
Formal Scheduling Constraints for Time-Sensitive

Networks

Silviu S. Craciunas Ramon Serna Oliver Wilfried Steiner

TTTech Computertechnik AG

Schönbrunner Straße 7

1040 Vienna, Austria

forename.surname@tttech.com

Abstract

In recent years, the IEEE802.1 Time Sensitive Networking (TSN)
task group has been active standardizing time-sensitive capabilities for
Ethernet networks ranging from distributed clock synchronization and
time-based ingress policing to frame preemption, redundancy manage-
ment, and scheduled traffic enhancements. In particular the scheduled
traffic enhancements defined in IEEE 802.1Qbv together with the clock
synchronization protocol open up the possibility to schedule communica-
tion in distributed networks providing real-time guarantees.

In this paper we formalize the necessary constraints for creating window-
based IEEE 802.1Qbv Gate Control List schedules for Time-sensitive Net-
works (TSN). The resulting schedules allow a greater flexibility in terms
of timing properties while still guaranteeing deterministic communication
with bounded jitter and end-to-end latency.

1 Introduction

Deterministic real-time communications have long been a requirement in the
aerospace domain [1, 2]. The strictness of certification programs and industry
practices are only satisfied if sufficient proofs of evidence guarantee the deter-
ministic behavior of static configurations often deployed in production programs
spanning over several decades. Recently, other fast-moving markets like automo-
tive and industrial automation are increasingly joining the trend of deterministic
networking albeit being less open to accept any detriment to generalized net-
working features, like high communication speeds with near-to-full bandwidth
utilization, availability of off-the-shelf components, or dynamic cluster reconfig-
urations.

In recent years, the IEEE802.1 Time Sensitive Networking (TSN) task
group [3] has been active standardizing time-sensitive capabilities for Ether-

1

ar
X

iv
:1

71
2.

02
24

6v
1

 [
cs

.N
I]

 6
 D

ec
 2

01
7

net networks ranging from distributed clock synchronization [4] and time-based
ingress policing [5] to frame preemption [6], redundancy management [7], and
scheduled traffic enhancements [8].

Out of the many protocols being presented, two of them are key to achieving
compositional real-time guarantees:

• IEEE 802.1ASrev [4] defines a time-synchronization protocol enabling a
global clock reference with basic fault-tolerance mechanisms.

• IEEE 802.1Qbv [8] specifies the time-aware shaper functionality imple-
menting the time-triggered paradigm [9] at the egress port of communi-
cating nodes.

A time-aware shaper is essentially a gate mechanism sitting at the egress side
of each priority queue dynamically enabling or disabling the selection of frames
from the respective queue based on a predefined periodic schedule referred as
Gate Control List. In a distributed network each egress port is timely set at run-
time according to its own configured gate control list executed synchronously
according to the global notion of time.

In the combination of these two key features lay the foundations for the
synthesis of schedules driving the communication in a distributed network with
determinism and end-to-end real-time guarantees.

Previous work [10] formally defined necessary constraints to compute deter-
ministic schedules that could be mapped to TSN-compliant multi-hop switched
networks providing jitter-free transmission and deterministic end-to-end latency
guarantees for strictly-periodic scheduled frames. However, such stringent re-
quirements on jitter and latency came at a high cost. On one hand, fully
deterministic communication constraints restrict the solution space for valid
schedules due to the isolation of streams in the time domain. On the other
hand, the focus was given to finding exact timing for each transmitted frame,
which was then mapped on a second step into a gate control list reproducing
the expected behavior. This made it difficult to optimize and tailor the output
to device-specific properties, like the length of the resulting gate control list or
the minimum distance between consecutive open and close gate operations.

In this paper we elaborate the necessary constraints to synthesize
IEEE802.1Qbv deterministic schedules with a focus on the gate operations
(open/close) and a relaxed timing model allowing communication with bounded
jitter, yet guaranteeing determinism.

