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The Rules of the Game

® | ectures Wednesday 2:15 pm - 3 pm in TO|
Thursday 10:15am - 12 am in TO|

® |nstructions
Group |, Thursday |:15 pm - 3 pm (AS) in TOI
Group 2, Thursday |:15 pm - 3 pm (AH) in TO2

® [utors Markus Reiter and Sarah Sophie Salinger
Tuesday |2am-1pm in TO6

® Books
Logical Reasoning: A First Course by R. Nederpelt and F. Kamaraddine

Modellierung: Grundlagen und formale Methoden by U. Kastens and H. Kleine
Buning

Introduction to Automata Theory, Languages, and Computation by |. E.
Hopcroft, R. Motwani and |.D. Ullman
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® | ectures Wednesday 2:15 pm - 3 pm in TO|
Thursday 10:15am - 12 am in TO|

® |nstructions
Group |, Thursday |:15 pm - 3 pm (AS) in TOI
Group 2, Thursday |:15 pm - 3 pm (AH) in TO2
Group 3, Thursday 3:15 pm - 5 pm (AH/AS) in TOI starting

® [utors Markus Reiter and Sarah Sophie Salinger next week
Tuesday |2am-1pm in TO6

® Books
Logical Reasoning: A First Course by R. Nederpelt and F. Kamaraddine

Modellierung: Grundlagen und formale Methoden by U. Kastens and H. Kleine
Buning

Introduction to Automata Theory, Languages, and Computation by |. E.
Hopcroft, R. Motwani and |.D. Ullman



The Rules... Instructions
(PS)

® |nstruction exercises on the web
http://cs.uni-salzburg.at/~anas/Ana_Sokolova/
FormaleSystemeProseminar20 14/
on Thursday afternoons

® Jo be solved by the students (in groups of at most
3 students) and handed in as homework to the
instruction lecturer before Wednesday | |am

® |n class we will present a sample solution and the
students will be asked to present solutions/discuss
the exercises


http://cs.uni-salzburg.at/~anas/Ana_Sokolova/FormaleSystemeProseminar2014.html

The Rules... Instructions
(PS)

® One randomly chosen exercise will be graded each
week

® The graded exercise will be returned to you in
class

® Grade based on
(1) the grades of the corrected exercise and
(2) activity in class (ability to present solutions)

® All information about the course / rules / exams /
grading is / will be on the course webpage



The Rules... Exam (VO)

® \Written exams

® \Written exam in February, April,and July
or two partial tests during the semester

® Grade based on the # of points on the written
exam (sum of the points on the partial tests)

® For better grade oral exam after the written one
upon appointment

® You can pass the course if you have 55% of the
maximal points on the exam.



The Rules... Tests (VO)

® One test end of November, one beginning of
February

® The tests are partial (half material)

® You can pass via tests if the sum of your points on
both tests is at least 55% of the sum of maximal
points on the tests and if on each test you have at
least 20% of the maximal points

® The tests and the exams consist of exercises /
questions related to the material taught in class



Some advice

® |t starts easy, but soon it gets more difficult

® [here accumulates lots of material for the
exam

® Best is to regularly study, practice, solve the
exercises yourself!



In the beginning

Aristotle +/- 350 B.C.
Organon

|9 syllogisms




Logic = study of correct reasoning

In the beg

Aristotle +/- 350 B.C.
Organon

|9 syllogisms



Formal Logic

Gottfried Wilhelm Leibnitz
(1646 - 1716)

Beginnings of symbolic logic
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George Boole

(1815 - 1864)

Boolean logic



WWe will learn

Naive Set Theory - sets, relations, mappings,
numbers and structures, ordered sets

Logical Calculations - propositional logic,
predicate logic

Logical Derivations - reasoning

Basics of formal models - finite automata,
transition systems, graphs, grammars...



WWe will learn

Starting this week

Naive Set Theory - sets, relations, mappings,
numbers and structures, ordered sets

Logical Calculations - propositional logic,
predicate logic

Logical Derivations - reasoning

Basics of formal models - finite automata,
transition systems, graphs, grammars...



Why formal models/
methods!

® For better understanding of a complex
system, problem, task,... models,
abstractions are needed

® For rigorous precise reasoning about a
complex system, problem, task



The river-crossing
puzzle

A man stands with a wolf, a goat, and a cabbage at
the left bank of a river, that he wants to cross.

The man has a boat that is large enough to carry
him and another object to the other side.

