Substitution

meta rule

Simple

$$\phi \stackrel{val}{=} \psi$$

$$\phi[\xi/P] \stackrel{val}{=} \psi[\xi/P]$$

Sequential

$$\phi \stackrel{val}{=} \psi$$

$$\phi[\xi/P][\eta/Q] \stackrel{val}{=} \psi[\xi/P][\eta/Q]$$

Simultaneous

$$\phi \stackrel{val}{=} \psi$$

EVERY occurrence of P is substituted!

$$\phi[\xi/P, \eta/Q] \stackrel{val}{=} \psi[\xi/P, \eta/Q]$$

The rule of Leibniz

Leibniz

$$\phi \stackrel{val}{=} \psi$$

$$C[\phi] \stackrel{val}{=} C[\psi]$$

formula that has ϕ as a sub formula

meta rule

single occurrence is replaced!

Strengthening and weakening

We had

Definition: Two abstract propositions P and Q are equivalent, notation $P \stackrel{\text{\tiny Yal}}{=} Q$, iff

- (I) Always when P has truth value I, also Q has truth value I, and
- (2) Always when Q has truth value I, also P has truth value I.

if we relax this, we get strengthening

Strengthening

Definition: The abstract proposition P is stronger than Q, notation $P \stackrel{\text{Yal}}{\models} Q$, iff (1) Always when P has truth value I,

(1) Always when P has truth value I, also Q has truth value I, and

(2) Always when Q has truth value I, also P has truth value I.

Q is weaker than P

Strengthening

Definition: The abstract proposition P is stronger than Q, notation $P \stackrel{\text{Yel}}{=} Q$, iff always when P has truth value I, also Q has truth value I.

always when P is true, Q is also true

Q is weaker than P

Properties

Lemma EI: $P \stackrel{val}{=} Q$ iff $P \Leftrightarrow Q$ is a tautology.

Lemma EWI:
$$P \stackrel{val}{=} Q$$
 iff $P \stackrel{val}{\models} Q$ and $Q \stackrel{val}{\models} P$.

Lemma W2:
$$P \stackrel{val}{\models} P$$

Lemma W3: If
$$P \models Q$$
 and $Q \models R$ then $P \models R$

Lemma W4:
$$P \stackrel{out}{\models} Q \text{ iff } P \Rightarrow Q \text{ is a tautology.}$$

Standard Weakenings

and-or-weakening

$$P \land Q \models^{val} P$$

$$P \models^{val} P \lor Q$$

Extremes

$$F \stackrel{val}{\models} P$$

$$P \stackrel{val}{\models} T$$

Calculating with weakenings (the use of standard weakenings)

Substitution

just holds

Simple

$$\phi \stackrel{val}{\models} \psi$$

$$\phi[\xi/P] \stackrel{val}{\models} \psi[\xi/P]$$

Sequential

$$\phi \models \psi$$

$$\phi[\xi/P][\eta/Q] \stackrel{vai}{\models} \psi[\xi/P][\eta/Q]$$

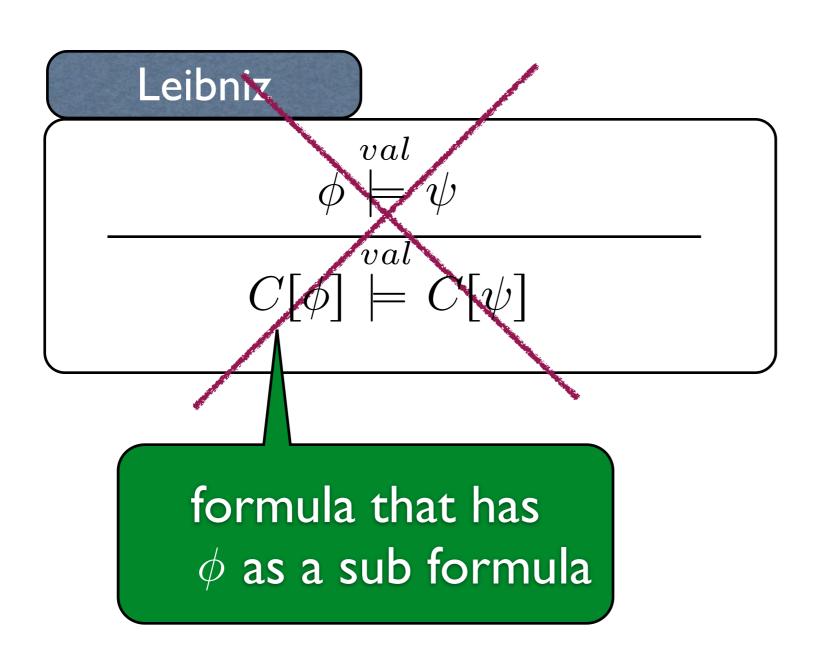
Simultaneous

$$\phi \models^{val} \psi$$

EVERY occurrence of P is substituted!

