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Limitations of proofs by 
calculation

if y is not free in P and Q

Proofs by calculation are formal and well-structured, but 
often undirected and not particularly intuitive.

Example

P ∧ (P∨Q) = (P∨F) ∧(P∨Q)
                        = P∨(F ∧Q)
                        = P ∨ F
                        = P

val

val

val

val

2



Limitations of proofs by 
calculation

if y is not free in P and Q

Proofs by calculation are formal and well-structured, but 
often undirected and not particularly intuitive.

Example

P ∧ (P∨Q) = (P∨F) ∧(P∨Q)
                        = P∨(F ∧Q)
                        = P ∨ F
                        = P

val

val

val

val

P ∧ (P∨Q) = P   P ∧ (P∨Q) ⇔ P = T   
val val

Conclusions

2



Limitations of proofs by 
calculation

if y is not free in P and Q

Proofs by calculation are formal and well-structured, but 
often undirected and not particularly intuitive.

Example

we can prove this 
more intuitively by 

reasoning

P ∧ (P∨Q) = (P∨F) ∧(P∨Q)
                        = P∨(F ∧Q)
                        = P ∨ F
                        = P

val

val

val

val

P ∧ (P∨Q) = P   P ∧ (P∨Q) ⇔ P = T   
val val

Conclusions

2



An example of a  mathematical 
proof

if y is not free in P and Q

If x2 is even, then x is even (x ∊ Z).Theorem

Proof Let x∊ Z be such that x2 is even. 

We need to prove that x is even too.

Assume that x is odd, towards a contradiction.

If x is odd than x = 2y+1 for some y ∊ Z.

Then x2 = (2y+1)2 = 4y2 + 4y + 1 = 2(2y2 + 2y) + 1
and 2y2 + 2y ∊ Z.

So,  x2  is odd too,  and we have a contradiction.
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Exposing logical structure

if y is not free in P and Q

If x2 is even, then x is even (x ∊ Z).Theorem

Proof

Thanks to Bas Luttik

Let x∊ Z  
     Assume x2 is even. 
          Assume that x is odd.

                   Then x = 2y+1 for some y ∊ Z.

                   Then x2 = (2y+1)2 = 4y2 + 4y + 1 =             
                            2(2y2 + 2y) + 1 and 2y2 + 2y ∊ Z.

                  So, x2  is odd

              a contradiction.
      So, x is even

(sub)goal

generating hypothesis

pure hypothesis

conclusion
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Single inference rule

Q is a correct conclusion from n premises P1, .. , Pn

iff
(P1∧ P2 ∧…∧ Pn) ⊨ Q

val
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Single inference rule

Q is a correct conclusion from n premises P1, .. , Pn
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Conjunction elimination

How do we use a conjunction in a proof?
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8



Implication elimination

How do we use an implication in a proof? P⇒Q ⊨  ???

(P⇒Q) ∧ P ⊨ Q

val

val

8



Implication elimination

How do we use an implication in a proof? P⇒Q ⊨  ???

(P⇒Q) ∧ P ⊨ Q

val

val

          || ||
   
(k)     P⇒Q

          || ||

(l)      P

          || ||
         {⇒-elim on (k) and (l)}

(m)    Q

(k < m, l < m)8



Implication elimination

How do we use an implication in a proof? P⇒Q ⊨  ???

(P⇒Q) ∧ P ⊨ Q

val

val

          || ||
   
(k)     P⇒Q

          || ||

(l)      P

          || ||
         {⇒-elim on (k) and (l)}

(m)    Q

(k < m, l < m)

⇒-elimination

8



Conjunction introduction
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P∧Q ⊨ P∧Q
val

Conjunction introduction

How do we prove a conjunction?
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Negation introduction

How do we prove a negation?
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Negation introduction

How do we prove a negation?
¬ P = P ⇒ F
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F introduction

How do we prove F?

F-introduction
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Proof by contradiction

if y is not free in P and Q

If x2 is even, then x is even (x ∊ Z).Theorem

Proof Let x∊ Z  
     Assume x2 is even. 
          Assume that x is odd.

                   Then x = 2y+1 for some y ∊ Z.

                   Then x2 = (2y+1)2 = 4y2 + 4y + 1 =             
                            2(2y2 + 2y) + 1 and 2y2 + 2y ∊ Z.

                  So, x2  is odd

              a contradiction.
      So, x is even

(sub)goal

generating hypothesis

pure hypothesis

conclusion
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(l)     P⇒R
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quantification

if y is not free in P and Q

∀x[x ∊ Z ∧ x ≥2 : x2 - 2x ≥0]To prove

Proof Let x∊ Z be arbitrary and assume that x≥2. 

Then, for this particular x, it holds that 
               x2 - 2x = x(x-2) ≥0  (Why?) 

Conclusion:  ∀x[x ∊ Z ∧ x ≥2 : x2 - 2x ≥0].
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Using a universal quantification

∀x[x ∊ Z ∧ x ≥2 : x2 - 2x ≥0]We know

Whenever we encounter an a ∊ Z such that a≥2, 

we can conclude that a2 - 2a ≥0.

For example, (523872 - 2·52387) ≥0 
since  52387 ∊ Z and 52387 ≥2.
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How do we use a universal quantification in a proof? similar to
implication 

but we need 
a witness          || ||

   
(k)     ∀x[P(x) : Q(x)]
          
          || ||

(l)      P(a)

          || ||
         {∀-elim on (k) and (l)}
(m)    Q(a)

(k < m, l < m)

∀-elimination

a is 
an object 

(variable, number,..) 
which is “known” in line 

(l)

the same “a” from line (l)time for an 
example!
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∃-introduction
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(k)     ∀x[P(x) : ¬Q(x)]
           
          …
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         {∃-intro on (k) and (l-1)}
(l)   ∃x [P(x) : Q(x)]

¬ ∀x[P(x):¬Q(x)]  ⊨
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         {∃-elim on (k) and (l)}
(m)    F
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∃-elimination

time for an 
example!

∃x [P(x) : Q(x)]  ⊨
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val

and ¬-
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Proofs with ∃-introduction and ∃-
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cumbersome…

There are alternatives!
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if y is not free in P and Q

∃x[x ∊ Z : x3 - 2x - 8 ≥0]To prove

Proof It suffices to find a witness, i.e., an x∊ Z satisfying

                      x3 - 2x - 8 ≥0. 

x = 3  is a witness, since  3 ∊ Z and 33 - 2·3 - 8 = 13 ≥0

Conclusion:  ∃x[x ∊ Z : x3 - 2x - 8 ≥0].
also x = 5 is a witness…
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         {∃*-intro on (k) and (l)}
(m)    ∃x [P(x) : Q(x)]
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by finding 
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Alternative ∃ introduction

How do we prove an existential quantification?

∃*-introduction

strategy: wait until a witness 
object appears

does not 
always work
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Using an existential 
quantification

∃x[x ∊ R :  a - x < 0 < b - x]We know

We can declare an x ∊ Z  (a witness) such that

a - x < 0 < b - x
and use it further in the proof. For example:
      From a - x < 0, we get a < x.
      From b - x > 0, we get x < b.
      Hence, a < b.
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