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Abstract—Ethernet has now become the preferred communi-
cation mechanism for a wide range of application domains that
do not impose strict real-time constraints. Within the real-time
domain, safety-critical timing aspects have been introduced on
top of Ethernet by means of technologies like TTEthernet and
Time-Sensitive Networks (TSN). In such technologies communi-
cation is aligned to an offline and statically configured schedule
(the synthesis of which is an NP-complete problem) guaranteeing
contention-free frame transmissions along the network devices
as well as real-time end-to-end behavior of individual frames or
entire traffic classes.

In this overview we discuss results on scheduling TSN- and
TTEthernet-compliant multi-hop switched networks using Satisfi-
ability Modulo Theories (SMT) and, alternatively, Optimization
Modulo Theories (OMT) solvers. We identify and analyze key
functional parameters affecting the deterministic behaviour of
real-time communication under TSN and TTEthernet and derive
the required constraints for computing offline schedules guar-
anteeing low and bounded jitter and deterministic end-to-end
latency for critical communication streams.

I. INTRODUCTION

The need for end-to-end real-time guarantees in distributed
systems has long been a requirement in the aerospace domain.
In recent years other domains like industrial automation and
automotive systems show an increasing demand for determin-
istic communication behavior. Deterministic networks have
been traditionally build on top of technologies like TTEthernet
(SAE AS6802 [1, 2]), PROFINET, and EtherCAT [3] among
others. Soft-real time aspects have been standardized for
IEEE 802 networks through the IEEE 802.1BA Audio/Video
Bridging (AVB) standard. Driven by an increasing need for
standardized mechanisms allowing deterministic behavior that
goes beyond the Quality of Service guarantees provided by
IEEE 802.1BA, the IEEE 802.1 Time Sensitive Networking
(TSN) task group [4] is in the process of standardizing
time-sensitive capabilities over IEEE 802 networks. The key
drivers for real-time communication over standard Ethernet
include a fault tolerant clock synchronization mechanism
(IEEE 802.1ASrev [4]) that provides a network-wide clock
reference and mechanisms enabling a global communication
schedule governing the end-to-end timing of communication
streams (IEEE 802.1Qbv [5]). A stream is a communication
from a sender (talker) to one or more receivers (listeners) with
or without end-to-end timing requirements. In case of critical

streams, the communication is defined by a payload size and
a period in addition to the sender and receivers devices.

In this overview based on our previous work [6, 7] we
describe the scheduling principles governing both TTEthernet
and TSN networks that result in a deterministic behavior
for critical streams. In both cases we assume that a syn-
chronization mechanism is in place that provides a global
clock reference with a known and bounded maximal deviation
(the so-called precision). We start by describing deterministic
networks (Section II) and the formalization of the traffic and
network model (Section III). We then present our results
from previous work regarding global and local constraints
that enable deterministic scheduling with bounded latency and
jitter in Section IV. Using these constraints, we present SMT-
based mechanisms to find correct network schedules together
with possible optimization criteria and conclude the overview
in Section VI.

II. DETERMINISTIC NETWORKS

Deterministic networks refer to networks where at least
a subset of the communication has to adhere to some type
of hard real-time behavior. By hard real-time in this context
we mean that the temporal behavior of communication is
deterministic over the lifetime of the system. In other words,
we want to ensure that safety-critical traffic behaves deter-
ministically irrespective of other loads in the network. In this
section we briefly describe the mechanisms that enable this
deterministic behavior in both TTEthernet and TSN networks
(c.f. Figure 1), focusing on the fundamental differences be-
tween the two.

