
Model Checking of Fault-Tolerant Distributed Algorithms

Part I: Fault-Tolerant Distributed Algorithms

Annu Gmeiner Igor Konnov Ulrich Schmid

Helmut Veith Josef Widder

Uni Salzburg, June 2015

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 1 / 51

Distributed Systems

1
1
4

7
.1

A
ss
es
si
n
g
a
n
d
va
li
d
a
ti
n
g
th
e
st
a
n
d
a
rd

n
od
e
H
IT

S
d
es
ig
n

F
ig
u
re

7.
1:

D
A
R
T
S
p
ro
to
ty
p
e
b
oa
rd
,
co
m
p
ri
si
n
g
8
in
te
rc
on

n
ec
te
d
H
IT

S
ch
ip
s

Are they always working?

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 2 / 51

Distributed Systems

1
1
4

7
.1

A
ss
es
si
n
g
a
n
d
va
li
d
a
ti
n
g
th
e
st
a
n
d
a
rd

n
od
e
H
IT

S
d
es
ig
n

F
ig
u
re

7.
1:

D
A
R
T
S
p
ro
to
ty
p
e
b
oa
rd
,
co
m
p
ri
si
n
g
8
in
te
rc
on

n
ec
te
d
H
IT

S
ch
ip
s

Are they always working?

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 2 / 51

No. . . some failing systems

Therac-25 (1985)

radiation therapy machine
gave massive overdoses, e.g., due to race conditions of concurrent tasks

Quantas Airbus in-flight Learmonth upset (2008)

1 out of 3 replicated components failed
computer initiated dangerous altitude drop

Ariane 501 maiden flight (1996)

primary/backup, i.e., 2 replicated computers
both run into the same variable overflow

Netflix outages due to Amazon’s cloud (ongoing)

one is not sure what is going on there
hundreds of computers involved

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 3 / 51

Why do they fail?

faults at design/implementation phase

approach:
find and fix faults before operation
⇒ model checking

faults at runtime

outside of control of designer/developer
e.g., to the right: crack in a diode in the
data link interface of the Space Shuttle
⇒ led to erroneous messages being sent

approach:
keep system operational despite faults
⇒ fault-tolerant distributed algorithms Driscoll (Honeywell)

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 4 / 51

Why do they fail?

faults at design/implementation phase

approach:
find and fix faults before operation
⇒ model checking

faults at runtime

outside of control of designer/developer
e.g., to the right: crack in a diode in the
data link interface of the Space Shuttle
⇒ led to erroneous messages being sent

approach:
keep system operational despite faults
⇒ fault-tolerant distributed algorithms

Driscoll (Honeywell)

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 4 / 51

Why do they fail?

faults at design/implementation phase
approach:
find and fix faults before operation
⇒ model checking

faults at runtime

outside of control of designer/developer
e.g., to the right: crack in a diode in the
data link interface of the Space Shuttle
⇒ led to erroneous messages being sent

approach:
keep system operational despite faults
⇒ fault-tolerant distributed algorithms

Driscoll (Honeywell)

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 4 / 51

Why do they fail?

faults at design/implementation phase
approach:
find and fix faults before operation
⇒ model checking

faults at runtime

outside of control of designer/developer
e.g., to the right: crack in a diode in the
data link interface of the Space Shuttle
⇒ led to erroneous messages being sent

approach:
keep system operational despite faults
⇒ fault-tolerant distributed algorithms Driscoll (Honeywell)

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 4 / 51

Bringing both together

Goal: automatically verified fault-tolerant distributed algorithms

model checking FTDAs is a research challenge:

computers run independently at different speeds

exchange messages with uncertain delays

faults

parameterization

. . . fault-tolerance makes model checking harder

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 5 / 51

Bringing both together

Goal: automatically verified fault-tolerant distributed algorithms

model checking FTDAs is a research challenge:

computers run independently at different speeds

exchange messages with uncertain delays

faults

parameterization

. . . fault-tolerance makes model checking harder

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 5 / 51

Lecture overview

Part I: Fault-tolerant distributed algorithms

introduction to distributed algorithms

details of our case study algorithm

motivation why model checking is cool

Part II: Modeling fault-tolerant distributed algorithms

model checking challenges in distributed algorithms

Promela, control flow automata, etc.

model checking of small instances with Spin

Part III: Parameterized model checking of FTDAs by abstraction

parametric interval abstraction (PIA)

PIA data and counter abstraction

counterexample-guided abstraction refinement (CEGAR)

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 6 / 51

Part I: Fault-Tolerant Distributed
Algorithms

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 7 / 51

Distributed Systems are everywhere

What they allow to do

share resources

communicate

increase performance

speed

fault tolerance

Difference to centralized systems

independent activities (concurrency)

components do not have access to the global state (only “local view”)

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 8 / 51

Application areas

buzzwords from the 60ies

operating systems

(distributed) data base systems

communication networks

multiprocessor architectures

control systems

New buzzwords

cloud computing

social networks

multi core

cyber-physical systems

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 9 / 51

Major challenge

Uncertainty

computers run independently at different speeds

exchange messages with (unknown) delays

faults

challenge in design of distributed algorithms

a process has access only to its local state

but one wants to achieve some global property

challenge in proving them correct

large degree of non-determinism
⇒ large execution and state space

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 10 / 51

Major challenge

Uncertainty

computers run independently at different speeds

exchange messages with (unknown) delays

faults

challenge in design of distributed algorithms

a process has access only to its local state

but one wants to achieve some global property

challenge in proving them correct

large degree of non-determinism
⇒ large execution and state space

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 10 / 51

Major challenge

Uncertainty

computers run independently at different speeds

exchange messages with (unknown) delays

faults

challenge in design of distributed algorithms

a process has access only to its local state

but one wants to achieve some global property

challenge in proving them correct

large degree of non-determinism
⇒ large execution and state space

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 10 / 51

From dependability to a distributed system

P

P1 P2

P3

replication P P

P

consistency

Process P provides a service. We want to access it reliably
but P may fail

canonical approach: replication, i.e., several copies of P
Due to non-determinism, the behavior of the copies might deviate
(e.g. in a replicated database, transactions are committed in different
orders at different sites)

⇒ we have to enforce that the copies “behave as one”.
⇒ Consistency in a distributed system: what does it mean to behave
as one.