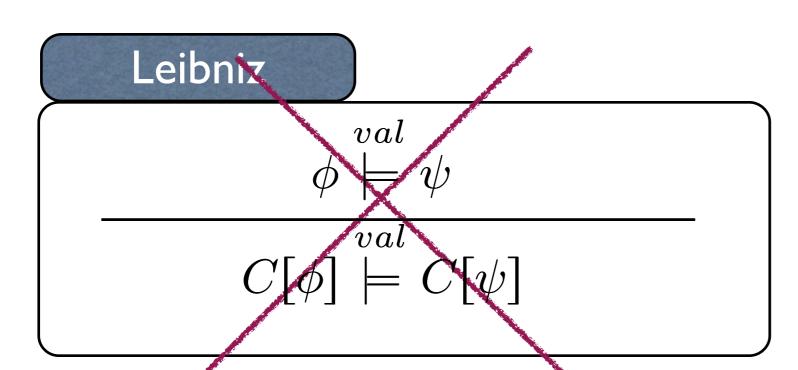
$$\phi[\xi/P, \eta/Q] \stackrel{val}{\models} \psi[\xi/P, \eta/Q]$$

The rule of Leibniz



does not hold for weakening!

The rule of Leibniz



does not hold for weakening!

Monotonicity

$$P \models Q$$

$$P \land R \models Q \land R$$

$$\begin{array}{c}
 P \stackrel{val}{\models} Q \\
\hline
 P \lor R \stackrel{val}{\models} Q \lor R
\end{array}$$

Predicate logic

Limitations of propositional logic

Propositional logic only allows us to reason about completed statements about things, not about the things themselves.

Example

Some chicken cannot fly All chicken are birds

Some birds cannot fly

this reasoning can not be expressed in propositional logic

Example

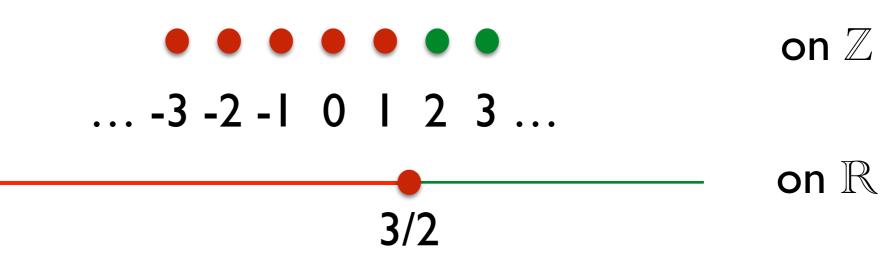
Every player except the winner looses a match

Unary predicate (example)

Consider the statement 2m>3.

a unary relation

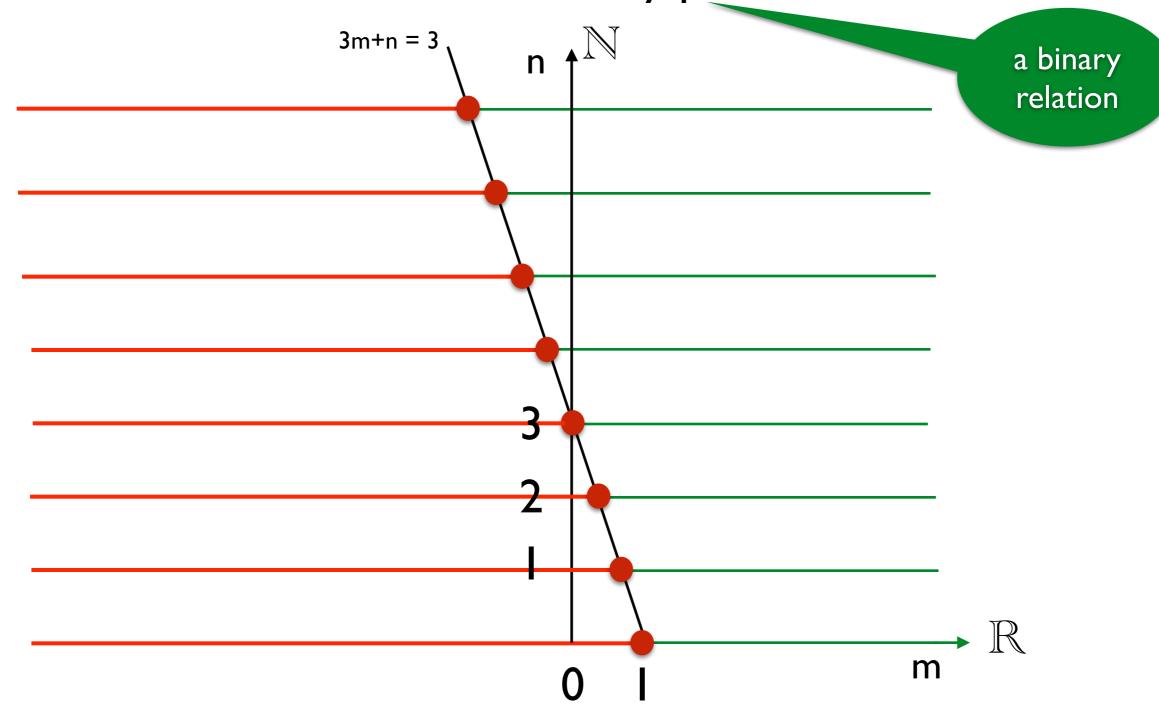
Whether this statement is true or false depends on the value of m (and on the domain of values).



