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Why Model Checking?

an alternative proof approach

useful counter-examples

ability to define and vary assumptions about the system

and see why it breaks

closer to code level

good degree of automation
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Distributed Algorithms: Model Checking Challenges

unbounded data types
unbounded number of rounds (round numbers part of messages)

parameterization in multiple parameters
among n processes f ≤ t are faulty with n > 3t

contrast to concurrent programs
diverse fault models (adverse environments)

continuous time
fault-tolerant clock synchronization

degrees of concurrency: synchronous, asynchronous partially
synchronous

a process makes at most 5 steps between 2 steps of any other
process
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Fault-tolerant distributed algorithms

n

? ? ?
t f

n processes communicate by messages
all processes know that at most t of them might be faulty
f are actually faulty
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Challenge #1: fault models

clean crashes: least severe
faulty processes prematurely halt after/before “send to all”

crash faults:
faulty processes prematurely halt (also) in the middle of “send to all”

omission faults:
faulty processes follow the algorithm, but some messages sent by them
might be lost

symmetric faults:
faulty processes send arbitrarily to all or nobody

Byzantine faults: most severe
faulty processes can do anything
encompass all behaviors of above models
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Challenges #2 & #3: Pseudo-code and
Communication

Translate pseudo-code to a formal description
that allows us to verify the algorithm
and does not oversimplify the original algorithm.

Assumptions about the communication medium
are usually written in plain English,
spread across research papers,
constitute folklore knowledge.
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Asynchronous Reliable Broadcast (Srikanth & Toueg,
87)

The core of the classic broadcast algorithm from the DA literature.
It solves an agreement problem depending on the inputs vi .

Variables of process i
vi : {0 , 1} i n i t i a l l y 0 or 1
accepti : {0 , 1} i n i t i a l l y 0

An atomic step:
i f vi = 1
then send ( echo ) to all ;
i f received (echo) from

at l e a s t t + 1 distinct processes
and not sent ( echo ) before

then send ( echo ) to all ;
i f received ( echo ) from at l e a s t

n - t distinct processes
then accepti := 1 ;

asynchronous
t Byzantine faults
correct if n > 3t
the code is
parameterized in n
and t
⇒ process template

P(n, t , f )
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Typical Structure of a Computation Step

receive messages

compute using
messages and local variables

(description in English
with basic control flow

if-then-else)

send messages

at
om

ic

im
pli

cit

ps
eu

do
-co

de
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Challenge #4: Parameterized Model Checking

Parameterized model checking problem:
given a process template P(n, t , f ),
resilience condition RC : n > 3t ∧ t ≥ f ≥ 0,
fairness constraints Φ, e.g., “all messages will be delivered”
and an LTL-X formula ϕ

show for all n, t , and f satisfying RC
(P(n, t , f ))n−f + f faults |= (Φ→ ϕ)

n

? ? ?
t

n

? ? ?
t f
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Challenge #5: Liveness in Distributed Algorithms

Interplay of safety and liveness is a central challenge in DAs

achieving safety and liveness is non-trivial
asynchrony and faults lead to impossibility results
(recall first part of lecture (Fischer et al., 1985))

Rich literature to verify safety (e.g. in concurrent systems)

Distributed algorithms perspective:

“doing nothing is always safe”
“tools verify algorithms that actually might do nothing”

Verification efforts often have to simplify assumptions
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Summary

We have to model:
faults,
communication medium captured in English,
algorithms written in pseudo-code.

and check:
safety and liveness
of parameterized systems
with unbounded integers,
non-standard fairness constraints,
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Existing formalization frameworks

TLA+/PlusCal

Design & Specification

Concurrent Alg.
Proving/

TLC

(Timed) IOA

Asynchronous DA
Proving/
UPPAAL

PVS

Theorem Proving

?
(Parameterized)

Model Checking

of FTDAs

DISTAL

Simulation

PBFT

Implementation
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Alternative frameworks

TLA (temporal logic of actions):
used to design (distributed) algorithms by refinement of the spec
verification with proof assistants (low degree of automation)

Encodings of DA in proof assistant PVS (e.g., by Rushby):
ad-hoc encoding
found a bug in a published synchronous Byzantine Agreement
algorithm (Lincoln & Rushby, 1993)

