Linearizability via Order Extension Theorems

a glimpse into unpublished results and some open problems

foundational results for verifying linearizability

Inspiration

As well as Reducing Linearizability to State Reachability [Bouajjani, Emmi, Enea, Hamza] ICALP15 + ...

Queue sequential specification (axiomatic)

s is a legal queue sequence

- 1. **s** is a legal pool sequence, and
- 2. $enq(x) <_{s} enq(y) \land deq(y) \in s$

 $deq(x) \in \mathbf{s} \wedge deq(x) <_{\mathbf{s}} deq(y)$

Queue linearizability (axiomatic)

Henzinger, Sezgin, Vafeiadis CONCUR13

h is queue linearizable

iff

- 1. **h** is pool linearizable, and
- 2. $enq(x)(<\mathbf{h})enq(y) \land deq(y) \in \mathbf{h} \Rightarrow deq(x) \in \mathbf{h} \land deq(y)(<\mathbf{h})deq(x)$

precedence order

Problems (stack)

Stack sequential specification (axiomatic)

s is a legal stack sequence iff

- 1. **s** is a legal pool sequence, and
- 2. $push(x) <_{\mathbf{s}} push(y) <_{\mathbf{s}} pop(x) \Rightarrow pop(y) \in \mathbf{s} \land pop(y) <_{\mathbf{s}} pop(x)$

Stack linearizability (axiomatic)

h is stack linearizable iff

- 1. **h** is pool linearizable, and
- 2. $push(x) <_h push(y) <_h pop(x) \Rightarrow pop(y) \in h \land pop(x) <_h pop(y)$

Problems (stack)

Stack sequential specification (axiomatic)

s is a legal stack sequence iff

- 1. **s** is a legal pool sequence, and
- 2. $push(x) <_{s} push(y) <_{s} pop(x) \Rightarrow pop(y) \in S \land pop(y) <_{s} pop(x)$

Stack linearizability (axiomatic)

h is stack linearizable

iff

- 1. **h** is pool linearizable, and
- 2. $push(x) <_h push(y) <_h pop(x) \Rightarrow pop(y) \in h \land pop(x) <_h pop(y)$

Problems (stack)

```
t1: push(1) pop(1)
t2: push(2) pop(2)
t3: push(3) pop(3)

not stack linearizable
```

```
h is stack linearizable
1. h is pool linearizable, and
2. push(x) <h push(y) <h pop(x) ⇒ pop(y) ∈ h ∧ pop(x) ≮h pop(y)</li>
```

Linearizability verification

Data structure

- signature Σ set of method calls including data values
- sequential specification $S \subseteq \Sigma^*$, prefix closed

identify sequences with total orders

Sequential specification via violations

Extract a set of violations V. relations on Σ , such that $\mathbf{s} \in S$ iff \mathbf{s} has no violations

it is easy to find a large CV, but difficult to find a small representative

 $\mathcal{P}(\mathbf{s}) \cap V = \emptyset$

Linearizability ver iication

Find a set of violations CV such that: every interval order with no CV violations extends to a total order with no V violations.

we build CV iteratively from V

Ana

legal sequence

concurrent history

Pool without empty removals

Pool sequential specification (axiomatic)

- **s** is a legal pool (without empty removals) sequence iff
- 1. $rem(x) \in \mathbf{S} \implies ins(x) \in \mathbf{S} \land ins(x) <_{\mathbf{S}} rem(x)$

V violations $rem(x) <_s ins(x)$

Pool linearizability (axiomatic)

h is pool (without empty removals) linearizable

1. $\operatorname{rem}(x) \in \mathbf{h} \implies \operatorname{ins}(x) \in \mathbf{h} \land \operatorname{rem}(x) \not<_{\mathbf{h}} \operatorname{ins}(x)$

CV violations = V violations

Queue without empty removals

Queue sequential specification (axiomatic)

- s is a legal queue (without empty removals) sequence
- 1. $deq(x) \in \mathbf{S} \Rightarrow enq(x) \in \mathbf{S} \land enq(x) <_{\mathbf{S}} deq(x)$
- 2. $enq(x) <_{s} enq(y) \land deq(y) \in S \Rightarrow deq(x) \in S \land deq(x) <_{s} deq(y)$

Queue linearizability (axiomatic)

h is queue (without empty removals) linearizable

- 1. $\operatorname{rem}(x) \in \mathbf{h} \implies \operatorname{ins}(x) \in \mathbf{h} \land \operatorname{rem}(x) \not<_{\mathbf{h}} \operatorname{ins}(x)$
- 2. $enq(x) <_{\mathbf{h}} enq(y) \land deq(y) \in \mathbf{h} \Rightarrow deq(x) \in \mathbf{h} \land deq(y) <_{\mathbf{h}} deq(x)$

V violations $deq(x) <_s enq(x)$ and $enq(x) <_{s} enq(y) \land$ $deq(y) <_{s} deq(x)$

