spatial
guarantees.

3 Non-incremental Compact-fit

!"#$% &'$()*++

)*++

,'"#-,$.'&

Fig. 2. Size-class automaton with π > 1

Compact-Fit (CF) is a dynamic memory management system that provides
strict temporal and spatial (fragmentation) guarantees. Allocation as well as
deallocation without compaction takes constant time, whereas deallocation with
compaction takes linear time in the size of the object.

To be precise, there are two CF implementations [7], but in this paper we
only focus on the more fundamental so-called moving implementation.

The set-up of CF is as follows: The memory is divided in pages of equal size.
Each page (in use) contains a certain number of constant-sized page-blocks. In
total there are finitely many available page-block sizes, which determine to which
size-class a page belongs (namely all pages with a given page-block size belong
to one size-class). The pages are assigned to a size-class only if they are used
(non-empty). The number of page-blocks π per page in a size-class is therefore

Size-Class Automaton
for π > 1

h is the total # of allocated page-blocks in the size-class
n is the # of not-full pages
ui is the # of used page-blocks in a not-full page i

©
 C

. K
ir

sc
h

20
09

an incremental soft real-time garbage collector designed for memory constrained
devices, which cannot provide hard guarantees on maximum pause time and
CPU utilization, but comes with low space overhead and tight space bounds.
Stopless [21] is another garbage collector with soft guarantees on response times.
It provides low latency while preserving lock-freedom, supporting atomic opera-
tions, controlling fragmentation by compaction, and supporting multiprocessor
platforms. The main contribution of Stopless is a compaction algorithm which
moves objects in the heap concurrently with program execution. Exact bounds
for response times, as well as fragmentation, are missing in Stopless.

We remark that CF, like many of the above mentioned systems, is based on
segregated lists. Approaches that are not based on segregated lists, but rather on
data structures which maintain locality of objects, are known to perform better
when accessing objects by utilizing memory caches more effectively. However,
the use of segregated lists enables providing and trading-off temporal and spatial
guarantees.

3 Non-incremental Compact-fit

!"#$% &'$()*++

)*++

,'"#-,$.'&

Fig. 2. Size-class automaton with π > 1

Compact-Fit (CF) is a dynamic memory management system that provides
strict temporal and spatial (fragmentation) guarantees. Allocation as well as
deallocation without compaction takes constant time, whereas deallocation with
compaction takes linear time in the size of the object.

To be precise, there are two CF implementations [7], but in this paper we
only focus on the more fundamental so-called moving implementation.

The set-up of CF is as follows: The memory is divided in pages of equal size.
Each page (in use) contains a certain number of constant-sized page-blocks. In
total there are finitely many available page-block sizes, which determine to which
size-class a page belongs (namely all pages with a given page-block size belong
to one size-class). The pages are assigned to a size-class only if they are used
(non-empty). The number of page-blocks π per page in a size-class is therefore

Size-Class Automaton
for π > 1

h is the total # of allocated page-blocks in the size-class
n is the # of not-full pages
ui is the # of used page-blocks in a not-full page i

deallocation
in a not-full page i

(since i ≤ n)

©
 C

. K
ir

sc
h

20
09

an incremental soft real-time garbage collector designed for memory constrained
devices, which cannot provide hard guarantees on maximum pause time and
CPU utilization, but comes with low space overhead and tight space bounds.
Stopless [21] is another garbage collector with soft guarantees on response times.
It provides low latency while preserving lock-freedom, supporting atomic opera-
tions, controlling fragmentation by compaction, and supporting multiprocessor
platforms. The main contribution of Stopless is a compaction algorithm which
moves objects in the heap concurrently with program execution. Exact bounds
for response times, as well as fragmentation, are missing in Stopless.

We remark that CF, like many of the above mentioned systems, is based on
segregated lists. Approaches that are not based on segregated lists, but rather on
data structures which maintain locality of objects, are known to perform better
when accessing objects by utilizing memory caches more effectively. However,
the use of segregated lists enables providing and trading-off temporal and spatial
guarantees.

3 Non-incremental Compact-fit

!"#$% &'$()*++

)*++

,'"#-,$.'&

Fig. 2. Size-class automaton with π > 1

Compact-Fit (CF) is a dynamic memory management system that provides
strict temporal and spatial (fragmentation) guarantees. Allocation as well as
deallocation without compaction takes constant time, whereas deallocation with
compaction takes linear time in the size of the object.

To be precise, there are two CF implementations [7], but in this paper we
only focus on the more fundamental so-called moving implementation.