I/O-Automata:
originally designed to write clearer hand-written proofs
limited tool support, e.g., Veromodo toolset is still in beta
suitable only for asynchronous distributed algorithms

proof assistants are very general, but with low automation degree
“everything is possible, but nothing is easy”
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Simulation and Implementation

Distal:

Domain-specific language (Biely et al., 2013)
Simulation and evaluate performance of fault-tolerant algorithms

Practical Byzantine Fault-Tolerance (Castro et al., 1999)
and other practical algorithms:

Implementation with optimizations
Precise semantics is unclear
The system is partially synchronous:
non-divergent message delays are assumed
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In this part

We introduce efficient encoding in PROMELA.

Verify safety and liveness of fault-tolerant algorithms (fixed parameters).

Find counterexamples for parameters known from the literature.

This proves adequacy of our modeling.
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Preliminaries:
Promela
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Promela

PROMELA ≡ PROcess MEta LAnguage

SPIN ≡ Simple Promela INterpreter
(not that simple any more)

Here we give a short introduction and cover only
the features important to our work.

Detailed documentation, tutorials, and books on:
http://spinroot.com Gerard Holzmann
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Top-level: global variables and processes

/∗ g l o b a l d e c l a r a t i o n s v i s i b l e t o a l l p r o c e s s e s ∗ /
int x; /∗ a g l o b a l i n t e g e r ( a s in C ) ∗ /

mtype = { X, Y }; /∗ c o n s t a n t message t y p e s ∗ /
/∗ a FIFO c h a n n e l wi th a t most 2 m e s s a g e s o f t y p e mtype ∗ /
chan c = [2] of { mtype };

active[2] proctype ProcA() { Two processes are created
at the initial state...

}

proctype ProcB() { Processes can be created
later using: run ProcB()...

}

init { A special process, use to
create other processesrun ProcB(); run ProcB();

}
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One process: Basics

int x, y;

active proctype ProcA() {

int z; Declare a local variable

z = x; Assignment

x > y; Block until the expression is evaluated to true

true; one step to execute, no effect

z++;

skip; same as true
}
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One process: Control flow

int x, y;

active proctype P() {
main:
if A guarded command

:: x == 0 -> x = 1;
:: y == 0 -> y = 1;

non-deterministically selects an option
whose first expression is not blocked.:: x == 1 && y == 1

-> x = 0; y = 0;
fi; continues executing the rest of the option

step-by-step.goto main;
}
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One process: Control flow (cont.)

int x = 0, y = 0;

active
proctype P() {
main:
if
:: x == 0 -> x = 1;
:: y == 0 -> y = 1;

:: x == 1 && y == 1
-> x = 0; y = 0;

fi;
goto main;
}

Run 1 Run 2 Run 3

x=0,y=0 x=0,y=0 x=0,y=0

x=1,y=0 x=0,y=1 x=1,y=0

x=1,y=1 x=1,y=1 x=1,y=1

x=0,y=0 x=0,y=0 x=0,y=0

x=0,y=1 x=1,y=0 x=1,y=1

x=1,y=1 x=1,y=1 x=1,y=1

x=0,y=0 x=0,y=0 x=0,y=0
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One process: Loops

int x;

active proctype P() {
do a do..od loop

:: x == 10 -> x = 0;
:: x == 10 -> break;
:: x < 10 -> x++;

od;

A:
if

basically the same. goto A
introduces one more step

:: x == 10 -> x = 0;
:: x == 10 -> goto B;
:: x < 10 -> x++;

fi;
goto A;

B:
}
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Many Processes: Interleavings

Pure interleaving semantics

Every statement is executed
atomically

int x = 0, y = 1;

active[2] proctype A() {
x = 1 - x;
y = 1 - y;

}

A[1]A[0]

The red path is an example execution where the steps of processes 0
and 1 alternate.
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Many Processes: Atomics

use atomic { ... } to make
execution of a sequence indivisible.

non-deterministic choice with
if..fi is still allowed!

int x = 0, y = 1;

active[2] proctype A() {
atomic {

x = 1 - x;
y = 1 - y;

}
}

A[1]A[0]