A. TTEthernet

TTEthernet is an extension to standard Ethernet currently
used in mixed-criticality real-time applications. Each device
has the capability to dispatch frames according to a local
schedule derived from a global communication scheme, the
tt-network-schedule. The schedule defines transmission and
reception time windows for each time-triggered frame be-
ing transmitted between nodes. The tt-network-schedule is
typically built offline, accounting for the maximum end-to-
end latency, message length, as well as constraints derived
from resources and physical limitations, e.g., maximum frame
buffer capacity. Inside the networks devices, a mechanism
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Figure 1: A simplified representation of TTEthernet and TSN switches

is in place that ensures that frames are transmitted from an
internal buffer at the time specified by the schedule (c.f.
Figure 1(a)). If a device in the network does not support
this functionality, but is used to route critical streams, the
real-time guarantees cannot be enforced. The critical traffic
is isolated from non-critical traffic (rate-constrained or best-
effort) in different queues, where the critical traffic always has
a static assignment to a high-priority queue that guarantees
a bounded delay in each device. Note that we say bounded
delay because there can be in the worst case some delay due
to low priority traffic (at most one frame) if the lower-priority
frame starts being transmitted just before the scheduling point
of a critical frame. Since there is no preemption mechanism
in place, the low priority frame cannot be interrupted and
hence can delay a critical frame. The two methods put in
place to mitigate for this delay are timely block and shuffling
which have been implemented in practice [8, p. 42-5]. With
shuffling the scheduling window of critical frames includes the
maximum frame size of other frames that might interfere with
the sending of these frames, while the timely block method
will prevent any low-priority frame to be send if it would delay
a scheduled critical frame [8, p. 42-5], [2], hence reducing the
duration of the delay. Note that, due to the fault-tolerant clock
synchronization protocol used (SAE AS6802 [1, 9]), there will
always be a bounded delay that critical frames can experience
due to the fact that synchronization frames have higher priority
than critical frames.

The combination of these two elements allows for safety-
critical traffic with guaranteed end-to-end latency and minimal
jitter in co-existence with rate-constrained flows bounded to
deterministic quality of service (QoS) and non-critical traffic
(i.e. best-effort).

The important aspect to remember here is that TTEthernet
devices dispatch frames according the the defined schedule, i.e.
the TTEthernet schedule is defined on the level of individual
frames.

B. Time-Sensitive Networks

Similar to TTEthernet, a requirement for deterministic be-
havior is that there is a network-wide synchronization protocol

in place that provides a time reference for the runtime exe-
cution of the statically created schedule. TSN networks are
envisioned to run based on the IEEE 802.1ASrev [4] time-
synchronization protocol. One difference to AS6802 is that
there is no requirement in the standard that the synchronization
frames have to have the highest priority. In terms of schedul-
ing, IEEE 802.1Qbv [5] defines a time-based shaper function-
ality enabling time-triggered communication [10] at the egress
ports. A time-aware shaper is essentially a gate enabling or
disabling the transmission of frames for a queue following
the specification of a periodic schedule (c.f. Figure 1(b)).
Here it is important to note that the schedule is defined on
the level of traffic classes and not of individual frames like
in TTEthernet. Scheduling entire traffic classes as opposed
to individual frames provides more flexibility for use-cases
where strict timing constraints and determinism on the level
of streams are not the most important aspects. Since the traffic
class is defined in the PCP code of the VLAN tag of frames,
using only IEEE 802.1Qbv cannot enable a fined-grained
identification and control on the level of streams. Additional
mechanisms like the per-stream identification and filtering
(defined in IEEE 802.1Qci/802.1CB), allowing identification
of frames based on a stream id and overriding of the traffic
class encoded in the PCP code, are necessary if we want to
achieve the same level of determinism as in TTEthernet. We
will later see how this affects the scheduling constraints in
comparison to TTEthernet.

III. NETWORK AND TRAFFIC MODEL

We now formalize the network and traffic model based
on [6, 7]. Both TTEthernet and TSN cases are multi-hop
layer 2 switched Ethernet networks over full-duplex multi-
speed physical links. The network model is defined similar
to [6] and [11], as a directed graph G(V,L), where the nodes
(switches and end-systems) are the set of graph vertices (V)
and the links between nodes are represented through the graph
edges (L ⊆ V × V).