The set-up of CF is as follows: The memory is divided in pages of equal size.
Each page (in use) contains a certain number of constant-sized page-blocks. In
total there are finitely many available page-block sizes, which determine to which
size-class a page belongs (namely all pages with a given page-block size belong
to one size-class). The pages are assigned to a size-class only if they are used
(non-empty). The number of page-blocks π per page in a size-class is therefore

Size-Class Automaton
for π > 1

h is the total # of allocated page-blocks in the size-class
n is the # of not-full pages
ui is the # of used page-blocks in a not-full page i

remove page
since it is now

empty

©
 C

. K
ir

sc
h

20
09

an incremental soft real-time garbage collector designed for memory constrained
devices, which cannot provide hard guarantees on maximum pause time and
CPU utilization, but comes with low space overhead and tight space bounds.
Stopless [21] is another garbage collector with soft guarantees on response times.
It provides low latency while preserving lock-freedom, supporting atomic opera-
tions, controlling fragmentation by compaction, and supporting multiprocessor
platforms. The main contribution of Stopless is a compaction algorithm which
moves objects in the heap concurrently with program execution. Exact bounds
for response times, as well as fragmentation, are missing in Stopless.

We remark that CF, like many of the above mentioned systems, is based on
segregated lists. Approaches that are not based on segregated lists, but rather on
data structures which maintain locality of objects, are known to perform better
when accessing objects by utilizing memory caches more effectively. However,
the use of segregated lists enables providing and trading-off temporal and spatial
guarantees.

3 Non-incremental Compact-fit

!"#$% &'$()*++

)*++

,'"#-,$.'&

Fig. 2. Size-class automaton with π > 1

Compact-Fit (CF) is a dynamic memory management system that provides
strict temporal and spatial (fragmentation) guarantees. Allocation as well as
deallocation without compaction takes constant time, whereas deallocation with
compaction takes linear time in the size of the object.

To be precise, there are two CF implementations [7], but in this paper we
only focus on the more fundamental so-called moving implementation.

The set-up of CF is as follows: The memory is divided in pages of equal size.
Each page (in use) contains a certain number of constant-sized page-blocks. In
total there are finitely many available page-block sizes, which determine to which
size-class a page belongs (namely all pages with a given page-block size belong
to one size-class). The pages are assigned to a size-class only if they are used
(non-empty). The number of page-blocks π per page in a size-class is therefore

Size-Class Automaton
for π > 1

h is the total # of allocated page-blocks in the size-class
n is the # of not-full pages
ui is the # of used page-blocks in a not-full page i

atomic
compaction!

© C. Kirsch 2009

Incremental Compaction

• A page-block that is incrementally moved
actually occupies two page-blocks:

• source page-block

• target page-block

© C. Kirsch 2009

Incremental Compaction

• A page-block that is incrementally moved
actually occupies two page-blocks:

• source page-block

• target page-block

• A page containing source page-blocks is called
source page

• may also contain used and free page-blocks

© C. Kirsch 2009

administration gain complexity in the incremental version. In a size-class, apart
from the full and not-full pages, there may exist one source page. In a source
page there are used page-blocks and source page-blocks. The latter are page-
blocks that are in the process of being incrementally moved. One source page
suffices, since compaction in CF requires moving a used page-block which is now
always taken from the source page. Allocation never happens in a source page.
A source page always contains at least one used page-block. If a source page
looses all its used page-blocks (due to deallocation or compaction), it is removed
from the size-class and placed into a global pool E of emptying source pages.
All pages in the pool contain page-blocks that are involved in ongoing incremen-
tal compaction operations. The space occupied by source page-blocks and free
page-blocks in (emptying) source pages, which is (temporarily) not available for
allocation in any size-class, is called transient size-class fragmentation. When
all incremental compaction operations in an emptying source page finish, then
the page is returned to the global list of free pages. On the other hand, if all
incremental compaction operations within a source page finish, i.e., the source
page has no more source page-blocks, and if there are still used page-blocks in
the source page, then there are two possibilities: (1) the source page becomes
a not-full page, if the number of not-full pages is smaller than the partial com-
paction bound, or (2) the source page is kept as a potential source page without
source page-blocks, otherwise. The evolution of a page is shown in Figure 5.

!"## $%&'!"## (%")*+

+,-&./$0

(%")*+
+,-&.