Larger atomic steps lead to less possible paths and states.
Note: different atomicity degrees may lead to different verification
results
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(Asynchronous) message passing

mtype = { A, B };
chan chan1 = [1] of { mtype }; queue of size 1
chan chan2 = [1] of { mtype };

active proctype Ping() {
chan1!A; insert A to “chan1”
do

:: chan2?B -> chan1!A;
od;

when B is on the top of “chan2”,
remove it and insert A to “chan1”

}

active proctype Pong() {
do

:: chan1?A -> chan2!B;
od;

}
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Blocking receive

mtype = { A, B };
chan chan1 = [1] of { mtype };
chan chan2 = [1] of { mtype };

active proctype Ping() {
chan1!A;
do :: chan2?B -> ←− deadlock!

chan1!A; Ping sends A, Pong receives A,
chan1?A is blockedod;

}

active proctype Pong() {
do :: chan1?A ->

chan1?A; ←− deadlock!
chan2!B;

od;
}
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Blocking send

mtype = { A, B };
chan chan1 = [1] of { mtype };
chan chan2 = [1] of { mtype };
active proctype Ping() {

chan1!A;
do :: chan2?B -> When chan1=[A] and chan2=[B], the system deadlocks

chan1!A;
chan1!A;
chan1!A; ←− deadlock!
chan1!A; The shortest counter-example has 10 steps

od;
} Use Spin to find it

active proctype Pong() {
do :: chan1?A ->

chan2!B; ←− deadlock!
od;

}
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Promela vs. C

PROMELA looks like C

But it is not!

Non-determinism in the if statements (internal non-determinism)

Non-determinstic scheduler (external non-determinism)

Atomic statements

Message passing

PROMELA is a modeling language
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Preliminaries:

Kripke Structures
Linear Temporal Logic (LTL)

Control Flow Automata (CFA)
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Kripke structures

A Kripke structure is a
M = (S,S0,R,AP,L), where:

S is a set of states,
S0 ⊆ S is the set of initial
states,
R ⊆ S × S is a transition
relation,
AP is a set of atomic
propositions,
L : S → 2AP is a state-labeling
function. s4 : {g}

s1 : {y} s2 : {y}
s3 : {r , y ,g}

s0 : {r}
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Linear Temporal Logic

An LTL formula is defined inductively w.r.t.
atomic propositions AP:

(base) p ∈ AP is an LTL formula,
if ϕ and ψ are LTL formulas, then the
following expressions are LTL
formulas:

Nexttime: Xϕ,
Eventually: Fϕ,
Globally: Gϕ,
Until: ψUϕ.
Boolean combinations:
ϕ ∧ ψ, ϕ ∨ ψ, and ¬ϕ.

s0 s2 s3 s4s1

s′0 s′1 s′2 s′4s′3

s′′0 s′′1 s′′2 s′′3 s′′4

s′′′0

ψ

s′′′1

ψ

s′′′2

ϕ

s′′′3 s′′′4
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Recall: Typical Structure of a Computation Step

receive messages

compute using
messages and local variables

(description in English
with basic control flow

if-then-else)

send messages

at
om

ic

im
pli

cit

ps
eu

do
-co

de
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CFA: Intermediate representation

Intermediate representation of a
loop body: a path from qI to qF
encodes one iteration.

Every variable is assigned at most
once (SSA).

active proctype P() {
int x, y;

do
:: x == 0 -> x = 1;
:: x == 1 -> x = 2;
:: x == 2 -> x = 0;
:: x == 1
-> x = 0; y = 1 - y;

od;
}

qI

q0 q1 q2 q3

q4

qF

x = 0

x = 1
x = 1

x = 2

x ′ = 1

x ′ = 2
x ′ = 0

x ′ = 0

y ′ = 1− y
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Example: from a CFA to a Kripke structure

Kripke structure M(n, t , f ) = (S,S0,R,AP,L) of N(n, t , f ) processes

For a path π from qI to qF construct a formula φπ(x , y , x ′, y ′)

A state is a pair of x = (x1, . . . , xN) ∈ NN and y = (y1, . . . , yN) ∈ NN

and the initial states are S0 = {(0, . . . ,0)}

((x , y), (x ′, y ′)) ∈ R iff there are
process index k . 1 ≤ k ≤ N and path π:

[k moves]: φπ(xk , yk , x ′k , y
′
k ) holds

[others do not]: ∀i ∈ {1, . . . ,N} \ {k}.
x ′i = xi , y ′i = yi .