A full-duplex physical link between nodes va ∈ V
and vb ∈ V results in two directional logical links,
each denoted by an ordered tuple, namely [va, vb] ∈ L
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and [vb, va] ∈ L, respectively. Maintaining the notation
from [6], a physical link [va, vb] is characterized by the tuple
〈[va, vb].s, [va, vb].d, [va, vb].mt〉, where [va, vb].s is the speed
of the link, [va, vb].d is the propagation delay on the medium,
and [va, vb].mt is the macrotick of the link. For TTEthernet,
this definition is sufficient since the priority queues on the
output ports of devices are used in a predefined manner,
namely priority 7 will be reserved for critical traffic while
all lower priorities are reserved for rate-constrained and best-
effort traffic. The highest priority is reserved for network
synchronization frames. For TSN networks we need to extend
the definition with a new parameter, [va, vb].c, representing the
number of available scheduled queues in the device. The value
for this parameter is set to at most 8 according to 802.1Qbv [5],
however, there is no limitation on the number from the point
of view of the scheduling constraints. The macrotick offers a
trade-off between schedulability and runtime of the scheduling
algorithm and specifies the granularity of the time-line used
for scheduling on that specific link.

A stream (flow) is defined as a periodic data trans-
mission from one sender (talker) to one or multiple re-
ceivers (listeners). In this overview we are only con-
cerned with critical streams. We denote the set of crit-
ical streams by S. Similar to [11], a stream si ∈ S
from a sender node va to a receiver node vb is expressed
as si = [[va, v1], [v1, v2], . . . , [vn−1, vn], [vn, vb]], where
v1, v2, . . . , vn−1, vn represents the route of the stream through
the network. Please note that the routing is a preliminary step
done separately from scheduling. A stream is defined through
the tuple 〈si.e2e, si.L, si.T 〉, denoting the maximum allowed
end-to-end latency, the data size in bytes, and the period of
the stream, respectively. An instance of a stream si ∈ S on an
outgoing link [va, vb] ∈ L, i.e., sent from device va to device
vb, is denoted by s[va,vb]i .

For TSN networks, we introduce an additional variable
specifying the assigned queue for the instance of a stream
on a particular device, i.e., s[va,vb]i .p. Note that the queue
variable is synonymous to the priority of the stream within the
egress port of the respective device. We draw an equivalence
between the egress port and its respective transmission link.
TSN defines per-stream filtering and identification (IEEE
802.1Qci/802.1CB) allowing a stream instance to be assigned
to different queues in different devices.

While in TTEthernet, the stream is limited to at most an
MTU sized frame, in TSN, the data size of may exceed the
Ethernet MTU size and be split into multiple frames of MTU
size. To devise a model governing both TTEthernet and TSN,
we define that each stream instance is associated with a set
of frames, each with size less than or equal to the MTU
size. For TTEthernet this set will have size 1. Maintaining
our notation from [6, 7], we denote the set of frames f [va,vb]i,j

of a stream instance s[va,vb]
i by F [va,vb]

i . Additionally, the first
and last frame of the set, ordered by the schedule offset on the
link, are expressed as F [va,vb]

i with f [va,vb]i,1 and last(F [va,vb]
i ),

respectively. A frame f [va,vb]i,j ∈ F [va,vb]
i is defined by the tuple

〈f [va,vb]i,j .φ, f
[va,vb]
i,j .T, f

[va,vb]
i,j .L〉,

where f
[va,vb]
i,j .φ ∈ [0, f

[va,vb]
i,j .T ] is the offset in macroticks

of the frame on link [va, vb], f
[va,vb]
i,j .T = d si.T

[va,vb].mte is
the period of the stream scaled to the link macrotick, and
f
[va,vb]
i,j .L = dLi×[va,vb].s

[va,vb].mt e is the transmission duration of the
frame also scaled to the link macrotick [6, 7].

In [6] we introduced an additional variable to the frame
definition, namely the period instance, in order to enable
end-to-end latencies exceeding the period boundary. Although
present in the implementation, we omit the period instance
from the formalization in order to simplify the notation and
refer the reader to [6] for details on how to include the variable
in the constraints.