/$121(/3+'*#2((

Fig. 5. The lifetime of a page

The state of a size-class is described by a tuple

〈h, n, u1, . . . , un, us, s,m1, . . . ,ms〉

where, as before, h denotes the current heap size, n is the number of not-full
pages such that n ≤ κ + 1 with κ being the partial compaction bound, and the
values of u1, . . . , un are the numbers of used page-blocks in the not-full pages,
respectively. The value of us equals the number of used page-blocks in the source
page, with us = 0 representing that there is no source page in the size-class. The
variable s contains the number of source page-blocks in the source page and
equals 0 if there is no source page. Note that s = 0 and us > 0 represents

The Lifetime of a Page

© C. Kirsch 2009

administration gain complexity in the incremental version. In a size-class, apart
from the full and not-full pages, there may exist one source page. In a source
page there are used page-blocks and source page-blocks. The latter are page-
blocks that are in the process of being incrementally moved. One source page
suffices, since compaction in CF requires moving a used page-block which is now
always taken from the source page. Allocation never happens in a source page.
A source page always contains at least one used page-block. If a source page
looses all its used page-blocks (due to deallocation or compaction), it is removed
from the size-class and placed into a global pool E of emptying source pages.
All pages in the pool contain page-blocks that are involved in ongoing incremen-
tal compaction operations. The space occupied by source page-blocks and free
page-blocks in (emptying) source pages, which is (temporarily) not available for
allocation in any size-class, is called transient size-class fragmentation. When
all incremental compaction operations in an emptying source page finish, then
the page is returned to the global list of free pages. On the other hand, if all
incremental compaction operations within a source page finish, i.e., the source
page has no more source page-blocks, and if there are still used page-blocks in
the source page, then there are two possibilities: (1) the source page becomes
a not-full page, if the number of not-full pages is smaller than the partial com-
paction bound, or (2) the source page is kept as a potential source page without
source page-blocks, otherwise. The evolution of a page is shown in Figure 5.

!"## $%&'!"## (%")*+

+,-&./$0

(%")*+
+,-&.

/$121(/3+'*#2((

Fig. 5. The lifetime of a page

The state of a size-class is described by a tuple

〈h, n, u1, . . . , un, us, s,m1, . . . ,ms〉

where, as before, h denotes the current heap size, n is the number of not-full
pages such that n ≤ κ + 1 with κ being the partial compaction bound, and the
values of u1, . . . , un are the numbers of used page-blocks in the not-full pages,
respectively. The value of us equals the number of used page-blocks in the source
page, with us = 0 representing that there is no source page in the size-class. The
variable s contains the number of source page-blocks in the source page and
equals 0 if there is no source page. Note that s = 0 and us > 0 represents

The Lifetime of a Page

at most one
source page
per size-class

© C. Kirsch 2009

administration gain complexity in the incremental version. In a size-class, apart
from the full and not-full pages, there may exist one source page. In a source
page there are used page-blocks and source page-blocks. The latter are page-
blocks that are in the process of being incrementally moved. One source page
suffices, since compaction in CF requires moving a used page-block which is now
always taken from the source page. Allocation never happens in a source page.
A source page always contains at least one used page-block. If a source page
looses all its used page-blocks (due to deallocation or compaction), it is removed
from the size-class and placed into a global pool E of emptying source pages.
All pages in the pool contain page-blocks that are involved in ongoing incremen-
tal compaction operations. The space occupied by source page-blocks and free
page-blocks in (emptying) source pages, which is (temporarily) not available for
allocation in any size-class, is called transient size-class fragmentation. When
all incremental compaction operations in an emptying source page finish, then
the page is returned to the global list of free pages. On the other hand, if all
incremental compaction operations within a source page finish, i.e., the source
page has no more source page-blocks, and if there are still used page-blocks in
the source page, then there are two possibilities: (1) the source page becomes
a not-full page, if the number of not-full pages is smaller than the partial com-
paction bound, or (2) the source page is kept as a potential source page without
source page-blocks, otherwise. The evolution of a page is shown in Figure 5.

!"## $%&'!"## (%")*+

+,-&./$0

(%")*+
+,-&.