We introduce the network and traffic model in Section 2 and formulate the
scheduling constraints for IEEE 802.1Qbv time-gates as well as for the defined
communication streams (Section 3) for the case in which all communication
streams share the same period. We discuss in 4 the extension to multiple periods
followed by a description of an SMT-based synthesis algorithm implementing
the previously defined constraints in Section 5.

2

2 System Model

In this paper we model networks as a graph G = {V, E}, where V is a set of
vertices, E is a set of non-directed edges as well as directed edges connecting
vertices to each other. Each undirected edge (vi, vj) ∈ E between two vertices
vi, vj ∈ V defines two directed edges [vi, vj], [vj , vi] ∈ E between the two ver-
tices, where the first vertex in the pair description defines the source vertex
and the second vertex defines the destination vertex. An example graph G with
eight vertices and seven undirected edges resulting in fourteen directed edges is
depicted in Figure 1.

v1

v2

v3

v4 v5

v8

v7

v6

Figure 1: Example network

Vertices may source, forward, and/or receive messages. End-nodes can be
the source or the destination of streams, while network switches are the in-
termediary nodes forwarding those messages. A communication requirement
is introduced through the concept of stream. A stream (or flow) is a periodic
multicast data transmission from one talker (the sender) to one or multiple
listeners (the receivers). Without loss of generality, we restrict the number of
receivers to one (unicast) and the message size to one single frame, noting that
extending the model to the general case is a trivial step [11]. We denote the
set of streams in the network with S. Similar to [12], a stream si ∈ S from
talker node v1 to listener node vn routed through the intermediary nodes (i.e.
switches) v2, v3 . . . , vn−1 is expressed as

si = [[v1, v2], . . . , [vn−1, vn]].

We assume that for each stream the sender and receiver vertices v1, vn, as well
as the routed communication path that connect the sender and receiver vertices
are known and given.

A stream is defined by the tuple 〈si.e2e, 〈si.jitter , si.size, si.period〉, denoting
the maximum allowed end-to-end latency, the maximum allowed jitter, the data
size in bytes, and the period of the flow, respectively. For the main part of the
constraints we assume that all streams in the system share the same period but
discuss the extension to multiple periods in Section 4.

3

The instance of a stream si ∈ S routed through link [va, vb] ∈ E is defined by

a frame f
[va,vb]
i ∈ F [va,vb], where F [va,vb] is the set of all frames that are to be

scheduled on link [va, vb]. Each such periodic frame is characterized by a frame

length f
[va,vb]
i .L and a frame period f

[va,vb]
i .T . The period of the frame is equal

to the period of the stream while the length of the frame is calculated based on
the data size of the stream and the link speed.

Each vertex implements at least one queue q for each directed edge that it

sources. For example, v4 implements a queue q
[v4,v5]
i for the edge [v4, v5]. Thus,

all scheduled frames to be communicated from one vertex to another one will
traverse the same queue. In this paper we will assume one single queue for
scheduled traffic.

Time Aware Shaper IEEE 802.1Qbv [8] defines a specific shaping mecha-
nism on how frames are selected for transmission on egress. In particular it
defines a gate for each priority queue, which at any time is in one of the two
states open or close. When the gate of a respective queue is in the open state,
frames may be selected for transmission on the directed edge associated with the
queue in first-in first-out (FIFO) order. In case the gate of a respective queue is
in the close state, frames from this queue are not selected. A priority selection
is then applied among all opened queues. The state changes are predefined with
respect to a global time via the Gate Control List, which is cyclically executed
at runtime. The synchronized time (global timebase) can be established by an
appropriate synchronization protocol as IEEE 802.1AS [4]. Vertexes continually
check whether a state change for one of its gates is scheduled in the gate control
list and apply it when due.