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 11 / 51

From dependability to a distributed system

P
P1 P2

P3

replication

P P

P

consistency

Process P provides a service. We want to access it reliably
but P may fail

canonical approach: replication, i.e., several copies of P
Due to non-determinism, the behavior of the copies might deviate
(e.g. in a replicated database, transactions are committed in different
orders at different sites)

⇒ we have to enforce that the copies “behave as one”.
⇒ Consistency in a distributed system: what does it mean to behave
as one.

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 11 / 51

From dependability to a distributed system

P
P1 P2

P3

replication P P

P

consistency

Process P provides a service. We want to access it reliably
but P may fail

canonical approach: replication, i.e., several copies of P
Due to non-determinism, the behavior of the copies might deviate
(e.g. in a replicated database, transactions are committed in different
orders at different sites)

⇒ we have to enforce that the copies “behave as one”.
⇒ Consistency in a distributed system: what does it mean to behave
as one.

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 11 / 51

Replication — distributed systems

P
P1 P2

P3

replication

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 12 / 51

Distributed message passing system

multiple distributed processes pi

pi send receive internal

dots represent states

a step of a process can be

a send step (a process sends messages to other processes)
a receive step (a process receives a subset of messages sent to it)
an internal step (a local computation)

steps are the atomic (indivisible) units of computations

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 13 / 51

Types of Distributed Algorithms:
Synchronous vs. Asynchronous

Synchronous

all processes move in lock-step

rounds

a message sent in a round is received in the same round

idealized view

impossible or expensive to implement

Asynchronous

only one process moves at a time

arbitrary interleavings of steps

a message sent is received eventually

important problems not solvable (Fischer et al., 1985)!

We focus on asynchronous algorithms here. . .

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 14 / 51

Types of Distributed Algorithms:
Synchronous vs. Asynchronous

Synchronous

all processes move in lock-step

rounds

a message sent in a round is received in the same round

idealized view

impossible or expensive to implement

Asynchronous

only one process moves at a time

arbitrary interleavings of steps

a message sent is received eventually

important problems not solvable (Fischer et al., 1985)!

We focus on asynchronous algorithms here. . .

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 14 / 51

Types of Distributed Algorithms:
Synchronous vs. Asynchronous

Synchronous

all processes move in lock-step

rounds

a message sent in a round is received in the same round

idealized view

impossible or expensive to implement

Asynchronous

only one process moves at a time

arbitrary interleavings of steps

a message sent is received eventually

important problems not solvable (Fischer et al., 1985)!

We focus on asynchronous algorithms here. . .

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 14 / 51

Asynchronous system

has very mild restrictions on the environment

interleaving semantics

unbounded message delays

very little can be done. . .

there is no distributed algorithm that solves consensus in the presence
of one faulty process
(as we will see, consensus is the paradigm of consistency)

folklore explanation:
“you cannot distinguish a slow process from a crashed one”

real explanation:
see intricate proof by Fischer, Lynch, and Paterson (JACM 1985)

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 15 / 51

Where we stand

P
P1 P2

P3

replication

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 16 / 51

What we still need. . .

P1 P2

P3

P P

P

consistency

consistency requirements have been formalized under several names,
e.g.,

consensus
atomic broadcast
Byzantine Generals problem
Byzantine agreement
atomic commitment

definitions are similar but may have subtle differences

We use the famous Byzantine Generals to introduce this problem
domain. . .

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 17 / 51

What we still need. . .

P1 P2

P3

P P

P

consistency

consistency requirements have been formalized under several names,
e.g.,

consensus
atomic broadcast
Byzantine Generals problem
Byzantine agreement
atomic commitment

definitions are similar but may have subtle differences

We use the famous Byzantine Generals to introduce this problem
domain. . .

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 17 / 51

What we still need. . .

P1 P2

P3

P P

P

consistency

consistency requirements have been formalized under several names,
e.g.,

consensus
atomic broadcast
Byzantine Generals problem
Byzantine agreement
atomic commitment

definitions are similar but may have subtle differences

We use the famous Byzantine Generals to introduce this problem
domain. . .

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 17 / 51

Fault tolerance – The Byzantine generals problem

Wiktionary:
Byzantine: adj. of a devious, usually stealthy manner, of practice.

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 18 / 51

Fault tolerance – The Byzantine generals problem

Lamport (this year’s Turing laureate), Shostak, and Pease wrote in their
Dijkstra Prize in Distributed Computing winning paper (Lamport et al.,
1982):

[. . .] several divisions of the Byzantine army are camped outside
an enemy city, each division commanded by its own general. [. . .]
However, some of the generals may be traitors [. . .]

if the divisions of loyal generals attack together, the city falls
if only some loyal generals attack, their armies fall
generals communicate by obedient messengers

The Byzantine generals problem:

the loyal generals have to agree on whether to attack.
if all want to attack they must attack, if no-one wants to attack they
must not attack

metaphor for a distributed system where correct processes (loyal generals)
act as one in the presence of faulty processes (traitors)

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 19 / 51

Fault tolerance – The Byzantine generals problem

Lamport (this year’s Turing laureate), Shostak, and Pease wrote in their
Dijkstra Prize in Distributed Computing winning paper (Lamport et al.,
1982):

[. . .] several divisions of the Byzantine army are camped outside
an enemy city, each division commanded by its own general. [. . .]
However, some of the generals may be traitors [. . .]

if the divisions of loyal generals attack together, the city falls
if only some loyal generals attack, their armies fall
generals communicate by obedient messengers

The Byzantine generals problem:

the loyal generals have to agree on whether to attack.
if all want to attack they must attack, if no-one wants to attack they
must not attack

metaphor for a distributed system where correct processes (loyal generals)
act as one in the presence of faulty processes (traitors)

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 19 / 51

Fault tolerance – The Byzantine generals problem

Lamport (this year’s Turing laureate), Shostak, and Pease wrote in their
Dijkstra Prize in Distributed Computing winning paper (Lamport et al.,
1982):

[. . .] several divisions of the Byzantine army are camped outside
an enemy city, each division commanded by its own general. [. . .]
However, some of the generals may be traitors [. . .]

if the divisions of loyal generals attack together, the city falls
if only some loyal generals attack, their armies fall
generals communicate by obedient messengers

The Byzantine generals problem:

the loyal generals have to agree on whether to attack.
if all want to attack they must attack, if no-one wants to attack they
must not attack

metaphor for a distributed system where correct processes (loyal generals)
act as one in the presence of faulty processes (traitors)

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 19 / 51

Byzantine generals problem cont.

