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An example of a mathematical
proof

Proof Let xe Z be such that x2 is even.

If X2 is even, then x is even (x € Z).

We need to prove that x is even too.
Assume that X is odd, towards a contradiction.

If x is odd than x = 2y+| for somey € Z.

Then x2= (2y+1)2=4y2 + 4y + | =2(2y2 + 2y) + |
and 2y2 + 2y e 7.

So, X2 is odd too, and we have a contradiction.
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Then, for this particular x, it holds that
x2 - 2x = x(x-2) =0 (Why?)
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VX[X € Z A Xx=2:x?-2x =0]

4 )

Whenever we encounter an a € Z such that a=2,

we can conclude that a2 - 2a >0.

For example, (523872 -2-52387) =0
since 52387 € /Z and 52387 =2.

. J
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Using an existential
quantification

xR a:x<0<b-

4 N
We can declare an x € Z (a witness) such that

a-x<0<b-x
and use it further in the proof. For example:
From a - x <0, we get a < x.
From b - x > 0, we get x < b.
Hence,a <b.
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