IV. SCHEDULING CONSTRAINTS

Now that we have defined the traffic and network model
for both TTEthernet and TSN we will proceed to describe
based on [6, 7] the relevant constraints for creating correct
schedules. The constraints are of 4 types. The basic Ethernet
constraints arise from the inherent functionality of TTEthernet
and TSN. For TSN there are special constraints that only define
correctness for IEEE 802.1Qbv networks. Apart from these
two types we have also user constraints that define specific
behaviors like start and end times for streams and constraints
that arise from particular implementations of TTEthernet or
TSN devices. User constraints can be added on individual
streams or sets of streams depending on system design or
user requirements. We will just briefly mention some of
them noting that the formalization is straightforward. Start
time constraints can be applied to streams imposing that
either the receiving or sending of a stream happens after
a given start time. Conversely, end time constraints specify
that either the receiving or sending of a stream happens
before a given end time. These constraints are important for
synchronizing the network schedule to the task schedule for
producing and consuming applications if scheduling is done
sequentially (e.g. [12, 13]). Precedence constraints between
streams impose a sending and/or receiving order between
different streams. A simplification of this user constraint is
when all given streams shall have the same period. More
complex precedence relations, which do not require the same
rate on streams, have been studied in [14].

In this overview we will focus only on the first two types
of constraints.

A. Basic Ethernet Constraints

The constraints can be thought of as a system of inequalities
where the variables are the frame offsets (and queue assign-
ment for TSN) that describe a correct temporal behavior for
the communication streams. We adapt the basic constraints
defined first in [11] and generalized in [6] to the generic model
describing both TTEthernet and TSN networks following the
description from [7].

Frame Constraint. Any frame belonging to a critical
stream has to be scheduled between time 0 and its period
given the periodic repetition pattern of critical traffic. Hence,
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the entire transmission window has to fit within the stream
period. To enforce this, we have the condition [7]

∀si ∈ S,∀[va, vb] ∈ si,∀f [va,vb]i,j ∈ F [va,vb]
i :(

f
[va,vb]
i,j .φ ≥ 0

)
∧
(
f
[va,vb]
i,j .φ ≤ f [va,vb]

i,j .T − f [va,vb]i,j .L
)
.

Link Constraint. Since there can only be one frame at a
time on a physical link, we enforce that no two frames that are
routed through the same egress port of a device may overlap
in the time domain. The constraint [7] is hence

∀[va, vb] ∈ L,∀F [va,vb]
i ,F [va,vb]

j , i 6= j

∀f [va,vb]
i,k ∈ F [va,vb]

i ,∀f [va,vb]j,l ∈ F [va,vb]
j ,

∀α ∈ [0, hpji/si.T − 1],∀β ∈ [0, hpji/sj .T − 1] :(
f
[va,vb]
i,k .φ+ α× f [va,vb]i,k .T ≥

f
[va,vb]
j,l .φ+ β × f [va,vb]j,l .T + f

[va,vb]
j,l .L

)
∨ (1)(

f
[va,vb]
j,l .φ+ β × f [va,vb]j,l .T ≥

f
[va,vb]
i,k .φ+ α× f [va,vb]i,k .T + f

[va,vb]
i,k .L

)
,

where hpji = lcm(si.T, sj .T ) is the hyperperiod of si and sj .
Stream Transmission Constraint. In order to ensure a low

latency, the propagation of frames of a stream must follow a
sequential order along the routed path. While this constraint
is not necessary for the correctness of the schedule, it ensures
that a frame is forwarded only after it has been received
by a particular device in order to guide a scheduler towards
solutions reducing the end-to-end latency.