In the absence of faults it is trivial to solve:

send proposed plan (“attack” or “not attack”) to all

wait until received messages from everyone

if a process proposed “attack” decide to attack

otherwise, decide to not attack

In the presence of faults it becomes tricky

if a process may crash, some processes may not receive messages
from everyone (but some may)

if a process may send faulty messages, contradictory information may
be received, e.g.,
“A tells B that C told A that C wants to attack, while C tells B
that C does not want to attack” Who is lying to whom?

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 20 / 51

Byzantine generals problem cont.

In the absence of faults it is trivial to solve:

send proposed plan (“attack” or “not attack”) to all

wait until received messages from everyone

if a process proposed “attack” decide to attack

otherwise, decide to not attack

In the presence of faults it becomes tricky

if a process may crash, some processes may not receive messages
from everyone (but some may)

if a process may send faulty messages, contradictory information may
be received, e.g.,
“A tells B that C told A that C wants to attack, while C tells B
that C does not want to attack”

Who is lying to whom?

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 20 / 51

Byzantine generals problem cont.

In the absence of faults it is trivial to solve:

send proposed plan (“attack” or “not attack”) to all

wait until received messages from everyone

if a process proposed “attack” decide to attack

otherwise, decide to not attack

In the presence of faults it becomes tricky

if a process may crash, some processes may not receive messages
from everyone (but some may)

if a process may send faulty messages, contradictory information may
be received, e.g.,
“A tells B that C told A that C wants to attack, while C tells B
that C does not want to attack” Who is lying to whom?

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 20 / 51

Fault-tolerant distributed algorithms

n

?
?

?
t f

n processes communicate by messages (reliable communication)

all processes know that at most t of them might be faulty

f are actually faulty

resilience conditions, e.g., n > 3t ∧ t ≥ f ≥ 0

no masquerading: the processes know the origin of incoming messages

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 21 / 51

Fault-tolerant distributed algorithms

n

?
?

?
t

f

n processes communicate by messages (reliable communication)

all processes know that at most t of them might be faulty

f are actually faulty

resilience conditions, e.g., n > 3t ∧ t ≥ f ≥ 0

no masquerading: the processes know the origin of incoming messages

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 21 / 51

Fault-tolerant distributed algorithms

n

?
?

?
t f

n processes communicate by messages (reliable communication)

all processes know that at most t of them might be faulty

f are actually faulty

resilience conditions, e.g., n > 3t ∧ t ≥ f ≥ 0

no masquerading: the processes know the origin of incoming messages

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 21 / 51

Fault models — abstractions of reality

clean crashes: least severe
faulty processes prematurely halt after/before “send to all”

crash faults:
faulty processes prematurely halt (also) in the middle of “send to all”

omission faults:
faulty processes follow the algorithm, but some messages sent by them

might be lost

symmetric faults:
faulty processes send arbitrarily to all or nobody

Byzantine faults: most severe
faulty processes can do anything

encompass all behaviors of above models

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 22 / 51

Fault models — the ugly truth

A photo of a Byzantine fault:

photo by Driscoll (Honeywell)
he reports Byzantine behavior on the Space Shuttle computer network

other sources of faults: bit-flips in memory, power outage, disconnection
from the network, etc.

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 23 / 51

Model vs. reality: impossibilities

Hence, we would like the weakest assumptions possible. But there are
theoretical limits on how weak assumptions can be made:

consensus is impossible in asynchronous systems if there may be a
crash fault, i.e., t = 1 (Fischer et al., 1985)

consensus is possible in synchronous systems in the presence of
Byzantine faults iff n > 3t (Lamport et al., 1982)

consensus is impossible in (synchronous) round-based systems if
bn/2c messages can be lost per round (Santoro & Widmayer, 1989)

fast Byzantine consensus is solvable iff n > 5t (Martin & Alvisi, 2006)

32 different “degrees of synchrony” and whether consensus can be
solved in the presence of how many faults investigated in (Dolev
et al., 1987)

arithmetic resilience conditions play crucial role!

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 24 / 51

Model vs. reality: impossibilities

Hence, we would like the weakest assumptions possible. But there are
theoretical limits on how weak assumptions can be made:

consensus is impossible in asynchronous systems if there may be a
crash fault, i.e., t = 1 (Fischer et al., 1985)

consensus is possible in synchronous systems in the presence of
Byzantine faults iff n > 3t (Lamport et al., 1982)

consensus is impossible in (synchronous) round-based systems if
bn/2c messages can be lost per round (Santoro & Widmayer, 1989)

fast Byzantine consensus is solvable iff n > 5t (Martin & Alvisi, 2006)

32 different “degrees of synchrony” and whether consensus can be
solved in the presence of how many faults investigated in (Dolev
et al., 1987)

arithmetic resilience conditions play crucial role!

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 24 / 51

After this excursion to faults, let’s
go back to the problem of defining

consistency

(asynchronous systems)

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 25 / 51

Defining consistency — e.g., binary consensus

Every process has some initial value v ∈ {0, 1} and has to decide
irrevocably on some value in concordance with the following properties:

agreement. No two correct processes decide on different value.
either all attack or no-one

validity. If all correct processes have the same initial value v , then v
is the only possible decision value
the decision on whether to attack must be consistent with
the will of at least one loyal general

termination. Every correct process eventually decides.
at some point negotiations must be over

Interplay of safety and liveness makes the problem hard. . .

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 26 / 51

Defining consistency — e.g., binary consensus

Every process has some initial value v ∈ {0, 1} and has to decide
irrevocably on some value in concordance with the following properties:

agreement. No two correct processes decide on different value.
either all attack or no-one

validity. If all correct processes have the same initial value v , then v
is the only possible decision value
the decision on whether to attack must be consistent with
the will of at least one loyal general

termination. Every correct process eventually decides.
at some point negotiations must be over

Interplay of safety and liveness makes the problem hard. . .

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 26 / 51

Defining consistency — e.g., binary consensus

Every process has some initial value v ∈ {0, 1} and has to decide
irrevocably on some value in concordance with the following properties:

agreement. No two correct processes decide on different value.
either all attack or no-one

validity. If all correct processes have the same initial value v , then v
is the only possible decision value
the decision on whether to attack must be consistent with
the will of at least one loyal general

termination. Every correct process eventually decides.
at some point negotiations must be over

Interplay of safety and liveness makes the problem hard. . .