Note:
$$2m > 3 \stackrel{\text{\tiny val}}{=} m > 3/2$$
 on \mathbb{Z} and \mathbb{R}
 $2m > 3 \stackrel{\text{\tiny val}}{=} m \ge 2$ on \mathbb{Z} but not on \mathbb{R}

Binary predicate (example)

The statement 3m+n > 3 is a binary predicate on $\mathbb{R} \times \mathbb{N}$.



Predicates

In general, an n-ary predicate is an n-ary relation.

If it is on a domain D, then it's a relation $P(x_1, ..., x_n) \subseteq D^n$ or equivalently a function P: $D^n \to \{0, 1\}$.

2m>3

true for certain values of the variables

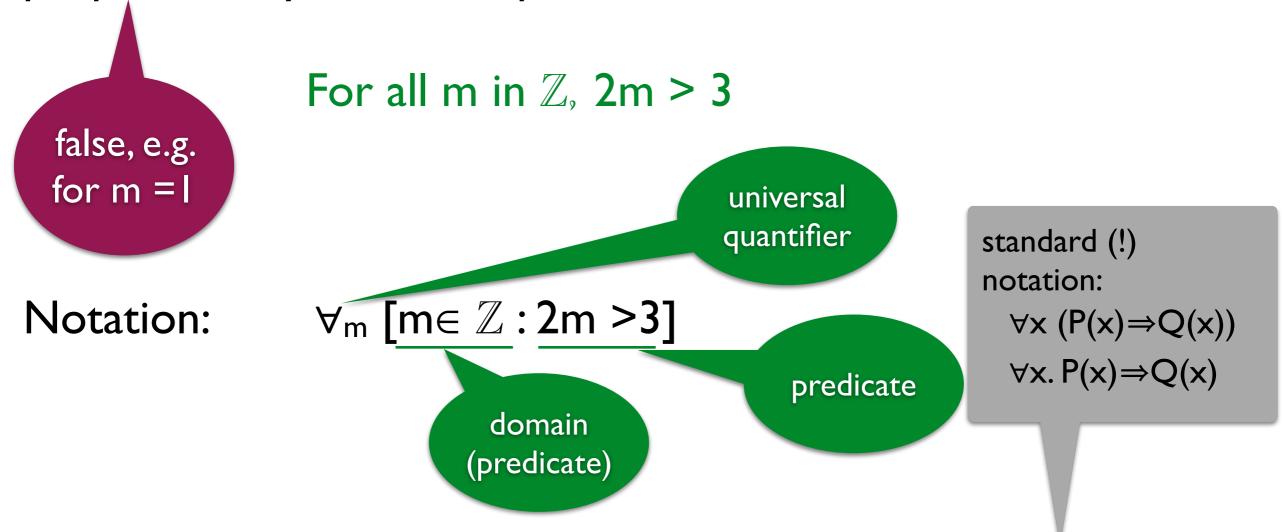
We can turn a predicate, into a proposition in three ways:

- I. By assigning values to the variables.
- 2. By universal quantification.
- 3. By existential quantification.