/$121(/3+'*#2((

Fig. 5. The lifetime of a page

The state of a size-class is described by a tuple

〈h, n, u1, . . . , un, us, s,m1, . . . ,ms〉

where, as before, h denotes the current heap size, n is the number of not-full
pages such that n ≤ κ + 1 with κ being the partial compaction bound, and the
values of u1, . . . , un are the numbers of used page-blocks in the not-full pages,
respectively. The value of us equals the number of used page-blocks in the source
page, with us = 0 representing that there is no source page in the size-class. The
variable s contains the number of source page-blocks in the source page and
equals 0 if there is no source page. Note that s = 0 and us > 0 represents

The Lifetime of a Page

© C. Kirsch 2009

administration gain complexity in the incremental version. In a size-class, apart
from the full and not-full pages, there may exist one source page. In a source
page there are used page-blocks and source page-blocks. The latter are page-
blocks that are in the process of being incrementally moved. One source page
suffices, since compaction in CF requires moving a used page-block which is now
always taken from the source page. Allocation never happens in a source page.
A source page always contains at least one used page-block. If a source page
looses all its used page-blocks (due to deallocation or compaction), it is removed
from the size-class and placed into a global pool E of emptying source pages.
All pages in the pool contain page-blocks that are involved in ongoing incremen-
tal compaction operations. The space occupied by source page-blocks and free
page-blocks in (emptying) source pages, which is (temporarily) not available for
allocation in any size-class, is called transient size-class fragmentation. When
all incremental compaction operations in an emptying source page finish, then
the page is returned to the global list of free pages. On the other hand, if all
incremental compaction operations within a source page finish, i.e., the source
page has no more source page-blocks, and if there are still used page-blocks in
the source page, then there are two possibilities: (1) the source page becomes
a not-full page, if the number of not-full pages is smaller than the partial com-
paction bound, or (2) the source page is kept as a potential source page without
source page-blocks, otherwise. The evolution of a page is shown in Figure 5.

!"## $%&'!"## (%")*+

+,-&./$0

(%")*+
+,-&.

/$121(/3+'*#2((

Fig. 5. The lifetime of a page

The state of a size-class is described by a tuple

〈h, n, u1, . . . , un, us, s,m1, . . . ,ms〉

where, as before, h denotes the current heap size, n is the number of not-full
pages such that n ≤ κ + 1 with κ being the partial compaction bound, and the
values of u1, . . . , un are the numbers of used page-blocks in the not-full pages,
respectively. The value of us equals the number of used page-blocks in the source
page, with us = 0 representing that there is no source page in the size-class. The
variable s contains the number of source page-blocks in the source page and
equals 0 if there is no source page. Note that s = 0 and us > 0 represents

The Lifetime of a Pagetransient size-class
fragmentation

© C. Kirsch 2009

the existence of a potential source page, as discussed above. Finally, m1, . . . ,ms

are the sizes of the portions of the s source page-blocks that have already been
moved.

Figure 6 shows an abstraction of the size-class behavior. Similar to Figure 2,
we use abstract states to describe the state changes: EMPTY stands for the single
state 〈0, 0, 0, 0〉 representing an empty size-class; the state NOT-FULL, no source rep-
resents all states with at least one not-full page where no compaction is needed
and no source page is present, that is 〈h, n, u1, . . . un, 0, 0〉 with 0 < n ≤ κ; the
state FULL, no source represents all states with no not-full pages, at least one full
page, and no source page, that is 〈h, 0, 0, 0〉 with h > 0; NOT-FULL, source represents
all states with at least one not-full page where no compaction is needed and a
source page, that is 〈h, n, u1, . . . un, us, s,m1, . . . ,ms〉 with 0 < n ≤ κ, us > 0;
FULL, source represents all states with no not-full pages, at least one full page, and
a source page, that is 〈h, 0, us, s,m1, . . . ,ms〉 with h > 0 and us > 0; finally,
COMPACTION is used to represent states 〈h, κ + 1, u1, . . . , uκ+1, us, s,m1, . . . ,ms〉
in which compaction must be invoked. We note that the automaton and the dis-
cussion in this section is under the assumption that the number of page-blocks in
a page is larger than 1, π > 1. The degenerate case with π = 1 is of no interest.

A state change in a size-class happens upon allocation (A), deallocation
(Di, Dt

i), or incremental compaction (I, Ij , IE) transitions. The distinction be-
tween Di and Dt

i transitions will be clarified in the sequel and does not influence
the global state changes. A transition I represents an initial incremental com-
paction step, Ij is any further incremental compaction step which involves a
source page, and IE is a further incremental compaction step which involves an
emptying source page.

!"#$%
&'$()*++)*++

,'"#-,$.'&

/01203456 /01203456

&'$()*++)*++

203456 203456

Fig. 6. Incremental size-class automaton with π > 1

We next present the actual changes of states in a size-class in full detail
upon allocation, deallocation, and incremental compaction.