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 26 / 51

Defining consistency — e.g., binary consensus

Every process has some initial value v ∈ {0, 1} and has to decide
irrevocably on some value in concordance with the following properties:

agreement. No two correct processes decide on different value.
either all attack or no-one

validity. If all correct processes have the same initial value v , then v
is the only possible decision value
the decision on whether to attack must be consistent with
the will of at least one loyal general

termination. Every correct process eventually decides.
at some point negotiations must be over

Interplay of safety and liveness makes the problem hard. . .

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 26 / 51

Defining consistency — e.g., binary consensus

Every process has some initial value v ∈ {0, 1} and has to decide
irrevocably on some value in concordance with the following properties:

agreement. No two correct processes decide on different value.
either all attack or no-one

validity. If all correct processes have the same initial value v , then v
is the only possible decision value
the decision on whether to attack must be consistent with
the will of at least one loyal general

termination. Every correct process eventually decides.
at some point negotiations must be over

Interplay of safety and liveness makes the problem hard. . .

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 26 / 51

What if only two properties have to be satisfied?

Every process has some initial value v ∈ {0, 1} and has to decide
irrevocably on some value in concordance with the following properties:

agreement. No two correct processes decide on different value.

validity. If all correct processes have the same initial value v , then v
is the only possible decision value.

termination. Every correct process eventually decides.

Give an algorithm that solves validity and termination!

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 27 / 51

What if only two properties have to be satisfied?

Every process has some initial value v ∈ {0, 1} and has to decide
irrevocably on some value in concordance with the following properties:

agreement. No two correct processes decide on different value.

validity. If all correct processes have the same initial value v , then v
is the only possible decision value.

termination. Every correct process eventually decides.

Solution: decide my own proposed value. (no need to agree)

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 27 / 51

What if only two properties have to be satisfied?

Every process has some initial value v ∈ {0, 1} and has to decide
irrevocably on some value in concordance with the following properties:

agreement. No two correct processes decide on different value.

validity. If all correct processes have the same initial value v , then v
is the only possible decision value.

termination. Every correct process eventually decides.

Give an algorithm that solves agreement and termination!

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 27 / 51

What if only two properties have to be satisfied?

Every process has some initial value v ∈ {0, 1} and has to decide
irrevocably on some value in concordance with the following properties:

agreement. No two correct processes decide on different value.

validity. If all correct processes have the same initial value v , then v
is the only possible decision value.

termination. Every correct process eventually decides.

Solution: decide 0. (no relation to initial values required)

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 27 / 51

What if only two properties have to be satisfied?

Every process has some initial value v ∈ {0, 1} and has to decide
irrevocably on some value in concordance with the following properties:

agreement. No two correct processes decide on different value.

validity. If all correct processes have the same initial value v , then v
is the only possible decision value.

termination. Every correct process eventually decides.

Give an algorithm that solves agreement and validity!

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 27 / 51

What if only two properties have to be satisfied?

Every process has some initial value v ∈ {0, 1} and has to decide
irrevocably on some value in concordance with the following properties:

agreement. No two correct processes decide on different value.

validity. If all correct processes have the same initial value v , then v
is the only possible decision value.

termination. Every correct process eventually decides.

Solution: do nothing (doing nothing is always safe)

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 27 / 51

Wrap-up: Intro to FTDAs

distributed systems

replication and consistency

synchronous vs. asynchronous

fault models

example for an agreement problem: Byzantine Generals

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 28 / 51

Our case study. . .

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 29 / 51

Asynchronous FTDAs

In this lecture we consider methods for asynchronous FTDAs that either

solve problems that are less hard than consensus:

reliable broadcast. termination required only for specific initial state
(Srikanth & Toueg, 1987). [Verified in Parts II, III]

condition-based consensus properties required only in runs from
specific initial states (Mostéfaoui et al., 2003)

[Verified in Part II]

The Paxos idea fault-tolerant distributed algorithms that are safe and
make progress only if you are “lucky” (Lamport, 1998)

[Serious challenge]

are asynchronous but use “information on faults” as a black box

failure detector based atomic commitment. distributed databases
(Raynal, 1997) [Challenge]

We use the algorithm from (Srikanth & Toueg, 1987) as running example

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 30 / 51

Asynchronous FTDAs

In this lecture we consider methods for asynchronous FTDAs that either

solve problems that are less hard than consensus:

reliable broadcast. termination required only for specific initial state
(Srikanth & Toueg, 1987). [Verified in Parts II, III]

condition-based consensus properties required only in runs from
specific initial states (Mostéfaoui et al., 2003)

[Verified in Part II]

The Paxos idea fault-tolerant distributed algorithms that are safe and
make progress only if you are “lucky” (Lamport, 1998)

[Serious challenge]

are asynchronous but use “information on faults” as a black box

failure detector based atomic commitment. distributed databases
(Raynal, 1997) [Challenge]

We use the algorithm from (Srikanth & Toueg, 1987) as running example

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 30 / 51

Asynchronous Reliable Broadcast (Srikanth & Toueg, 87)

The core of the classic broadcast algorithm from the DA literature.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send (echo) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent (echo) be f o r e
12 then send (echo) to all ;
13

14 i f received (echo) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 31 / 51

Assumptions from (Srikanth & Toueg, 87)

asynchronous interleaving

reliable message passing (no bounds on message delays)

at most t Byzantine faults

resilience condition: n > 3t ∧ t ≥ f

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 32 / 51

The spec of our case-study

Unforgeability. If vi = false for all correct processes i , then for all correct
processes j , acceptj remains false forever.

if no loyal general wants to attack, then traitors should not
be able to force one.

Completeness. If vi = true for all correct processes i , then there is a
correct process j that eventually sets acceptj to true.

If all loyal generals want to attack, there shall be an attack.

Relay. If a correct process i sets accepti to true, then eventually all
correct processes j set acceptj to true.

If one loyal general attacks, then all loyal generals should attack.

These are the specs as given in literature: they can be formalized in LTL

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 33 / 51

The spec of our case-study

Unforgeability. If vi = false for all correct processes i , then for all correct
processes j , acceptj remains false forever.

if no loyal general wants to attack, then traitors should not
be able to force one.

Completeness. If vi = true for all correct processes i , then there is a
correct process j that eventually sets acceptj to true.

If all loyal generals want to attack, there shall be an attack.

Relay. If a correct process i sets accepti to true, then eventually all
correct processes j set acceptj to true.

If one loyal general attacks, then all loyal generals should attack.

These are the specs as given in literature: they can be formalized in LTL

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 33 / 51

The spec of our case-study

Unforgeability. If vi = false for all correct processes i , then for all correct
processes j , acceptj remains false forever.

if no loyal general wants to attack, then traitors should not
be able to force one.