Encoded in the gate control list is an ordered list of transmission windows
on a timeline, i.e., windows during which a gate is in the open state. Each

window w
[va,vb]
k is defined by a left boundary w

[va,vb]
k .open and a right bound-

ary w
[va,vb]
k .close. As we will see later, the maximum number of windows

W [va,vb]
max per edge derived from the maximum length of the gate control list

will be an essential parameter in the schedule synthesis. We define a boolean

array w
[va,vb]
k .ε(f

[va,vb]
i) for each window w

[va,vb]
k that describes whether frame

f
[va,vb]
i ∈ F [va,vb] is assigned to the window or not.

3 Formal Scheduling Constraints

In this section we enumerate the constraints for the gate open and close op-
erations as well as the frame to window assignment variables leading to the
computation of a gate control list such that the correct temporal behaviour on
the scheduled streams is guaranteed.

Well-defined windows constraints We initially introduce for each link the
constraints restricting the open and close events of each window defined on that

4

link to be within the hyperperiod of all streams. The open event for each window
on a link has to be greater than or equal to 0, hence we have the constraint

∀[va, vb] ∈ E ,∀k ∈ {1, . . . ,W [va,vb]
max } :

w
[va,vb]
k .open ≥ 0 (1)

w
[va,vb]
k .close < hp[va,vb]

where hp[va,vb] def
= lcm({f [va,vb]

i .T | f [va,vb]
i ∈ F [va,vb]}) is the hyperperiod of all

frames that are routed through [va, vb].
Additionally, well-defined windows must ensure the order between the gate

open and close events. Hence we have

∀[va, vb] ∈ E ,∀k ∈ {1, . . . ,W [va,vb]
max } :

w
[va,vb]
k .open ≤ w[va,vb]

k .close

We restrict the variables defining the assignment of frames to windows to
get a boolean value, i.e., they can be either 0 or 1.

∀[va, vb] ∈ E ,∀k ∈ {1, . . . ,W [va,vb]
max },∀f

[va,vb]
i ∈ F [va,vb] :

w
[va,vb]
k .ε(f

[va,vb]
i) ∈ {0, 1}

Ordered windows constraints An essential constraint for determinism is
that no two frames transmitted on the same egress link overlap in the time
domain. In [10] we constructed a similar constraint by not allowing frames
to be transmitted at the same time. Since in this paper we are considering the
scheduling of windows rather than frames we consider two possible formulations.

One possibility, similar to [10], is to not allow windows on the same link to
overlap, defined as

∀[va, vb] ∈ E ,∀k, l ∈ {1, . . . ,W [va,vb]
max }, k 6= l :

(w
[va,vb]
k .close ≤ w[va,vb]

l .open)∨

(w
[va,vb]
l .close ≤ w[va,vb]

k .open)

The drawback with this option is that it results in a large number of asser-
tions with a disjunction operator, which proved to be computationally intensive.

However, since there is no predefined assignment of frames to windows we
can fix the order of windows on a link and relate their respective open and close
events sequentially. Therefore, we prefer the following alternative formulation,
which is equivalent to the above but significantly less resource intensive.

∀[va, vb] ∈ E ,∀k ∈ {1, . . . ,W [va,vb]
max − 1} :

w
[va,vb]
k .close ≤ w[va,vb]

k+1 .open

5

Additionally, the latter formulation allows reducing further the number of
assertions in constraints (1) by restricting the bound on the open event to the
first window and, respectively, the close event to the last window on each link
since all others are already bounded due to the imposed sequential order. Hence,
constraint (1) can be reduced to

∀[va, vb] ∈ E :

w
[va,vb]
1 .open ≥ 0

w
[va,vb]

W[va,vb]
max

.close < hp[va,vb]

Frame-to-window assignment constraints Each frame routed through a
link has to be assigned to one and only one window defined for that link. Since
the frame assignment variables in the array ε can either take the value 0 or 1, we
formulate that the sum of all window assignment variables for that particular
frame to be exactly 1.