Here, one important detail is the network precision, denoted
with δ. The precision is the worst-case difference between
the local clocks of any two synchronized (e.g. via the IEEE
802.1AS [4] or AS6802 [1] time-synchronization protocol)
devices. One difference in the synchonization between TSN
and TTEthernet is that the TTEthernet synchronization pro-
tocol [15] introduces a delay for critical frames due to the
synchronization frames having the highest priority. In the IEEE
802.1AS protocol the synchronization frames have a lower
priority than the critical traffic and hence do not introduce
a delay. The delay can be accounted for in the scheduling
window of the respective frame, i.e., for TSN, the scheduling
window only includes the frame duration while in TTEthernet
it also includes the worst-case delay of any synchronization
frames that might collide with critical traffic.

∀si ∈ S,∀[va, vx], [vx, vb] ∈ si,
∀f [va,vx]

i,j ∈ F [va,vx]
i ,∀f [vx,vb]i,j ∈ F [vx,vb]

i :

f
[vx,vb]
i,j .φ× [vx, vb].mt− [va, vx].d− δ ≥ (2)

(f
[va,vx]
i,j .φ+ f

[va,vx]
i,j .L)× [va, vx].mt.

The constraint imposes that a frame can only be scheduled on
a subsequent link [vx, vb] after the complete reception on the
previous link [va, vx], including the propagation delay of the
respective link ([va, vx].d).

End-to-End Constraint. Typically, streams have a max-
imum allowed end-to-end latency. While this is not always

the case, we will define the constraint here for the sake of
completeness.

The maximum end-to-end latency constraint specifies that
the difference between the reception of a stream at the destina-
tion and the transmission of the stream from the sender has to
be less than or equal to the specified duration. We denote the
sending link of stream si with src(si) and the last link before
the receiving node with dest(si). The maximum end-to-end
latency constraint [7] is hence

∀si ∈ S : src(si).mt× fsrc(si)i,1 .φ+ si.e2e ≥ (3)

dest(si).mt× (last(Fdest(si)
i ).φ+ last(Fdest(si)

i ).L).

B. 802.1Qbv Constraints

The fundamental difference between TTEthernet and TSN
networks is that while in TTEthernet the schedule is on
the level of individual frames, in TSN the gate control list
(GCL) governs the temporal behavior of entire traffic classes
(priorities). Nevertheless we want to provide the same degree
of determinism on the level of frames in a TSN environment.
Hence, we need to derive, in addition to the above mentioned
constraints, specific 802.1Qbv constraints. To understand the
implications of scheduling on the level of traffic classes we
present a simplified example from [7], depicted in Figure 2,
where two streams arriving at a switch from different sources
are forwarded via the same egress port.

In Figure 2(a), the two streams arrive from different devices
at roughly the same time at the represented switch. Due to
several factors, like the synchronization imprecision between
individual devices or frame loss, the arrival order of frames
during runtime can alternate leading to different queue states.
Therefore, the order in which the individual frames are placed
in the scheduled queue at runtime may be non-deterministic.
As noted before, in TSN the schedule controls the opening
and closing of the timed gates on the queues of the egress
port, not the order of frames in the queue. If the schedule
opens the gate for the respective queue first for the duration
of transmitting 2 frames and some time later for the duration of
transmitting 3 frames, as depicted in the example, there can be
any combination of the respective frames of both streams on
the egress port at runtime. Hence, the timely behaviour of the
two streams may be different during runtime violating the low
jitter and end-to-end transmission constraint. One possibility
is to account for this worst-case delay using methods like
network calculus [16, 17] or trajectory approach [18] and then
guide the scheduler towards better solutions if the pessimistic
analysis on the end-to-end latency does not fulfil the required
maximum. However, we want to provide a fully deterministic
behavior and do not consider methods like networks calculus
in our solution. In order to avoid this delay and jitter we derive
in [7] conditions guaranteeing a deterministic order of frames
in the queues. This can be enforced either by not allowing
streams arriving during interfering intervals to be placed in the
same queue (Figure 2(b)), or by allowing them to be placed
in the same queue but ensure that the intended order and
transmission time for all frames of the streams are preserved
(Figure 2(c)).
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Figure 2: Stream interleaving and isolation within an egress port of a 802.1Qbv switch. [7]

To formulate the constraints we start from a simplified
case in which there is only one queue in the device intended
for critical traffic and later relax this assumption in order to
formulate the complete TSN scheduling constraint.