If the man leaves the wolf and the goat, or the goat
and the cabbage on one side without supervision,
one of them will get eaten :-(

s it possible to cross the river so that neither the
goat nor the cabbage is eaten?

[Hopcroft et al, Kastens et al]
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The river-crossing
puzzle

Formalization with a finite automaton [Kastens et al.] :
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The river-crossing
puzzle

Formalization with a finite automaton [Kastens et al.] :
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Another model
example
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Sets

® A setSis a collection of different objects, the
elements of S

® We write x € S for 'x is an element of §’

® A set can’ be specified by
(1) listing its elements, e.g. S = {l,3,7,18}
(2) specifying a property, e.g.S = {x | P(x)}

e Sets can be finite e.g. {#,*®} or infinite e.g. N

® The set with no elements is the empty set,
notation &

® The number’ of elements in a set S is the
cardinality of S, notation |[S]



Sets

® A setSis a collection of different objects, the
elements of S

® We write x € S for 'x is an element of §’

P is a proposition
over X, which is
true or false

® A set can’ be specified by
(1) listing its elements, e.g. S = {l,3,7,18}
(2) specifying a property, e.g.S = {x | P(x

e Sets can be finite e.g. {#,*®} or infinite e.g. N

® The set with no elements is the empty set,
notation @

® The number’ of elements in a set S is the
cardinality of S, notation |[S]



Sets - properties

® All elements of a set are different
® [he elements of a set are not ordered

® The same set can be specified in different ways, e.g.
{1,2,3,4},{2,3,1,4},{i| i € N and 0 <i < 5}



Subsets, equality

Def. A C B iff all elements of A are elements of B
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Subsets, equality

Def. A C B iff all elements of A are elements of B
[iff foralla,ifae A, thenaeB]

[iff Va(ae A= aeB)]

quantifier

logical
connective

Def. A=B iffACBand B CA

Def. AcB iffACBandA #B



Operations on sets
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Operations on sets

Union AuB={x|xeAorxe B}
A AuB B
Intersection AnB={x|xeAandx e B}
A and B are if AhnB=0 A AnB B
Difference A\B={x|xeAandx ¢ B}
A A\B B

Direct product

(Eetconcpd) 472 s beban 8
ordered pairs

Powerset P(A) ={X| X A}




Russell’s paradox

Let P be the set of all sets that are not an
element of itself

Hence,P = { x | x ¢ x}
sPeP?

Contradiction!



Russell’s paradox

Let P be the set of all sets that are not an
element of itself

Hence,P = { x | x ¢ x}
IsPeP?

Contradiction!

The need for a universal set U

S ={x| x € Uand P(x)}




Operations on sets

Difference A\B={x|xeAandx ¢ B}

A A\B



Operations on sets

Difference A\B={x|xeAandx ¢ B}

Given a universal set U

A A\B




Operations on sets

Difference A\B={x|xeAandx ¢ B}

Given a universal set U

A A\B

Complement Ac={x|xeUandx ¢A}

U
A



Operations on sets

Difference A\B={x|xeAandx ¢ B}

A A\B

Given a universal set U

Complement Ac={x|xeUandx ¢A}

U
A

Hence A‘=U\A




Properties of sets

. @ C X

. f ACBandB C C,thenA C C

. XnYC X XnYCY

. X XuY, YT XuY

. IEX

. XnY=Xiff XCY

. X n X=X (idempotence)

. X u X =X (idempotence)

2
3
4
5
6. If X
7
8
9
I

0.XNo=O




Properties of sets

1l. Xug=X

2. X nY =Y n X (commutativity)

13. XuY =Y u X (commutativity)

14. Xn (Y nZ) =(XnY)n Z (associativity)

5. Xu(YuZ) =(XuY)u Z (associativity)

16. X n (XuY)=X (absorption)

7. Xu(XnY)=X (absorption)

18. Xn(YuZ) =(XnY)u (X nZ) (distributivity)
19. Xu(YnZ) =(XuY)n (XuZ) (distributivity)

20.

X\YcX




Properties of sets

21.

(X\Y)nY =92

22.

XuY=Xu(Y\X)

23.

X\ X=9g

24.

X\g =X

25.

D\ X=9

26.

If X CY,then X\Y =J

27.

(X

28.

(X

29.

(X

30.

XXO=0 OxX=O

31.

DXX=P

32.

If X €Y, then 2(X) € 2(Y)