Incremental Size-Class
Automaton for π > 1

© C. Kirsch 2009

the existence of a potential source page, as discussed above. Finally, m1, . . . ,ms

are the sizes of the portions of the s source page-blocks that have already been
moved.

Figure 6 shows an abstraction of the size-class behavior. Similar to Figure 2,
we use abstract states to describe the state changes: EMPTY stands for the single
state 〈0, 0, 0, 0〉 representing an empty size-class; the state NOT-FULL, no source rep-
resents all states with at least one not-full page where no compaction is needed
and no source page is present, that is 〈h, n, u1, . . . un, 0, 0〉 with 0 < n ≤ κ; the
state FULL, no source represents all states with no not-full pages, at least one full
page, and no source page, that is 〈h, 0, 0, 0〉 with h > 0; NOT-FULL, source represents
all states with at least one not-full page where no compaction is needed and a
source page, that is 〈h, n, u1, . . . un, us, s,m1, . . . ,ms〉 with 0 < n ≤ κ, us > 0;
FULL, source represents all states with no not-full pages, at least one full page, and
a source page, that is 〈h, 0, us, s,m1, . . . ,ms〉 with h > 0 and us > 0; finally,
COMPACTION is used to represent states 〈h, κ + 1, u1, . . . , uκ+1, us, s,m1, . . . ,ms〉
in which compaction must be invoked. We note that the automaton and the dis-
cussion in this section is under the assumption that the number of page-blocks in
a page is larger than 1, π > 1. The degenerate case with π = 1 is of no interest.

A state change in a size-class happens upon allocation (A), deallocation
(Di, Dt

i), or incremental compaction (I, Ij , IE) transitions. The distinction be-
tween Di and Dt

i transitions will be clarified in the sequel and does not influence
the global state changes. A transition I represents an initial incremental com-
paction step, Ij is any further incremental compaction step which involves a
source page, and IE is a further incremental compaction step which involves an
emptying source page.

!"#$%
&'$()*++)*++

,'"#-,$.'&

/01203456 /01203456

&'$()*++)*++

203456 203456

Fig. 6. Incremental size-class automaton with π > 1

We next present the actual changes of states in a size-class in full detail
upon allocation, deallocation, and incremental compaction.

deallocation of
a target page-block

Incremental Size-Class
Automaton for π > 1

© C. Kirsch 2009

the existence of a potential source page, as discussed above. Finally, m1, . . . ,ms

are the sizes of the portions of the s source page-blocks that have already been
moved.

Figure 6 shows an abstraction of the size-class behavior. Similar to Figure 2,
we use abstract states to describe the state changes: EMPTY stands for the single
state 〈0, 0, 0, 0〉 representing an empty size-class; the state NOT-FULL, no source rep-
resents all states with at least one not-full page where no compaction is needed
and no source page is present, that is 〈h, n, u1, . . . un, 0, 0〉 with 0 < n ≤ κ; the
state FULL, no source represents all states with no not-full pages, at least one full
page, and no source page, that is 〈h, 0, 0, 0〉 with h > 0; NOT-FULL, source represents
all states with at least one not-full page where no compaction is needed and a
source page, that is 〈h, n, u1, . . . un, us, s,m1, . . . ,ms〉 with 0 < n ≤ κ, us > 0;
FULL, source represents all states with no not-full pages, at least one full page, and
a source page, that is 〈h, 0, us, s,m1, . . . ,ms〉 with h > 0 and us > 0; finally,
COMPACTION is used to represent states 〈h, κ + 1, u1, . . . , uκ+1, us, s,m1, . . . ,ms〉
in which compaction must be invoked. We note that the automaton and the dis-
cussion in this section is under the assumption that the number of page-blocks in
a page is larger than 1, π > 1. The degenerate case with π = 1 is of no interest.

A state change in a size-class happens upon allocation (A), deallocation
(Di, Dt

i), or incremental compaction (I, Ij , IE) transitions. The distinction be-
tween Di and Dt

i transitions will be clarified in the sequel and does not influence
the global state changes. A transition I represents an initial incremental com-
paction step, Ij is any further incremental compaction step which involves a
source page, and IE is a further incremental compaction step which involves an
emptying source page.

!"#$%
&'$()*++)*++

,'"#-,$.'&

/01203456 /01203456

&'$()*++)*++

203456 203456

Fig. 6. Incremental size-class automaton with π > 1

We next present the actual changes of states in a size-class in full detail
upon allocation, deallocation, and incremental compaction.