∀[va, vb] ∈ E ,∀f [va,vb]i ∈ F [va,vb] :

W[va,vb]
max∑
k=1

w
[va,vb]
k .ε(f

[va,vb]
i) = 1

Window size constraints We define the close event of each window suffi-
cient to allow the transmission of all the frames assigned to it. Therefore, we
calculate the size of each window based on the frame assignment variables and
the respective size of the frames.

∀[va, vb] ∈ E ,∀k ∈ {1, . . . ,W [va,vb]
max } :

w
[va,vb]
k .size =

∑
f
[va,vb]

i ∈F [va,vb]

w
[va,vb]
k .ε(f

[va,vb]
i)× f [va,vb]i .L

Using the formula for the window size constructed before, we introduce the
constraint that the time interval between open and close events of a window has
to be equal to the window size.

∀[va, vb] ∈ E ,∀k ∈ {1, . . . ,W [va,vb]
max } :

w
[va,vb]
k .close = w

[va,vb]
k .open + w

[va,vb]
k .size

Stream constraints The stream constraints describe the sequential nature
of a communication from a talker (sender) node to a listener (receiver) node.
The generic condition is that frames belonging to the same stream have to be
scheduled sequentially on the time-line along the routed communication path.
In other words, the propagation of frames of a stream must follow the sequential
order along the computed route of the stream.

6

For every stream si ∈ S routed through v1, ..., vn we construct the following
formula

∀[vj , vj+1] ∈ E , j ∈ {1, . . . , n− 2},
∀k ∈ {1, . . . ,W [vj ,vj+1]

max },∀l ∈ {1, . . . ,W [vj+1,vj+2]
max } :

χi,k,l = w
[vj ,vj+1]
k .ε(f

[vj ,vj+1]
i)× w[vj+1,vj+2]

l .ε(f
[vj+1,vj+2]
i)

χi,k,l × (w
[vj ,vj+1]
k .close + δ) ≤ χi,k,l × w

[vj+1,vj+2]
l .open

where δ represents the worst-case difference between the local clocks of any
two synchronized (e.g. via the IEEE 802.1AS [4] time-synchronization protocol)
vertexes. Hence, we also consider, similar to [13], the synchronization jitter
which is a global constant and describes the maximum difference between the
local clocks of any two nodes in the network.

Stream isolation constraints As described in [10], a network may experi-
ence frame loss or variations in periodic payload size during the runtime of the
system. Since the IEEE 802.1Qbv [8] specification controls the opening and
closing of the timed gates of a queue and not the sending and receiving of indi-
vidual frames, we need to ensure that the state of the queue is deterministic. We
refer the reader to [10] for a more detailed description of the isolation problem
in TSN networks.

Consider the case in which two streams si and sj are received on different
links, [vx, va] and [vy, va], respectively, on device va and are both sent on the
same egress port on link [va, vb]. In order to maintain their respective window
assignments on the egress port even in the case of frame loss or concurrent
arrival we need to either assign the respective frames of the two streams to the
same window or to isolate them in the time domain. The isolation in the time
domain is done by restricting that once the frame of one stream has entered the
device, the other stream cannot enter it until the first frame has left the egress
queue (c.f. [10]). If there is more than one queue available for scheduled traffic
we can also isolate the two streams in different queues. Since we restrict the
TSN configuration for this paper to 1 queue for scheduled traffic we construct
the isolation constraint without the option to assign streams to different queues
noting that the extension to multiple queues is straightforward.