Propositions
AP = {[∃i . yi 6= 0], [∀i . yi 6= 0]}
and a state (x , y) is labeled as:
p ∈ L((x , y)) iff (x , y) |= p.

qI

q0 q1 q2 q3

q4

qF

x = 0

x = 1
x = 1

x = 2

x ′ = 1

x ′ = 2
x ′ = 0

x ′ = 0

y ′ = 1− y
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Example: Properties of ST87 in LTL

Unforgeability. If vi = 0 for all correct processes i , then for all correct
processes j , acceptj remains 0 forever.

G
(( n−f∧

i=1
vi = 0

)
→ G

( n−f∧
j=1

acceptj = 0
))

Safety

Completeness. If vi = 1 for all correct processes i , then there is a correct
process j that eventually sets acceptj to 1.

G
(( n−f∧

i=1
vi = 1

)
→ F

( n−f∨
j=1

acceptj = 1
))

Liveness

Relay. If a correct process i sets accepti to 1, then eventually all
correct processes j set acceptj to 1.

G
(( n−f∨

i=1
accepti = 1

)
→ F

( n−f∧
j=1

acceptj = 1
))

Liveness
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Model Checking Problems

Finite-state MC
Input:

a process template P,
an LTL formula ϕ (including fairness),
values of parameters n, t , and f .

Problem: check, whether M(n, t , f ) |= ϕ.

Parameterized MC
Input:

a process template P,
an LTL formula φ (including fairness)
with atomic propositions of the form [∃i .xi < y ] and [∀i .xi < y ]

Problem: check, whether ∀n, t , f : n > 3t ∧ t ≥ f ∧ f ≥ 0. M(n, t , f ) |= φ.
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Parameterized modeling
&

Non-parameterized model
checking

as in SPIN’13: (John et al., 2013)
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Modeling of threshold-based algorithms in Promela. . .

We introduce efficient encoding of threshold-based
fault-tolerant algorithms in PROMELA

(with parametrization!)

Verify safety and liveness of fault-tolerant algorithms (fixed parameters).

Find counterexamples for parameters known from the literature.

This proves adequacy of our modeling.

For our method, we exploit specifics of FTDAs:
1 central feature of the algorithms

(message counting);
2 specific message passing

(we do not need to know who sent but how many of them sent
messages);

3 the way faults affect messages
(again, counting messages).
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Case Studies

We consider a number of threshold-based algorithms.

Our running example ST87 for

1 Byzantine faults (BYZ)
2 omission faults (OMIT)
3 symmetric faults (SYMM)
4 clean crashes (CLEAN).

5 Forklore reliable broadcast for clean crashes
[Chandra & Toueg 96, CT96]

(to be continued)
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Characteristics of the FTDA by Srikanth & Toueg, 87

Variables of process i
vi : {0 , 1} i n i t i a l l y 0 or 1
accepti : {0 , 1} i n i t i a l l y 0

An atomic step:
i f vi = 1
then send ( echo ) to all ;
i f received (echo) from

at l e a s t t + 1 distinct processes
and not sent ( echo ) before

then send ( echo ) to all ;
i f received ( echo ) from at l e a s t

n - t distinct processes
then accepti := 1 ;

the algorithm consists
of threshold-guarded
commands, only
thresholds t + 1 and
n − t
communication is by
“send to all”
how processes
distinguish distinct
senders is not part of
the algorithm (i.e.,
algorithm description is
high level)
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Case Studies (cont.): Larger Algorithms

more involved algorithms in the purely asynchronous setting:

6 Asynchronous Byzantine Agreement (Bracha & Toueg 85, BT85)
Byzantine faults
two phases and two message types
five status values
properties: unforgeability, correctness (liveness), agreement
(liveness)

7 Condition-based Consensus (Mostéfaoui et al. 01, MRRR01)
crash faults
two phases and four message types
nine status variables
properties: validity, agreement, termination (liveness)

8 Fast Byzantine Consensus: common case (Martin, Alvisi 06,
MA06)

Byzantine faults
the core part of the algorithm
no cryptography
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Experimental Results at Glance