Completeness. If vi = true for all correct processes i , then there is a
correct process j that eventually sets acceptj to true.

If all loyal generals want to attack, there shall be an attack.

Relay. If a correct process i sets accepti to true, then eventually all
correct processes j set acceptj to true.

If one loyal general attacks, then all loyal generals should attack.

These are the specs as given in literature: they can be formalized in LTL

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 33 / 51

Reliable broadcast vs. Consensus

Reliable broadcast: Completeness. If vi = true for all correct processes i ,
then there is a correct process j that eventually sets acceptj
to true.

Consensus: Termination. Every correct process eventually decides.

Difference:

Completeness requires to “do something” only if ∀i . vi = true,
i.e., only for one specific initial state

Termination requires to “do something” in all runs (from all initial
states)

weakening of spec makes reliable broadcast solvable in async,
while consensus is not solvable

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 34 / 51

Asynchronous Reliable Broadcast (Srikanth & Toueg, 87)

The core of the classic broadcast algorithm from the DA literature.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send (echo) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent (echo) be f o r e
12 then send (echo) to all ;
13

14 i f received (echo) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 35 / 51

Threshold-Guarded Distributed Algorithms

Standard construct: quantified guards (t=f=0)

Existential Guard
if received m from some process then ...

Universal Guard
if received m from all processes then ...

what if faults might occur?

Fault-Tolerant Algorithms: n processes, at most t are Byzantine

Threshold Guard
if received m from n − t processes then ...

(the processes cannot refer to f!)

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 36 / 51

Threshold-Guarded Distributed Algorithms

Standard construct: quantified guards (t=f=0)

Existential Guard
if received m from some process then ...

Universal Guard
if received m from all processes then ...

what if faults might occur?

Fault-Tolerant Algorithms: n processes, at most t are Byzantine

Threshold Guard
if received m from n − t processes then ...

(the processes cannot refer to f!)

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 36 / 51

Threshold-Guarded Distributed Algorithms

Standard construct: quantified guards (t=f=0)

Existential Guard
if received m from some process then ...

Universal Guard
if received m from all processes then ...

what if faults might occur?

Fault-Tolerant Algorithms: n processes, at most t are Byzantine

Threshold Guard
if received m from n − t processes then ...

(the processes cannot refer to f!)

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 36 / 51

Basic mechanisms used by the algorithm: thresholds

n

t f

if received m from t + 1 processes then ...

(threshold)

t + 1

at least one non-faulty sent the message

Correct processes count distinct incoming messages

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 37 / 51

Basic mechanisms used by the algorithm: thresholds

n

t f

if received m from t + 1 processes then ...

(threshold)

t + 1

at least one non-faulty sent the message

Correct processes count distinct incoming messages

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 37 / 51

Basic mechanisms used by the algorithm: thresholds

n

t f

if received m from t + 1 processes then ...

(threshold)

t + 1

at least one non-faulty sent the message

Correct processes count distinct incoming messages

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 37 / 51

Classic correctness argument —
hand-written proofs

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 38 / 51

Proof: Unforgeability

If vi = false for all correct processes i , then for all correct processes j ,
acceptj remains false forever.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send (echo) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent (echo) be f o r e
12 then send (echo) to all ;
13

14 i f received (echo) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

By contradiction assume a
correct process sets acceptj = 1

Thus it has executed line 16

Thus it has received n − t
messages by distinct processes

That means messages by at
n − 2t correct processes

Let p be the first correct
processes that has sent (echo)

It did not send in line 7, as
vp = 0 by assumption

Thus, p sent in line 12

Based on t + 1 messages, i.e., 1
sent by a correct processes

contradiction to p being the
first one.

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 39 / 51

Proof: Unforgeability

If vi = false for all correct processes i , then for all correct processes j ,
acceptj remains false forever.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send (echo) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent (echo) be f o r e
12 then send (echo) to all ;
13

14 i f received (echo) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

By contradiction assume a
correct process sets acceptj = 1

Thus it has executed line 16

Thus it has received n − t
messages by distinct processes

That means messages by at
n − 2t correct processes

Let p be the first correct
processes that has sent (echo)

It did not send in line 7, as
vp = 0 by assumption

Thus, p sent in line 12

Based on t + 1 messages, i.e., 1
sent by a correct processes

contradiction to p being the
first one.

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 39 / 51

Proof: Unforgeability

If vi = false for all correct processes i , then for all correct processes j ,
acceptj remains false forever.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send (echo) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent (echo) be f o r e
12 then send (echo) to all ;
13

14 i f received (echo) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

By contradiction assume a
correct process sets acceptj = 1

Thus it has executed line 16

Thus it has received n − t
messages by distinct processes

That means messages by at
n − 2t correct processes

Let p be the first correct
processes that has sent (echo)

It did not send in line 7, as
vp = 0 by assumption

Thus, p sent in line 12

Based on t + 1 messages, i.e., 1
sent by a correct processes

contradiction to p being the
first one.

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 39 / 51

Proof: Unforgeability

If vi = false for all correct processes i , then for all correct processes j ,
acceptj remains false forever.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send (echo) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent (echo) be f o r e
12 then send (echo) to all ;
13

14 i f received (echo) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

By contradiction assume a
correct process sets acceptj = 1

Thus it has executed line 16

Thus it has received n − t
messages by distinct processes

That means messages by at
n − 2t correct processes

Let p be the first correct
processes that has sent (echo)

It did not send in line 7, as
vp = 0 by assumption

Thus, p sent in line 12

Based on t + 1 messages, i.e., 1
sent by a correct processes

contradiction to p being the
first one.

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 39 / 51

Proof: Unforgeability

If vi = false for all correct processes i , then for all correct processes j ,
acceptj remains false forever.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send (echo) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent (echo) be f o r e
12 then send (echo) to all ;
13

14 i f received (echo) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

By contradiction assume a
correct process sets acceptj = 1

Thus it has executed line 16

Thus it has received n − t
messages by distinct processes

That means messages by at
n − 2t correct processes

Let p be the first correct
processes that has sent (echo)

It did not send in line 7, as
vp = 0 by assumption

Thus, p sent in line 12

Based on t + 1 messages, i.e., 1
sent by a correct processes

contradiction to p being the
first one.