CV violations

= V violations

Pool

infinite inductive violations

V violations

 $rem(x) <_s ins(x)$

and

 $ins(x) <_{s} rem(\bot) <_{s} rem(x)$

Pool sequential specification (axiomatic)

- **s** is a legal pool (with empty removals) sequence iff
- 1. $rem(x) \in \mathbf{s} \implies ins(x) \in \mathbf{s} \land ins(x) <_{\mathbf{s}} rem(x)$
- 2. $\operatorname{rem}(\bot) <_{\mathbf{s}} \operatorname{rem}(X) \Rightarrow \operatorname{rem}(\bot) <_{\mathbf{s}} \operatorname{ins}(X) \wedge \operatorname{ins}(X) <_{\mathbf{s}} \operatorname{rem}(\bot) \Rightarrow \operatorname{rem}(X) <_{\mathbf{s}} \operatorname{rem}(\bot)$

Pool linearizability (axiomatic)

h is pool (with empty removals) linearizable

- 1. $rem(x) \in \mathbf{h} \Rightarrow ins(x) \in \mathbf{h} \land rem(x) \not<_{\mathbf{h}} ins(x)$
- 2.

infinitely many CV violations

 $\operatorname{ins}(x_1) <_{\mathbf{h}} \operatorname{rem}(\bot) \land \operatorname{ins}(x_2) <_{\mathbf{h}} \operatorname{rem}(x_1) \land \ldots \land \operatorname{ins}(x_{n+1}) <_{\mathbf{h}} \operatorname{rem}(x_n) \land \operatorname{rem}(\bot) <_{\mathbf{h}} \operatorname{rem}(x_{n+1})$

infinite inductive violations

Queue

V violations $\operatorname{rem}(x) <_{\mathbf{s}} \operatorname{ins}(x)$ and $\operatorname{ins}(x) <_{\mathbf{s}} \operatorname{rem}(\bot) <_{\mathbf{s}} \operatorname{rem}(x)$ and $\operatorname{enq}(x) <_{\mathbf{s}} \operatorname{enq}(y) \land \operatorname{deq}(y) <_{\mathbf{s}} \operatorname{deq}(x)$

Queue sequential specification (axiomatic)

- **s** is a legal queue (with empty removals) sequence iff
- 1. $deq(x) \in \mathbf{s} \Rightarrow enq(x) \in \mathbf{s} \land enq(x) <_{\mathbf{s}} deq(x)$
- 2. $deq(\bot) <_s deq(x) \Rightarrow deq(\bot) <_s enq(x) \land enq(x) <_s deq(\bot) \Rightarrow deq(x) <_s deq(\bot)$
- 3. $enq(x) <_{s} enq(y) \land deq(y) \in S \Rightarrow deq(x) \in S \land deq(x) <_{s} deq(y)$

Queue linearizability (axiomatic)

h is queue (with empty removals) linearizable iff

- 1. $deq(x) \in \mathbf{h} \Rightarrow enq(x) \in \mathbf{h} \land deq(x) \not<_{\mathbf{h}} enq(x)$
- infinitely many CV violations enq(x₁) <**h** deq(\perp) \land enq(x₂) <**h** deq(x₁) \land ... \land enq(x_{n+1}) <**h** deq(x_n) \land deq(\perp) <**h** deq(x_{n+1})
- 3. $enq(x) <_{\mathbf{h}} enq(y) \land deq(y) \in \mathbf{h} \Rightarrow deq(x) \in \mathbf{h} \land deq(y) <_{\mathbf{h}} deq(x)$

Data independence => verifying executions where each value is enqueued at most once is sound

Reduction to assertion checking = exclusion of "bad patterns"

Value v dequeued without being enqueued deq ⇒ v

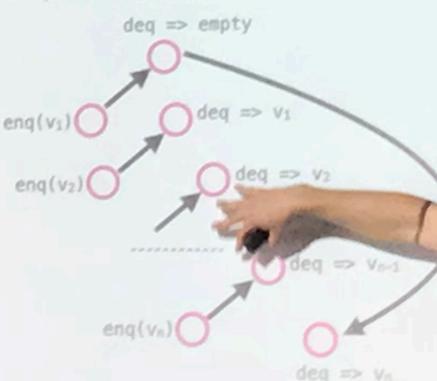
Value v dequeued before being enqueued deg ⇔ v eng(v)

Value v dequeued twice

Value v₁ and v₂ dequeued in the wrong order

eng(
$$v_1$$
) eng(v_2) deg $\rightarrow v_2$ deg $\rightarrow v_1$

Dequeue wrongfully returns empty



It works for

- Pool without empty removals
- Queue without empty removals
- Priority queue without empty removals
- Pool
- Queue
- Priority queue

infinite inductive violations

But not yet for Stack: infinite CV violations without clear inductive structure

Exploring the space of data structures as well as new ideas for problematic cases