Algorithm Fault Parameters Resilience Properties Time

1. ST87 BYZ n = 7, t = 2, f = 2 n > 3t U, C, R 6 sec.
1. ST87 BYZ n = 7, t = 3, f = 2 n > 3t U, C, R 5 sec.
1. ST87 BYZ n = 7, t = 1, f = 2 n > 3t U, C, R 1 sec.
2. ST87 OMIT n = 5, t = 2, f = 2 n > 2t U, C, R 4 sec.
2. ST87 OMIT n = 5, t = 2, f = 3 n > 2t U, C, R 5 sec.
3. ST87 SYMM n = 5, t = 1, fp = 1, fs = 0 n > 2t U, C, R 1 sec.
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Experimental Results: on ST87, the Byzantine Case

Time (sec, logscale)

no faults: f = 0

two faults: f = 2

Memory (MB, logscale)

no faults: f = 2

The more faults we have, the easier the problem is:
Two faults: we can check the systems of up to nine processes
No faults: we can check the systems of up to seven processes

Precision of modeling: we found counter-examples for the corner
cases n = 3t and f > t , where the resilience condition is violated.
(June 2013: somebody wrote on Wikipedia that n = 3t should work :-)
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Discussion of the specifications

Unforgeability. If vi = 0 for all correct processes i , then for all correct
processes j , acceptj remains 0 forever.

G
(( n−f∧

i=1
vi = 0

)
→ G

( n−f∧
j=1

acceptj = 0
))

The specification of Byzantine FTDAs have the following features:

Only the states of correct processes are evaluated.
Faulty processes may be Byzantine. (no assumption on

behavior)

Specifications do not talk about individual processes.
Only global safety and progress are important.

Indexed temporal logic is not required!
Quantification over processes is on the level of atomic

propositions.
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Threshold-Guarded Distributed Algorithms

Standard construct: quantified guards (t=f=0)

Existential Guard
if received m from some process then ...

Universal Guard
if received m from all processes then ...

what if faults might occur?

Fault-Tolerant Algorithms: n processes, at most t are Byzantine

Threshold Guard
if received m from n − t processes then ...

(the processes cannot refer to f!)
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Counting Argument in Threshold-Guarded Algorithms

n

t f

t + 1

at least one non-faulty sent the message

Correct processes count incoming messages from distinct processes
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Modeling threshold-based algorithms in Promela

As the distributed algorithms are given in pseudo-code,

we have to decide on how to encode in PROMELA:

send to all and receive
counting expressions “received <m> from n − t distinct processes”
faults

In what follows, we compare side-by-side two solutions:
A straightforward encoding with PROMELA channels and
explicit representation of faulty processes. [Solution 1]
An advanced encoding with shared variables and fault injection.

[Solution 2]

To decouple encoding of reliable message passing and of faults,
we first consider message passing without faults,
and then show how to encode faults.
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Template in Promela

We implement the following loop
on the right.

receive messages

compute using
messages and local variables

(description in English
with basic control flow

if-then-else)

send messages

at
om

ic
/∗ s h a r e d s t a t e :

a v a r i a b l e o r a c h a n n e l ∗ /
active proctype[N(n,t,f)] P(){

/∗ l o c a l v a r i a b l e t o count
m e s s ag e s from d i s t i n c t
p r o c e s s e s ∗ /

int nrcvd;
/∗ i n i t i a l i z a t i o n ∗ /

loop: atomic {
/∗
1 . r e c e i v e and count m e s s a ge s
2 . compute us ing nrcvd
3 . send m e s s ag e s ∗ /
}
goto loop;
}
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Modeling Message Passing

All our case studies are designed with the assumption of
classic reliable asynchronous message passing as in (Fischer et al.,
1985):

non-blocking communication,
operations “receive” and “send” are executed immediately.

if a message can be received now, it may be also received later,
a process does not have to receive a message as soon as it is
able to.

every sent message is eventually received,
but there are no bounds on the delays.
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Solution 1: Message Passing using Promela channels

A straightforward encoding using message channels:

/∗ message t y p e ∗ /
mtype = { ECHO };
/∗ p o i n t−to−p o i n t c h a n n e l s ∗ /
chan p2p[N][N] = [1] of { mtype };
/∗ t a g r e c e i v e d m e s s a g e s ∗ /
bit rx[N][N];

Sending a message to all processes:

for (i : 1 .. N) { p2p[_pid][i]!ECHO; }

Note: pid denotes the process identifier in PROMELA

(we use it solely to encode message passing).
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Solution 1: Message Passing (cont.)