Incremental Size-Class
Automaton for π > 1

initial incremental
compaction step

© C. Kirsch 2009

the existence of a potential source page, as discussed above. Finally, m1, . . . ,ms

are the sizes of the portions of the s source page-blocks that have already been
moved.

Figure 6 shows an abstraction of the size-class behavior. Similar to Figure 2,
we use abstract states to describe the state changes: EMPTY stands for the single
state 〈0, 0, 0, 0〉 representing an empty size-class; the state NOT-FULL, no source rep-
resents all states with at least one not-full page where no compaction is needed
and no source page is present, that is 〈h, n, u1, . . . un, 0, 0〉 with 0 < n ≤ κ; the
state FULL, no source represents all states with no not-full pages, at least one full
page, and no source page, that is 〈h, 0, 0, 0〉 with h > 0; NOT-FULL, source represents
all states with at least one not-full page where no compaction is needed and a
source page, that is 〈h, n, u1, . . . un, us, s,m1, . . . ,ms〉 with 0 < n ≤ κ, us > 0;
FULL, source represents all states with no not-full pages, at least one full page, and
a source page, that is 〈h, 0, us, s,m1, . . . ,ms〉 with h > 0 and us > 0; finally,
COMPACTION is used to represent states 〈h, κ + 1, u1, . . . , uκ+1, us, s,m1, . . . ,ms〉
in which compaction must be invoked. We note that the automaton and the dis-
cussion in this section is under the assumption that the number of page-blocks in
a page is larger than 1, π > 1. The degenerate case with π = 1 is of no interest.

A state change in a size-class happens upon allocation (A), deallocation
(Di, Dt

i), or incremental compaction (I, Ij , IE) transitions. The distinction be-
tween Di and Dt

i transitions will be clarified in the sequel and does not influence
the global state changes. A transition I represents an initial incremental com-
paction step, Ij is any further incremental compaction step which involves a
source page, and IE is a further incremental compaction step which involves an
emptying source page.

!"#$%
&'$()*++)*++

,'"#-,$.'&

/01203456 /01203456

&'$()*++)*++

203456 203456

Fig. 6. Incremental size-class automaton with π > 1

We next present the actual changes of states in a size-class in full detail
upon allocation, deallocation, and incremental compaction.

Incremental Size-Class
Automaton for π > 1further incremental

compaction step
involving

a source page

© C. Kirsch 2009

the existence of a potential source page, as discussed above. Finally, m1, . . . ,ms

are the sizes of the portions of the s source page-blocks that have already been
moved.

Figure 6 shows an abstraction of the size-class behavior. Similar to Figure 2,
we use abstract states to describe the state changes: EMPTY stands for the single
state 〈0, 0, 0, 0〉 representing an empty size-class; the state NOT-FULL, no source rep-
resents all states with at least one not-full page where no compaction is needed
and no source page is present, that is 〈h, n, u1, . . . un, 0, 0〉 with 0 < n ≤ κ; the
state FULL, no source represents all states with no not-full pages, at least one full
page, and no source page, that is 〈h, 0, 0, 0〉 with h > 0; NOT-FULL, source represents
all states with at least one not-full page where no compaction is needed and a
source page, that is 〈h, n, u1, . . . un, us, s,m1, . . . ,ms〉 with 0 < n ≤ κ, us > 0;
FULL, source represents all states with no not-full pages, at least one full page, and
a source page, that is 〈h, 0, us, s,m1, . . . ,ms〉 with h > 0 and us > 0; finally,
COMPACTION is used to represent states 〈h, κ + 1, u1, . . . , uκ+1, us, s,m1, . . . ,ms〉
in which compaction must be invoked. We note that the automaton and the dis-
cussion in this section is under the assumption that the number of page-blocks in
a page is larger than 1, π > 1. The degenerate case with π = 1 is of no interest.

A state change in a size-class happens upon allocation (A), deallocation
(Di, Dt

i), or incremental compaction (I, Ij , IE) transitions. The distinction be-
tween Di and Dt

i transitions will be clarified in the sequel and does not influence
the global state changes. A transition I represents an initial incremental com-
paction step, Ij is any further incremental compaction step which involves a
source page, and IE is a further incremental compaction step which involves an
emptying source page.

!"#$%
&'$()*++)*++

,'"#-,$.'&

/01203456 /01203456

&'$()*++)*++

203456 203456

Fig. 6. Incremental size-class automaton with π > 1

We next present the actual changes of states in a size-class in full detail
upon allocation, deallocation, and incremental compaction.

Incremental Size-Class
Automaton for π > 1

further incremental
compaction step

involving
an emptying source page