Let s[va,vb]i and s[va,vb]
j be, respectively, the stream instances

of si ∈ S and sj ∈ S scheduled on the outgoing link (and
hence egress port) [va, vb] of device va. Stream si arrives at
the device va from some device vx on link [vx, va]. Similarly,
stream sj arrives from another device vy on incoming link
[vy, va]. If the two streams arrive from the same device, the
link constraint in the previous section ensures that they would
not overlap in the time domain. Hence we only look at the
case in which the streams arrive from two different devices.

In order to isolate streams that are placed in the same queue
we must ensure that they are isolated in the time domain on
arrival. Constraint (4) enforces a correct ordering of streams,
i.e., if a frame of a given stream has entered a queue, no frame
of another stream may arrive at the queue until all frames of
the previous stream have been fully dispatched. We remind the
reader that the first and last frame of a stream, already ordered
by their transmission time (i.e. scheduled offset), are defined
by f [va,vb]i,1 and last(F [va,vb]

i ), respectively. Hence, we have

∀[va, vb] ∈ L,∀s[va,vb]i , s
[va,vb]
j ∈ S, i 6= j,

∀α ∈ [0, hpji/si.T − 1],∀β ∈ [0, hpji/sj .T − 1] :(
last(F [va,vb]

i ).φ× [va, vb].mt+ α× si.T + δ ≤

f
[vy,va]
j,1 .φ× [vy, va].mt+ β × sj .T + [vy, va].d

)
∨ (4)(

last(F [va,vb]
j ).φ× [va, vb].mt+ β × sj .T + δ ≤

f
[vx,va]
i,1 .φ× [vx, va].mt+ α× si.T + [vx, va].d

)
.

The constraint ensures that once a stream has arrived at the
receiving device [va, vb], no other stream can arrive at the
same egress port until the first stream has been completely
sent on the output port. Hence, individual frames of the first
arriving stream will not be interleaved with any frames of
another stream until the queue has been completely emptied.

The stream isolation constraint is restrictive and may de-
crease the search space for valid schedules although it may be
faster to solve for some use-cases (c.f. [7] for an analysis).
It is restrictive since an input where a high-rate stream
has a period which is equal to or less than the combined
transmission duration of all frames of a low-rate stream will
not be schedulable with the stream isolation constraint. This
is because there is at least one period instance of the high rate
stream in which its frames have to interleave with the frames

of the low-rate stream. Given the previous isolation constraint,
this would not be schedulable if there is only one queue per
port, i.e., the streams must be placed in different queues. This
counterexample can be generalized for an arbitrary number of
queues.

In order to avoid this, we describe in [7] the frame isolation
constraint that allows frames interleaving between streams in
a queue while in the same time guaranteeing that the order on
the output port is deterministic. We do this by enforcing that
there are only frames of one stream in the queue at a time,
i.e., frames from another stream may only enter the queue
if the already queued frames of the initial stream have been
serviced. The frame isolation condition [7] is formulated as

∀[va, vb] ∈ L,∀s[va,vb]i , s
[va,vb]
j ∈ S, i 6= j,

∀f [va,vb]
i,k ∈ F [va,vb]

i ,∀f [va,vb]j,l ∈ F [va,vb]
j ,

∀α ∈ [0, hpji/si.T − 1],∀β ∈ [0, hpji/sj .T − 1] :(
f
[va,vb]
j,l .φ× [va, vb].mt+ β × sj .T + δ ≤

f
[vx,va]
i,k .φ× [vx, va].mt+ α× si.T + [vx, va].d

)
∨ (5)(

f
[va,vb]
i,k .φ× [va, vb].mt+ α× si.T + δ ≤

f
[vy,va]
j,l .φ× [vy, va].mt+ β × sj .T + [vy, va].d

)
,

The above constraints ((4) and (5)) apply to frames in the
same queue. However, as mentioned before, the scheduler
may choose to place streams in different queues. Hence, the
complete constraint [7] for minimum jitter scheduling of high-
criticality streams is