Receiving and counting messages from distinct processes

(no faults yet):

/∗ l o c a l ∗ / int nrcvd = 0; /∗ i n i t i a l l y , no m e s s a ge s ∗ /
...
i = 0;
do /∗ i s t h e r e a message from p r o c e s s i ? ∗ /

:: (i < N) && nempty(p2p[i][_pid]) ->
p2p[i][_pid]?ECHO; /∗ remove i t ∗ /
if

:: !rx[i][_pid] -> /∗ 1 . t h e f i r s t t ime : ∗ /
rx[i][_pid] = 1; /∗ a . mark as r e c e i v e d ∗ /
nrcvd++; break; /∗ b . i n c r e a s e l o c a l c o u n t e r ∗ /
:: rx[i][_pid]; /∗ 2 . i g n o r e a d u p l i c a t e ∗ /

fi; i++; /∗ nex t p r o c e s s ∗ /
:: (i < N) -> i++; /∗ r e c e i v e n o t h i n g from i ∗ /
:: i == N -> break;

od
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Solution 2: Simulating message passing with variables

Keeping the number of send-to-all’s by (correct) processes:
int nsnt; /∗ s h a r e d v a r i a b l e ∗ /

/∗ number o f send−to−a l l ’ s s e n t by c o r r e c t p r o c e s s e s ∗ /

Sending a message to all:
nsnt++;

Receiving and counting messages from distinct processes (no faults):
if /∗ p i c k a l a r g e r v a l u e ≤ nsnt ∗ /

:: ((nrcvd + 1) < nsnt) ->
nrcvd++; /∗ one more message ∗ /

:: skip; /∗ or n o t h i n g ∗ /
fi;

Reliable communication as a fairness property:

F G [∀i .nrcvdi ≥ nsnt ]
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Solution 2: Some questions you might ask

Q1: instead of

if
:: ((nrcvd + 1) < nsnt) ->

nrcvd++; /∗ one more message ∗ /
:: skip; /∗ or n o t h i n g ∗ /

fi;

why cannot we just write:

nrcvd = nsnt;

A1: You can, but that will be another model, not [FLP85]!

[FLP85] only guarantees that every message is eventually received.
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Solution 2: Some questions you might ask (cont.)

Reliable communication:
every sent message is eventually received.

Q2: Why do we write

F G [∀i .nrcvdi ≥ nsnt ] (1)

instead of:

∀i . G F [nrcvdi ≥ nsnt ] (2)

A2: We like to write (2), but it will require us to use another logic called
indexed LTL, which will cause problems in the parameterized case.

For threshold-based algorithms, the value of nsnt is changes
at most n times.

Under this assumption, (2) is equivalent (1).
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Solution 1 (cont.): Explicit Modeling of Faults

(Lamport et al., 1982) introduce Byzantine processes that can virtually
do anything.

In our case, Byzantine behavior boils down to sending ECHO to some
of the correct processes and not sending ECHO to the others:

active[F] proctype Byz() {
step:

atomic {
i = 0;
do /∗ send ECHO t o p r o c e s s i ∗ /

:: i < N -> p2p[_pid][i]!ECHO; i++;
/∗ or not ∗ /

:: i < N -> i++;
:: i == N -> break;

od
};
goto step;

}
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Solution 2 (cont.):
Injecting Faults into Message Counters

We instantiate n − f correct processes and no faulty processes.