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 39 / 51

Proof: Unforgeability

If vi = false for all correct processes i , then for all correct processes j ,
acceptj remains false forever.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send (echo) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent (echo) be f o r e
12 then send (echo) to all ;
13

14 i f received (echo) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

By contradiction assume a
correct process sets acceptj = 1

Thus it has executed line 16

Thus it has received n − t
messages by distinct processes

That means messages by at
n − 2t correct processes

Let p be the first correct
processes that has sent (echo)

It did not send in line 7, as
vp = 0 by assumption

Thus, p sent in line 12

Based on t + 1 messages, i.e., 1
sent by a correct processes

contradiction to p being the
first one.

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 39 / 51

Proof: Unforgeability

If vi = false for all correct processes i , then for all correct processes j ,
acceptj remains false forever.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send (echo) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent (echo) be f o r e
12 then send (echo) to all ;
13

14 i f received (echo) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

By contradiction assume a
correct process sets acceptj = 1

Thus it has executed line 16

Thus it has received n − t
messages by distinct processes

That means messages by at
n − 2t correct processes

Let p be the first correct
processes that has sent (echo)

It did not send in line 7, as
vp = 0 by assumption

Thus, p sent in line 12

Based on t + 1 messages, i.e., 1
sent by a correct processes

contradiction to p being the
first one.

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 39 / 51

Proof: Unforgeability

If vi = false for all correct processes i , then for all correct processes j ,
acceptj remains false forever.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send (echo) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent (echo) be f o r e
12 then send (echo) to all ;
13

14 i f received (echo) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

By contradiction assume a
correct process sets acceptj = 1

Thus it has executed line 16

Thus it has received n − t
messages by distinct processes

That means messages by at
n − 2t correct processes

Let p be the first correct
processes that has sent (echo)

It did not send in line 7, as
vp = 0 by assumption

Thus, p sent in line 12

Based on t + 1 messages, i.e., 1
sent by a correct processes

contradiction to p being the
first one.

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 39 / 51

Proof: Unforgeability

If vi = false for all correct processes i , then for all correct processes j ,
acceptj remains false forever.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send (echo) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent (echo) be f o r e
12 then send (echo) to all ;
13

14 i f received (echo) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

By contradiction assume a
correct process sets acceptj = 1

Thus it has executed line 16

Thus it has received n − t
messages by distinct processes

That means messages by at
n − 2t correct processes

Let p be the first correct
processes that has sent (echo)

It did not send in line 7, as
vp = 0 by assumption

Thus, p sent in line 12

Based on t + 1 messages, i.e., 1
sent by a correct processes

contradiction to p being the
first one.

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 39 / 51

Proof: Unforgeability

If vi = false for all correct processes i , then for all correct processes j ,
acceptj remains false forever.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send (echo) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent (echo) be f o r e
12 then send (echo) to all ;
13

14 i f received (echo) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

By contradiction assume a
correct process sets acceptj = 1

Thus it has executed line 16

Thus it has received n − t
messages by distinct processes

That means messages by at
n − 2t correct processes

Let p be the first correct
processes that has sent (echo)

It did not send in line 7, as
vp = 0 by assumption

Thus, p sent in line 12

Based on t + 1 messages, i.e., 1
sent by a correct processes

contradiction to p being the
first one.

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 39 / 51

Proof: Completeness

If vi = true for all correct processes i , then there is a correct process j
that eventually sets acceptj to true.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send (echo) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent (echo) be f o r e
12 then send (echo) to all ;
13

14 i f received (echo) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

all, i.e., at least n − t correct
processes execute line 7

by reliable communication all
correct processes receive all
messages sent by correct
processes

Thus, a correct process receives
n − t (echo) messages

Thus, a correct process executes
line 16

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 40 / 51

Proof: Completeness

If vi = true for all correct processes i , then there is a correct process j
that eventually sets acceptj to true.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send (echo) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent (echo) be f o r e
12 then send (echo) to all ;
13

14 i f received (echo) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

all, i.e., at least n − t correct
processes execute line 7

by reliable communication all
correct processes receive all
messages sent by correct
processes

Thus, a correct process receives
n − t (echo) messages

Thus, a correct process executes
line 16

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 40 / 51

Proof: Completeness

If vi = true for all correct processes i , then there is a correct process j
that eventually sets acceptj to true.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send (echo) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent (echo) be f o r e
12 then send (echo) to all ;
13

14 i f received (echo) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

all, i.e., at least n − t correct
processes execute line 7

by reliable communication all
correct processes receive all
messages sent by correct
processes

Thus, a correct process receives
n − t (echo) messages

Thus, a correct process executes
line 16

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 40 / 51

Proof: Completeness

If vi = true for all correct processes i , then there is a correct process j
that eventually sets acceptj to true.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send (echo) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent (echo) be f o r e
12 then send (echo) to all ;
13

14 i f received (echo) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

all, i.e., at least n − t correct
processes execute line 7

by reliable communication all
correct processes receive all
messages sent by correct
processes

Thus, a correct process receives
n − t (echo) messages

Thus, a correct process executes
line 16

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 40 / 51

Proof: Completeness

If vi = true for all correct processes i , then there is a correct process j
that eventually sets acceptj to true.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send (echo) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent (echo) be f o r e
12 then send (echo) to all ;
13

14 i f received (echo) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

all, i.e., at least n − t correct
processes execute line 7

by reliable communication all
correct processes receive all
messages sent by correct
processes

Thus, a correct process receives
n − t (echo) messages

Thus, a correct process executes
line 16

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 40 / 51

Proof: Relay

If a correct process i sets accepti to true, then eventually all correct
processes j set acceptj to true.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send (echo) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent (echo) be f o r e
12 then send (echo) to all ;
13

14 i f received (echo) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

Correct process executes line 16

Thus it has received n − t
messages by distinct processes

That means messages by n − 2t
correct processes

By the resilience condition
n > 3t, we have n − 2t ≥ t + 1

Thus at least t + 1 correct
processes have sent (echo)

By reliable communication,
these messages are received by
all correct processes

Thus, all correct processes send
(echo) in line 12

There are at least n − t correct

Thus, all correct processes
eventually execute line 16

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 41 / 51

Proof: Relay

If a correct process i sets accepti to true, then eventually all correct
processes j set acceptj to true.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send (echo) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent (echo) be f o r e
12 then send (echo) to all ;
13

14 i f received (echo) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

Correct process executes line 16

Thus it has received n − t
messages by distinct processes

That means messages by n − 2t
correct processes

By the resilience condition
n > 3t, we have n − 2t ≥ t + 1

Thus at least t + 1 correct
processes have sent (echo)