for m=2 $2 \cdot 2 > 3$ is a true proposition

Universal quantification

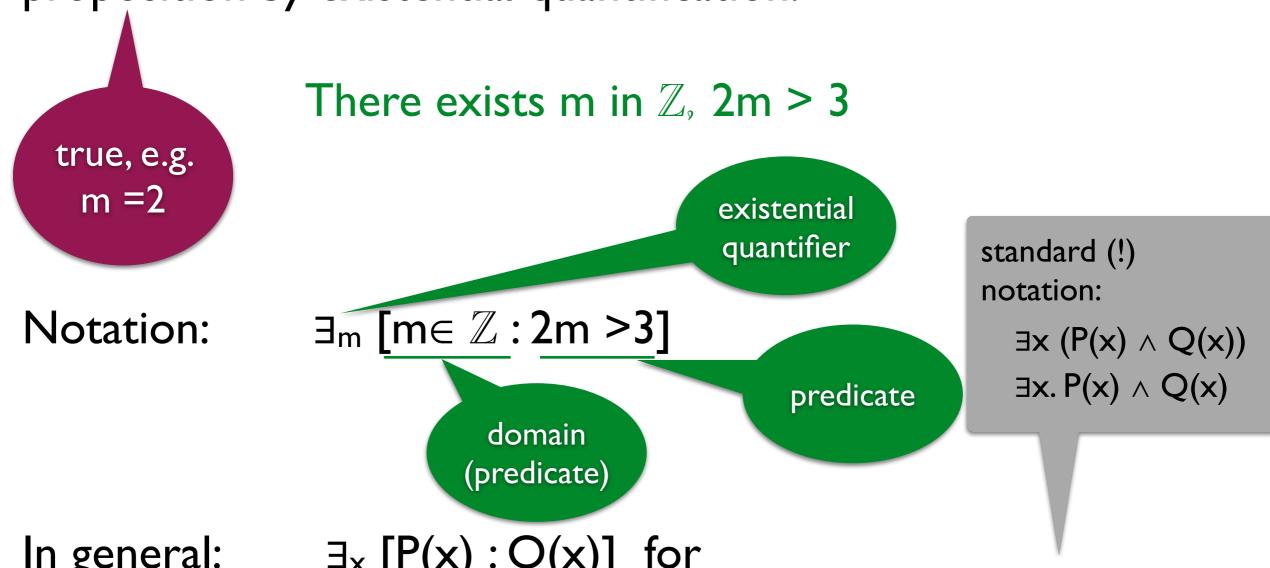
The unary predicate 2m > 3 on \mathbb{Z} can be turned into a proposition by universal quantification:



In general: $\forall_x [P(x) : Q(x)]$ for "all x satisfying P satisfy Q"

Existential quantification

The unary predicate 2m > 3 on \mathbb{Z} can also be turned into a proposition by existential quantification:



 $\exists_{\mathsf{x}} [\mathsf{P}(\mathsf{x}) : \mathsf{Q}(\mathsf{x})]$ for In general:

"there exists x satisfying P that satisfies Q"

Quantification

The binary predicate 3m+n > 3 on $\mathbb{R} \times \mathbb{N}$ can also be turned into a proposition by quantification:

in 8 possible ways

One way is: $\exists_m [m \in \mathbb{R} : \forall_n [n \in \mathbb{N} : 3m + n > 3]]$

standard (!) notation:

 $\exists m \ (m \in \mathbb{R} \land \forall n \ (n \in \mathbb{N} \Rightarrow 3m+n>3))$

unary predicate binary predicate

proposition, nullary predicate

Notation

also for ∃

```
We write \forall_x [P] for \forall_x [T:P]
```

```
We also write \exists_{m,} \forall_{n} [(m,n) \in \mathbb{R} \times \mathbb{N} : 3m + n > 3] for \exists_{m} [m \in \mathbb{R} : \forall_{n} [n \in \mathbb{N} : 3m + n > 3]]
```

```
And even \exists_{m,n} [(m,n) \in \mathbb{R} \times \mathbb{N} : 3m + n > 3]
for \exists_m [m \in \mathbb{R} : \exists_n [n \in \mathbb{N} : 3m + n > 3]]
```

but only for the same quantifier!

Quantification - task

Let P be the set of all tennis players. Let $w \in P$ be the winner.

Thanks to Bas Luttik

For p, $q \in P$, write $p \neq q$ for "p and q are different players".

Let M be the set of all matches. For $p \in P$ and $m \in M$, write L(p,m) for

"player p loses match m".

Write the following sentence as a formula with predicates and quantifiers:

Every player except the winner loses a match.