7

Hence, we have the stream isolation condition:

∀[va, vb] ∈ E ,∀f [va,vb]i , f
[va,vb]
j ∈ S, i 6= j,

∀k ∈ {1, . . . ,W [va,vb]
max },

∀l ∈ {1, . . . ,W [vx,va]
max },

∀m ∈ {1, . . . ,W [vy,va]
max } :(

w
[va,vb]
k .close × w[va,vb]

k .ε(f
[va,vb]
i) ≤

w[vy,va]
m .open × w[vy,va]

m .ε(f
[vy,va]
j)∨ (2)

w
[va,vb]
k .close × w[va,vb]

k .ε(f
[va,vb]
j) ≤

w
[vx,va]
l .open × w[vx,va]

l .ε(f
[vx,va]
i)

)
∨(

w
[va,vb]
k .ε(f

[va,vb]
j) = w

[va,vb]
k .ε(f

[va,vb]
i)

)
Stream End-to-end latency constraints The end-to-end deadline con-
straint states that the difference between the receiving of a stream on the listener
and the sending of the stream from the respective talker has to be smaller than
or equal to the given maximum end-to-end latency. However, since the frame
to window assignment is not known a-priori, we construct the formula using the
frame assignment variables in combination with the open and close events.

Let vi1 and vin be the talker and listener nodes of stream si ∈ S, respectively,

and f
[vi

1,v
i
2]

i and f
[vi

n−1,v
i
n]

i the first and last frames of the stream from/to those
nodes. We define the end-to-end latency constraint as

∀si ∈ S :

W
[vi

n−1,vi
n]

max∑
l=1

w
[vi

n−1,v
i
n]

l .ε(f
[vi

n−1,v
i
n]

i)× w[vi
n−1,v

i
n]

l .close−

W[vi
1,vi

2]
max∑
k=1

w
[vi

1,v
i
2]

k .ε(f
[vi

1,v
i
2]

i)× w[vi
1,v

i
2]

k .open ≤

si.e2e − f [v
i
n−1,v

i
n]

i .L− δ.

Note that we also include the precision δ in the constraint since the local
clocks of the sender and receiver nodes may show a synchronization error with
respect to each other.

Stream jitter constraints Real-time communication also may require con-
straints on the jitter that a stream experiences. We base our jitter constraint
on the observation that within the network, the jitter of individual frames of a
stream is not relevant. The jitter becomes relevant on the receiver side when it
has to be processed by a listener task. Hence, we only constrain the jitter of a

8

stream for the receiver, i.e., the jitter constrain only applies to the sending of a
stream on the last hop before the listener node.

As above, let vin be the listener node of stream si ∈ S with f
[vi

n−1,v
i
n]

i the
last frames of the stream to the listener node.

∀si ∈ S,

ψ(si) =

W
[vi

n−1,vi
n]

max∑
l=1

w
[vi

n−1,v
i
n]

l .ε(f
[vi

n−1,v
i
n]

i)× w[vi
n−1,v

i
n]

l .size :

ψ(si) ≤ si.jitter + f
[vi

n−1,v
i
n]

i .L

Please note that, if the jitter is also important within the network, i.e. be-
tween individual nodes along the route of the stream, the constraint defined
above can be readily applied for each of those nodes.

4 Multiple periods

So far we have assumed that all streams share the same period. Communication
in system deployments do not always appear with a normalized period. Instead,
streams are sourced at multiple rates which result in a hypercycle defining the
length of the schedule tables to be at least the least common multiple of all
periods involved. In [10] the communication model guaranteed minimal jitter by
imposing a strictly periodic constraint between frames belonging to alternative
scheduled instances of the same stream. In this paper, however, we introduce a
relaxed model allowing bounded jitter between periodic instances of a stream.

The assignment of frames, and as a consequence the length of each window, is
a result of the scheduler. Furthermore, frames routed through the same link may
have different periods and each instances of a frame may be assigned to different
windows. Hence, in order to correctly constrain the closing bound for each
window we need to consider the periodic repetition of stream instances within
the hyperperiod. For this, we refine the concept of stream instance si ∈ S to

reflect the number of streams instance repetitions si,j , where 0 ≤ j ≤ hp[va,vb]

si.T
−1

corresponding to the instantiation of the stream si for each period interval
completing the schedule hyperperiod. Therefore, each original stream si will
result in an effective number of streams equal to the integer division between
the hyperperiod and the stream period. Furthermore, we define the subset of

frame instances f
[va,vb]
i,j ∈ F [va,vb]

j as the frames resulting from the jth repetition
of si routed through [va, vb], sorted in ascending ordered by the period instance.