By reliable communication,
these messages are received by
all correct processes

Thus, all correct processes send
(echo) in line 12

There are at least n − t correct

Thus, all correct processes
eventually execute line 16

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 41 / 51

Proof: Relay

If a correct process i sets accepti to true, then eventually all correct
processes j set acceptj to true.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send (echo) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent (echo) be f o r e
12 then send (echo) to all ;
13

14 i f received (echo) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

Correct process executes line 16

Thus it has received n − t
messages by distinct processes

That means messages by n − 2t
correct processes

By the resilience condition
n > 3t, we have n − 2t ≥ t + 1

Thus at least t + 1 correct
processes have sent (echo)

By reliable communication,
these messages are received by
all correct processes

Thus, all correct processes send
(echo) in line 12

There are at least n − t correct

Thus, all correct processes
eventually execute line 16

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 41 / 51

Proof: Relay

If a correct process i sets accepti to true, then eventually all correct
processes j set acceptj to true.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send (echo) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent (echo) be f o r e
12 then send (echo) to all ;
13

14 i f received (echo) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

Correct process executes line 16

Thus it has received n − t
messages by distinct processes

That means messages by n − 2t
correct processes

By the resilience condition
n > 3t, we have n − 2t ≥ t + 1

Thus at least t + 1 correct
processes have sent (echo)

By reliable communication,
these messages are received by
all correct processes

Thus, all correct processes send
(echo) in line 12

There are at least n − t correct

Thus, all correct processes
eventually execute line 16

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 41 / 51

Proof: Relay

If a correct process i sets accepti to true, then eventually all correct
processes j set acceptj to true.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send (echo) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent (echo) be f o r e
12 then send (echo) to all ;
13

14 i f received (echo) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

Correct process executes line 16

Thus it has received n − t
messages by distinct processes

That means messages by n − 2t
correct processes

By the resilience condition
n > 3t, we have n − 2t ≥ t + 1

Thus at least t + 1 correct
processes have sent (echo)

By reliable communication,
these messages are received by
all correct processes

Thus, all correct processes send
(echo) in line 12

There are at least n − t correct

Thus, all correct processes
eventually execute line 16

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 41 / 51

Proof: Relay

If a correct process i sets accepti to true, then eventually all correct
processes j set acceptj to true.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send (echo) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent (echo) be f o r e
12 then send (echo) to all ;
13

14 i f received (echo) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

Correct process executes line 16

Thus it has received n − t
messages by distinct processes

That means messages by n − 2t
correct processes

By the resilience condition
n > 3t, we have n − 2t ≥ t + 1

Thus at least t + 1 correct
processes have sent (echo)

By reliable communication,
these messages are received by
all correct processes

Thus, all correct processes send
(echo) in line 12

There are at least n − t correct

Thus, all correct processes
eventually execute line 16

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 41 / 51

Proof: Relay

If a correct process i sets accepti to true, then eventually all correct
processes j set acceptj to true.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send (echo) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent (echo) be f o r e
12 then send (echo) to all ;
13

14 i f received (echo) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

Correct process executes line 16

Thus it has received n − t
messages by distinct processes

That means messages by n − 2t
correct processes

By the resilience condition
n > 3t, we have n − 2t ≥ t + 1

Thus at least t + 1 correct
processes have sent (echo)

By reliable communication,
these messages are received by
all correct processes

Thus, all correct processes send
(echo) in line 12

There are at least n − t correct

Thus, all correct processes
eventually execute line 16

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 41 / 51

Proof: Relay

If a correct process i sets accepti to true, then eventually all correct
processes j set acceptj to true.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send (echo) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent (echo) be f o r e
12 then send (echo) to all ;
13

14 i f received (echo) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

Correct process executes line 16

Thus it has received n − t
messages by distinct processes

That means messages by n − 2t
correct processes

By the resilience condition
n > 3t, we have n − 2t ≥ t + 1

Thus at least t + 1 correct
processes have sent (echo)

By reliable communication,
these messages are received by
all correct processes

Thus, all correct processes send
(echo) in line 12

There are at least n − t correct

Thus, all correct processes
eventually execute line 16

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 41 / 51

Proof: Relay

If a correct process i sets accepti to true, then eventually all correct
processes j set acceptj to true.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send (echo) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent (echo) be f o r e
12 then send (echo) to all ;
13

14 i f received (echo) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

Correct process executes line 16

Thus it has received n − t
messages by distinct processes

That means messages by n − 2t
correct processes

By the resilience condition
n > 3t, we have n − 2t ≥ t + 1

Thus at least t + 1 correct
processes have sent (echo)

By reliable communication,
these messages are received by
all correct processes

Thus, all correct processes send
(echo) in line 12

There are at least n − t correct

Thus, all correct processes
eventually execute line 16

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 41 / 51

Proof: Relay

If a correct process i sets accepti to true, then eventually all correct
processes j set acceptj to true.

1 Variables of process i
2 vi : {0 , 1} i n i t i a l l y 0 or 1
3 accepti : {0 , 1} i n i t i a l l y 0
4

5 An atomic step:
6 i f vi = 1
7 then send (echo) to all ;
8

9 i f received (echo) from at l e a s t
10 t + 1 distinct p r o c e s s e s
11 and not sent (echo) be f o r e
12 then send (echo) to all ;
13

14 i f received (echo) from at l e a s t
15 n - t distinct p r o c e s s e s
16 then accepti := 1 ;

Correct process executes line 16

Thus it has received n − t
messages by distinct processes

That means messages by n − 2t
correct processes

By the resilience condition
n > 3t, we have n − 2t ≥ t + 1

Thus at least t + 1 correct
processes have sent (echo)

By reliable communication,
these messages are received by
all correct processes

Thus, all correct processes send
(echo) in line 12

There are at least n − t correct

Thus, all correct processes
eventually execute line 16

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 41 / 51

Problems with hand-written proofs

code inspection becomes confusing for larger algorithms

hidden assumptions

resilience condition

reliable communication (fairness)

non-masquerading

failure model

re-using proofs if one of the ingredients changes?

if I cannot prove it correct, that does not mean the algorithm is wrong
. . . how to come up with counterexamples?

ultimate goal: verify the actual source code.
. . . it is not realistic that developers do mathematical proofs.