Instead, we say that the correct processes may receive up to f
additional messages due to faults:

if :: ((nrcvd + 1) < nsnt + f) ->
nrcvd++; /∗ r e c e i v e one more message ∗ /

:: skip; /∗ or n o t h i n g ∗ /
fi;

The fairness still forces the processes to receive all the messages sent
by the correct processes:

F G [∀i .nrcvdi ≥ nsnt ]

Note: each correct process sends at most one ECHO message.
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Solution 2 (cont.): Modeling different kinds of faults

Byzantine faults (previous slide):
create only correct processes, i.e., n − f processes
only they have to satisfy spec
extra messages from Byzantine: ((nrcvd + 1) < nsnt + f)

fairness (reliable communication): F G [∀i .nrcvdi ≥ nsnt ]

Omission faults (processes fail to send messages):
create all processes, i.e., n processes
all of them are mentioned in the specification
no additional messages: ((nrcvd + 1) < nsnt)

fairness (with possible message loss due to faults)
F G [∀i .nrcvdi ≥ nsnt − f ]

Crash faults: similar to omissions with crash control state added
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create all processes, i.e., n processes
all of them are mentioned in the specification
no additional messages: ((nrcvd + 1) < nsnt)

fairness (with possible message loss due to faults)
F G [∀i .nrcvdi ≥ nsnt − f ]

Crash faults: similar to omissions with crash control state added
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Experiments: Solution 1 vs. Solution 2
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Solution 1: Channels + explicit Byzantine processes (blue)
Solution 2: shared variables + fault injection (red)

in the presence of one Byzantine faulty process (f = 1)
(case f = 2 runs out of memory too fast)
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Summary

We show how to model threshold-based fault-tolerant algorithms
starting with an imprecise description

We create PROMELA models using expert advice.

The tool demonstrates that the model behaves as predicted by theory
(for concrete values of parameters)

This reference implementation allows us to optimize the encoding

... and to make the model amenable to parameterized verification
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End of Part II

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 61 / 61



References I

Biely, M., Delgado, P., Milosevic, Z., & Schiper, A. 2013 (June).
Distal: A framework for implementing fault-tolerant distributed algorithms.
Pages 1–8 of: Dependable Systems and Networks (DSN), 2013 43rd Annual IEEE/IFIP
International Conference on.

Castro, Miguel, Liskov, Barbara, et al. 1999.
Practical Byzantine fault tolerance.
Pages 173–186 of: OSDI, vol. 99.

Fischer, Michael J., Lynch, Nancy A., & Paterson, M. S. 1985.
Impossibility of Distributed Consensus with one Faulty Process.
J. ACM, 32(2), 374–382.
http://doi.acm.org/10.1145/3149.214121.

John, Annu, Konnov, Igor, Schmid, Ulrich, Veith, Helmut, & Widder, Josef. 2013.
Towards Modeling and Model Checking Fault-Tolerant Distributed Algorithms.
Pages 209–226 of: SPIN.
LNCS, vol. 7976.

Lamport, Leslie, Shostak, Robert E., & Pease, Marshall C. 1982.
The Byzantine Generals Problem.
ACM Trans. Program. Lang. Syst., 4(3), 382–401.

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 62 / 61

http://doi.acm.org/10.1145/3149.214121


References II

Lincoln, P., & Rushby, J. 1993.
A formally verified algorithm for interactive consistency under a hybrid fault model.
Pages 402–411 of: FTCS-23.
http://dx.doi.org/10.1109/FTCS.1993.627343.

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 63 / 61

http://dx.doi.org/10.1109/FTCS.1993.627343


Folklore Reliable Broadcast (e.g., Chandra & Toueg,
96)

Correct processes agree on value vi in the presence of crash faults.

Variables of process i

vi : {0 , 1} i n i t i a l l y 0 or 1
accepti : {0 , 1} i n i t i a l l y 0

An atomic step:

i f ( vi = 1 or received <echo> from some process )
and accepti = 0

then begin
send <echo> to all ;

/* when crashing it sends to a subset of processes */

accepti := 1 ;

/* it can also crash here */

end
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Verification Problem as in Distributed Computing

Given a distributed algorithm A and specifications ϕU , ϕC , ϕR,

Fix n and t with n > 3t ,
show that every execution of A(n, t) satisfies ϕU , ϕC , ϕR.

In every execution:
the number of faulty processes is restricted, i.e., f ≤ t ;
processes can use n and t in the code, but not f ;
f is constant
(if a process fails late, its “correct” behavior was a Byzantine trick).

A distributed
system A(n, t)

f = 0
. . .

f = t

Counterexamples when f > t?
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Experiments: Channels vs. Shared Variables

enumerating reachable states in SPIN with POR and state
compression
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