∀[va, vb] ∈ L,∀s[va,vb]
i , s

[va,vb]
j ∈ S,(

Φ(s
[va,vb]
i , s

[va,vb]
j )

)
∨
(
s
[va,vb]
i .p 6= s

[va,vb]
j .p

)
, (6)

with s
[va,vb]
i .p ≤ [va, vb].c and s

[va,vb]
j .p ≤ [va, vb].c and

where Φ(s
[va,vb]
i , s

[va,vb]
j ) denotes either constraint (5) or, if

the stream isolation method is used, constraint (4) between
streams s[va,vb]i and s[va,vb]j .

V. SMT-BASED SCHEDULE SYNTHESIS

We now have a complete set of constraints for both TTEther-
net and TSN that describe correct schedules for deterministic
real-time behavior of streams. There are several ways how
to encode these constraints in order to generate a schedule.
One way is to use heuristics, as described in [19]. The
advantage of heuristics is that the runtime for such NP-
complete problems is usually sub-exponential. The drawback
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is that it will not search the entire solution space. Hence, for
the average case or for very large networks heuristics may
provide the suitable approach for finding schedules. Moreover,
heuristics can also be combined with optimization criteria to
find improved solutions [20].

However, if we want to have an optimal algorithm we must
rely on other methods. The idea of using Satisfiability Modulo
Theories (SMT) solvers to find schedules for distributed sys-
tems was first proposed by Steiner [11]. Satisfiability Modulo
Theories (SMT) are designed to determine the satisfiability
of first-order logical formulas against certain background
theories like linear integer arithmetic (LA(Z)) or bit-vectors
(BV) [21, 22]. On top of checking satisfiability, SMT solvers
also provide a model for the given satisfiable context which
represents one solution (out of a set of potentially multiple
feasible solutions) for the given variables and constraints.
NP-complete scheduling problems that exhibit combinatorial
characteristic and have arithmetic constraints present a suitable
use-case for constraint-satisfaction SMT solving in linear
arithmetic [23, 24].

The aim of our scheduling algorithm for TTEthernet and
TSN networks is to find values for all individual frame offsets
(and queue assignments in case of TSN) in each respective
egress port of streams routed along the network such that
the set of constraints are met. We define both frame offsets
and queue assignment indexes as integer variables to the
SMT context and generate assertions (in linear arithmetic) that
correspond to the constraints defined in the previous sections.
For TTEthernet, the offsets represent the dispatching moments
in time for individual frames. For TSN, the frame offsets
represent the open and close events for the timed-gate of the
assigned queue of the frame/stream.

The drawback of using SMT solvers is that for large
networks they may take an unrealistic amount of time to
solved the scheduling problem. The scalability of the SMT
approach depends on several key factors, analyzed in detail
in [6]. Several methods exist that can improve scalability
for the average case. Steiner [11] for example introduced an
incremental backtracking algorithm that attempts to schedule
one stream at a time by adding the stream variables and
constraints to the SMT context and trying to solve the problem
with the added constraints. If a solution is found, the schedule
for the stream is fixed by asserting the constant value provided
by the SMT model into the context. This repeats until either
the complete schedule is found (i.e. all streams are scheduled)
or an incremental step is deemed unfeasible by the solver. In
the latter case, the constraints of the current stream could not
be satisfied with the previous context, so the SMT context
is backtracked by removing the last scheduled stream and
reintroducing it together with the unfeasible step in question.
Backtracking repeats as long as the merged step results in an
unfeasible problem. In the worst case, the algorithm schedules
all streams in one single step. However, in the average case,
there is a significant performance improvement that can be
substantial especially when network utilization is low. In the
case of infeasiblity, we save the state of the context with the
highest number of solved streams. Hence, even if the whole set
of streams was not schedulable, we can still provide a partial

solution for a subset of the given streams.