Therefore, for each stream si routed through [va, vb] we construct the fol-
lowing constraint:

9

∀j ∈

[
0,

hp[va,vb]

si.T
− 1

]
,∀k ∈ {1, . . . ,W [va,vb]

max } :

β
[va,vb]
k,i,j = w

[va,vb]
k .ε(f

[va,vb]
i,j)

β
[va,vb]
k,i,j × w[va,vb]

k .open ≥ β[va,vb]
k,i,j × j × f [va,vb]i,j .T

β
[va,vb]
k,i,j × w[va,vb]

k .close ≤ β[va,vb]
k,i,j × (j + 1)× f [va,vb]i,j .T

Note that this constraint would be sufficient to bound the open and close
events of all windows for which at least one frame is assigned. For completion,
we leave the above formulation (see first constraint well-defined windows con-
straints) setting bounds for all open and close window events, including those
without any assigned frame, to be in the range [0..hp[va,vb]).

Having multiple periods in the system also has an effect on the jitter and
end-to-end latency constraint. The end-to-end latency constraint is easy to
reformulate since it has to consider that the difference between all instances of
sending and receiving frames of a stream has to conform to the given maximum
latency. The jitter constraint is more difficult to reformulate since it requires
the computation of the jitter between the earliest window open event within a
period and the latest window close event within a period for all frame instance
assignments. We leave the formulation of this constraint for future work.

5 SMT-Based Schedule Synthesis

Satisfiability Modulo Theories (SMT) determine the satisfiability of first-order
logical formulas for a specific background theory like linear integer arithmetic
(LA(Z)) or bit-vectors (BV) [14, 15] while also providing a model (in case of sat-
isfiability) which represents one solution for the given SMT context. In addition,
Optimization Modulo Theories (SMT) [16, 17] can provide optimal solutions
with respect to certain objectives.

The aim of our scheduling algorithm for IEEE 802.1Qbv is hence to find
solutions for the window open and close variables as well as for the frame-to-
window assignment variables such that the correctness constraints defined in
Section 3 are fulfilled. While in previous work the background theory used was
linear integer arithmetic (LIA), in our case we have to use non-linear integer
arithmetic (NIA). While nonlinear integer arithmetic has been shown to be
undecidable, solvers use methods like bit-blasting to solve problems with limited
range integer variables in NIA [18].

A typical optimization objective found in the industrial domain is to mini-
mizing the end-to-end latencies of streams. This optimization objective is easily
expressed based on the end-to-end constraint defined in Section 3 and has been
discussed in related work (cf. [11]).

10

Since there is a trade-off between the number of windows used per egress port
and the jitter that a stream experiences, another optimization objective is to
minimizes the receiving jitter for streams. This objective can be either expressed
as a sum over all streams, minimizing the accrued jitter in the network or as a
collection of individual objectives which result in local minima for some some
streams.

6 Conclusion

We have formalized the necessary scheduling conditions for creating window-
based IEEE 802.1Qbv Gate Control List schedules for Time-sensitive Networks
(TSN) in which communication streams have real-time requirements in terms
of bounded jitter and end-to-end latency.

References

[1] Honeywell Aerospace, “Application specific integrated circuits based on
TTEthernet ready for first Orion test flight,” http://aerospace.honeywell.
com/about/media-resources/newsroom, 2014, retrieved 22-May-2014.

[2] H. Kopetz and G. Grunsteidl, “TTP - a time-triggered protocol for fault-
tolerant real-time systems,” in Proc. 23rd IEEE International Symposium
on Fault-Tolerant Computing (FTCS-23), June 1993, pp. 524–533.

[3] Institute of Electrical and Electronics Engineers, Inc, “Time-Sensitive Net-
working Task Group,” http://www.ieee802.org/1/pages/tsn.html, 2016, re-
trieved 06-Jul-2017.