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 42 / 51

Bracha & Toueg’s algorithm (JACM 1985)

Part II

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 43 / 51

Condition-based consensus (Mostéfaoui et al., 2003)

Part II

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 44 / 51

Problems with hand-written proofs

code inspection becomes confusing for larger algorithms

hidden assumptions

resilience condition

reliable communication (fairness)

non-masquerading

failure model

re-using proofs if one of the ingredients changes?

if I cannot prove it correct, that does not mean the algorithm is wrong
. . . how to come up with counterexamples?

ultimate goal: verify the actual source code.
. . . it is not realistic that developers do mathematical proofs.

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 45 / 51

Problems with hand-written proofs

code inspection becomes confusing for larger algorithms

hidden assumptions

resilience condition

reliable communication (fairness)

non-masquerading

failure model

re-using proofs if one of the ingredients changes?

if I cannot prove it correct, that does not mean the algorithm is wrong
. . . how to come up with counterexamples?

ultimate goal: verify the actual source code.
. . . it is not realistic that developers do mathematical proofs.

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 45 / 51

We have convinced a human, . . .

. . . why should we convince a computer?

it is easy to make mistakes in proofs

it is easier to overlook mistakes in proofs

distributed algorithms require “non-centralized thinking”
(untypical for the human mind)

many issues to consider at the same time
(interleaving of steps, faults, timing assumptions)

people who tried to convince computers found bugs in published. . .

Byzantine agreement algorithm (Lincoln & Rushby, 1993)

clock synchronization algorithm (Malekpour & Siminiceanu, 2006)

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 46 / 51

We have convinced a human, . . .

. . . why should we convince a computer?

it is easy to make mistakes in proofs

it is easier to overlook mistakes in proofs

distributed algorithms require “non-centralized thinking”
(untypical for the human mind)

many issues to consider at the same time
(interleaving of steps, faults, timing assumptions)

people who tried to convince computers found bugs in published. . .

Byzantine agreement algorithm (Lincoln & Rushby, 1993)

clock synchronization algorithm (Malekpour & Siminiceanu, 2006)

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 46 / 51

We have convinced a human, . . .

. . . why should we convince a computer?

it is easy to make mistakes in proofs

it is easier to overlook mistakes in proofs

distributed algorithms require “non-centralized thinking”
(untypical for the human mind)

many issues to consider at the same time
(interleaving of steps, faults, timing assumptions)

people who tried to convince computers found bugs in published. . .

Byzantine agreement algorithm (Lincoln & Rushby, 1993)

clock synchronization algorithm (Malekpour & Siminiceanu, 2006)

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 46 / 51

End of Part I

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 47 / 51

References I

Dolev, Danny, Dwork, Cynthia, & Stockmeyer, Larry. 1987.
On the minimal synchronism needed for distributed consensus.
J. ACM, 34, 77–97.
http://doi.acm.org/10.1145/7531.7533.

Fischer, Michael J., Lynch, Nancy A., & Paterson, M. S. 1985.
Impossibility of Distributed Consensus with one Faulty Process.
J. ACM, 32(2), 374–382.
http://doi.acm.org/10.1145/3149.214121.

Lamport, Leslie. 1998.
The part-time parliament.
ACM Trans. Comput. Syst., 16, 133–169.
http://doi.acm.org/10.1145/279227.279229.

Lamport, Leslie, Shostak, Robert E., & Pease, Marshall C. 1982.
The Byzantine Generals Problem.
ACM Trans. Program. Lang. Syst., 4(3), 382–401.

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 48 / 51

http://doi.acm.org/10.1145/7531.7533
http://doi.acm.org/10.1145/3149.214121
http://doi.acm.org/10.1145/279227.279229

References II

Lincoln, P., & Rushby, J. 1993.
A formally verified algorithm for interactive consistency under a hybrid fault model.
Pages 402–411 of: FTCS-23.
http://dx.doi.org/10.1109/FTCS.1993.627343.

Malekpour, Mahyar R., & Siminiceanu, Radu. 2006.
Comments on the Byzantine Self-Stabilizing Pulse Synchronization Protocol:
Counterexamples.
Tech. rept. TM-2006-213951. NASA.

Martin, Jean-Philippe, & Alvisi, Lorenzo. 2006.
Fast Byzantine Consensus.
IEEE Trans. Dependable Sec. Comput., 3(3), 202–215.

Mostéfaoui, Achour, Mourgaya, Eric, Parvédy, Philippe Raipin, & Raynal, Michel. 2003.
Evaluating the Condition-Based Approach to Solve Consensus.
Pages 541–550 of: DSN.

Raynal, Michel. 1997.
A Case Study of Agreement Problems in Distributed Systems: Non-Blocking Atomic
Commitment.
Pages 209–214 of: HASE.

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 49 / 51

http://dx.doi.org/10.1109/FTCS.1993.627343

References III

Santoro, Nicola, & Widmayer, Peter. 1989.
Time is Not a Healer.
Pages 304–313 of: STACS.
LNCS, vol. 349.
http://dx.doi.org/10.1007/BFb0028994.

Srikanth, T. K., & Toueg, Sam. 1987.
Optimal clock synchronization.
J. ACM, 34, 626–645.
http://doi.acm.org/10.1145/28869.28876.

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 50 / 51

http://dx.doi.org/10.1007/BFb0028994
http://doi.acm.org/10.1145/28869.28876

Model vs. reality: assumption coverage

Every assumption has a probability that it is satisfied in the actual system:

n > 3t
less likely than n > t

every message sent is received within bounded time
less likely than that it is eventually received

processes fail by crashing
less likely than they deviate arbitrarily from the prescribed behavior

non-masquerading
less likely than processes that can pretend to be someone else

To use a distributed algorithm in practice:

one must ensure that an assumption is suitable for a given system

the probability that the system is working correctly is the probability
that the assumptions hold
(given that the distributed algorithm actually is correct)

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 51 / 51

Model vs. reality: assumption coverage

Every assumption has a probability that it is satisfied in the actual system:

n > 3t
less likely than n > t

every message sent is received within bounded time
less likely than that it is eventually received

processes fail by crashing
less likely than they deviate arbitrarily from the prescribed behavior

non-masquerading
less likely than processes that can pretend to be someone else

To use a distributed algorithm in practice:

one must ensure that an assumption is suitable for a given system

the probability that the system is working correctly is the probability
that the assumptions hold
(given that the distributed algorithm actually is correct)

Josef Widder (TU Wien) Checking Fault-Tolerant Distributed Algos Uni Salzburg 2015 51 / 51

	Appendix
	Appendix