A. Optimization

While finding a schedule is sufficient in most cases, some-
times the best solution with respect to some optimality criteria
is preferred. In most use-cases, the optimality criteria is to
minimize the end-to-end latencies of streams. In recent years,
a new field, called Optimization Modulo Theories (OMT), has
emerged where certain SMT solvers are augmented with opti-
mization capabilities [25, 26, 27]. Alternatively, MIP solvers,
like Gurobi [28] or GLPK [29] can be used (cf. [6]). The
optimization objective for minimal end-to-end latency is easily
expressed based on constraint (3) from Section IV and has
been discussed in [6].

For TTEthernet, interesting optimization objectives are
related to increasing quality of service metrics for rate-
constrained or best-effort streams. We can for example op-
timize the placement of critical frames in such a way that
the bandwidth waste from mechanisms like guard band is
minimized. Moreover, we can also optimize for memory
overhead in devices by minimizing the time frames are stored
in switches before being forwarded.

For TSN, we have seen that traffic is classified into critical
and non-critical and isolated in scheduled and priority queues,
respectively. Hence, non-critical traffic may benefit from a
larger number of priority queues with regard to their quality
of service characteristics. However, we still want to find a
solution for the critical streams, allowing them to use as many
queues as necessary. Hence, any pre-assignment of queues to
traffic classes introduces a trade-off between schedulability of
high-criticality streams and timeliness properties and flexibil-
ity for non-scheduled traffic. This is a typical optimization
problem that can be elegantly solved for TSN networks.

In [7] we proposed an optimization objective to find the
minimal number of queues required for scheduled traffic such
that a valid solution is still feasible. The optimization condition
is easy to express using our approach by having an additional
variable for each device representing the number of required
scheduled queues for high-criticality streams for each egress
port. Minimizing the number of used queues can be specified
in different ways depending on the OMT implementation and
design goals. We define a global objective to minimize the
accrued sum of the number of queues used per egress port and
refer the reader to [7] for the formalization of the optimization
objectives.

Here we have to note that there is a design space exploration
aspect in the sense that in case of a non-schedulable input, this
optimization objective can be used to answer the question on
how many queues would be necessary in each device to find
a solution (c.f. [7]).

As depicted in Figure 3, the schedule for the remaining
priority (non-scheduled) queues can be computed via the
inverse of the combined schedule of all scheduled queues.
All non-scheduled queues share the same gate open and gate
close events and rely on priorities for the transmission order.
One drawback is that the resulting scheduling intervals left
for BE traffic may be too small to transmit frames of certain
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Figure 3: Example of generating BE-queue schedules.

sizes (a similar problem to the checkerboard fragmentation
problem in memory allocators). Hence, an optimization ob-
jective worth exploring is maximizing continuous intervals
of bandwidth available for non-critical traffic. Taking inspi-
ration from memory management algorithms (c.f. [30]), the
optimization objective tries to maintain the time-space as non-
fragmented as possible, i.e., pack all critical schedule traffic in
as few contiguous blocks as possible while satisfying all other
correctness constraints. The minimization objective can be
formulated as minimizing the accrued sum of inter-event gaps
on the combined schedule. In particular, since the constraints
defined in Section IV prevent individual frames on the same
link from overlapping, this results in minimizing the accrued
difference of any two frame offsets on a given link until the
hyperperiod.

VI. CONCLUSION

In this overview based on our previous work [6, 7] we
discuss the scheduling problem arising from time-sensitive
network technologies like TTEthernet and TSN. We describe
the main differences between the two technologies together
with generic and specific scheduling constraints that enable
real-time temporal behavior on the level of individual commu-
nication streams. Based on these constraints, we specify how
to encode and solve the problem within the context of SMT
solvers, providing also a discussion on possible directions for
optimization.
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