[4] ——, “802.1AS-Rev - Timing and Synchronization for Time-Sensitive Ap-
plications,” http://www.ieee802.org/1/pages/802.1AS-rev.html, 2017.

[5] ——, “802.1Qci - Per-Stream Filtering and Policing,” http://www.ieee802.
org/1/pages/802.1ci.htmll, 2017.

[6] ——, “802.1Qbu - Frame Preemption,” http://www.ieee802.org/1/pages/
802.1bu.html, 2017.

[7] ——, “802.1CB - Frame Replication and Elimination for Reliability,” http:
//www.ieee802.org/1/pages/802.1cb.html, 2017.

[8] ——, “802.1Qbv - Enhancements for Scheduled Traffic,” http://www.
ieee802.org/1/pages/802.1bv.html, 2016, draft 3.1.

[9] H. Kopetz and G. Bauer, “The time-triggered architecture,” Proceedings of
the IEEE, vol. 91, no. 1, pp. 112–126, 2003.

11

http://aerospace.honeywell.com/about/media-resources/newsroom
http://aerospace.honeywell.com/about/media-resources/newsroom
http://www.ieee802.org/1/pages/tsn.html
http://www.ieee802.org/1/pages/802.1AS-rev.html
http://www.ieee802.org/1/pages/802.1ci.htmll
http://www.ieee802.org/1/pages/802.1ci.htmll
http://www.ieee802.org/1/pages/802.1bu.html
http://www.ieee802.org/1/pages/802.1bu.html
http://www.ieee802.org/1/pages/802.1cb.html
http://www.ieee802.org/1/pages/802.1cb.html
http://www.ieee802.org/1/pages/802.1bv.html
http://www.ieee802.org/1/pages/802.1bv.html

[10] S. S. Craciunas, R. Serna Oliver, M. Chmelik, and W. Steiner, “Scheduling
real-time communication in IEEE 802.1Qbv Time Sensitive Networks,” in
Proc. RTNS. ACM, 2016.

[11] S. S. Craciunas and R. Serna Oliver, “Combined task- and network-
level scheduling for distributed time-triggered systems,” Real-Time
Systems, vol. 52, no. 2, pp. 161–200, 2016. [Online]. Available:
http://dx.doi.org/10.1007/s11241-015-9244-x

[12] W. Steiner, “An evaluation of SMT-based schedule synthesis for time-
triggered multi-hop networks,” in Proc. RTSS. IEEE Computer Society,
2010.

[13] L. Zhang, D. Goswami, R. Schneider, and S. Chakraborty, “Task- and
network-level schedule co-synthesis of Ethernet-based time-triggered sys-
tems,” in Proc. ASP-DAC. IEEE Computer Society, 2014.

[14] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli, “Satisfiability modulo
theories,” in Handbook of Satisfiability. IOS Press, 2009, vol. 185.

[15] R. Sebastiani, “Lazy satisfiability modulo theories,” JSAT, vol. 3, no. 3-4,
pp. 141–224, 2007.

[16] R. Sebastiani and P. Trentin, “OptiMathSAT: A Tool for Optimization
Modulo Theories.” in Proc. CAV, ser. LNCS, vol. 9206. Springer, 2015.

[17] N. Bjørner, A.-D. Phan, and L. Fleckenstein, νZ - An Optimizing SMT
Solver. Springer, 2015.

[18] S. Conchon, M. Iguernelala, and A. Mebsout, “A collaborative framework
for non-linear integer arithmetic reasoning in alt-ergo,” in Proc. SYNASC.
IEEE, 2013.

12

http://dx.doi.org/10.1007/s11241-015-9244-x

	1 Introduction
	2 System Model
	3 Formal Scheduling Constraints
	4 Multiple periods
	5 SMT-Based Schedule Synthesis
	6 Conclusion

