
CONCURRENCY AND SCALABILITY VERSUS

FRAGMENTATION AND COMPACTION WITH COMPACT-FIT

SILVIU S. CRACIUNAS, CHRISTOPH M. KIRSCH, HANNES PAYER, HARALD RÖCK,
AND ANA SOKOLOVA

Abstract. We study, formally and experimentally, the trade-off in tempo-
ral and spatial overhead when managing contiguous blocks of memory using

the explicit, dynamic and real-time heap management system Compact-fit

(CF). The key property of CF is that temporal and spatial overhead can be
bounded, related, and predicted in constant time through the notion of partial

and incremental compaction. Partial compaction determines the maximally

tolerated degree of memory fragmentation. Incremental compaction of ob-
jects, introduced here, determines the maximal amount of memory involved in

any, logically atomic, portion of a compaction operation. We explore CF’s po-

tential application space on (1) multiprocessor and multicore systems as well
as on (2) memory-constrained uniprocessor systems. For (1), we argue that

little or no compaction is likely to avoid the worst case in temporal as well as
spatial overhead but also observe that scalability only improves by a constant

factor. Scalability can be further improved significantly by reducing overall

data sharing through separate instances of Compact-fit. For (2), we observe
that incremental compaction can effectively trade-off throughput and memory

fragmentation for lower latency.

1. Introduction

Compact-fit (CF) [9] is an explicit, dynamic, and real-time heap management
system also known as a memory allocator. Heap management solves the problem
of allocating and deallocating memory objects of possibly different size where the
order in which the objects are allocated and deallocated may be arbitrary. It is
dynamic if allocation and deallocation happens at runtime, as opposed to static,
so-called pre-allocation, which may only be done if the amount of memory needed
for program execution can be bounded at compile time. It is real-time if the time
to allocate, deallocate, and access a memory object is either constant or at most
proportional to the size of the object, independent of the overall state of memory
and in particular the order in which objects are allocated and deallocated.

Heap management is explicit if deallocation must be invoked by the program
using the system. The use of explicit heap management may therefore suffer from
the well-known phenomena of memory leaks, where memory objects are continu-
ously allocated but never deallocated, and so-called dangling pointers to memory
objects that have been deallocated prematurely and may lead to undefined program
behavior when accessed. Compact-fit is not an exception. It does not address the
problems of memory leaks and dangling pointers.

Implicit heap management solves the problem of dangling pointers by first de-
termining when to deallocate memory objects safely and then using an underlying
explicit heap management to actually deallocate these objects. Garbage collectors

1

ar
X

iv
:1

40
4.

18
30

v1
 [

cs
.P

L
]

 7
 A

pr
 2

01
4

2 S.S. CRACIUNAS, C.M. KIRSCH, H. PAYER, H. RÖCK, AND A. SOKOLOVA

are implicit heap management systems which logically operate in two phases that
are performed repeatedly. In the first phase allocated but unreachable memory ob-
jects are determined, either directly through reference counting and cycle detection,
or indirectly through tracing, or some combination of both [2]. A memory object is
unreachable if the program has no means of accessing the object, neither directly
through some reference nor transitively through other, reachable memory objects.
An unreachable memory object may thus be deallocated safely without introducing
dangling pointers.

In the second phase unreachable memory objects are deallocated which is done
by an underlying memory allocator. In other words, a garbage collector implicitly
uses a memory allocator which is, however, often tightly integrated with the garbage
collector for performance reasons. Compact-fit is closely related to the integrated
memory allocator of the real-time garbage collector Metronome [4].

Garbage collectors solve the problem of dangling pointers but not the problem
of memory leaks: a program may continuously allocate memory objects to which it
maintains references, e.g. by inserting the objects into an ever-growing hashtable
and never removing them again. The result is a so-called reachable memory leak
which garbage collectors cannot avoid. In other words, using implicit heap man-
agement does not free a program from deallocating memory objects. It only makes
deallocation implicit (remove references and return from procedure calls rather than
deallocate explicitly) and is therefore safe, i.e., the program still needs to go through
the otherwise ever-growing hashtable and remove obsolete data from time to time.
Fundamentally, reachable memory leaks are not detected by garbage collectors be-
cause reachability is only an overapproximation of memory liveness which itself is
undecidable: after some time a memory object may never be accessed again but
still remain reachable.

The true power of garbage collection is that it makes the use of the heap com-
positional. Programs may allocate memory objects, even in imported library code,
and pass references to them around without keeping track of when to deallocate
the objects as long as the references are eventually removed when the objects are
not needed anymore. Compositionality of the heap is key to large-scale program
design and particularly useful in concurrent programs where keeping track of when
shared memory may be deallocated is especially difficult.

The price to pay for garbage collection is temporal and spatial overhead: com-
puting unreachability (directly or indirectly) is proportional to the size of live, i.e.,
reachable memory (in the presence of cyclic references which is the case in most
non-trivial applications), resulting in lagged deallocation of unreachable memory
and thus increased memory consumption. Temporal overhead, when created in
so-called stop-the-world fashion, precludes real-time applications. Spatial overhead
precludes embedded applications, in particular if deallocation not only lags un-
reachability but also results in uncontrolled memory fragmentation which may also
occur in explicit heap management without any garbage collection.

Temporal and spatial overhead of dynamic heap management, explicit or im-
plicit, cannot be avoided but it can be bounded! The key to enabling dynamic
heap management in real-time and embedded applications is to make it incremen-
tal and to bound memory fragmentation. Heap management is incremental if it
may be done in phases whose durations are constant and which may be interleaved
with program execution. The maximum duration of a heap management phase

CONCURRENCY AND SCALABILITY WITH COMPACT-FIT 3

determines the latency introduced by heap management and thus directly defines
the compatible class of real-time applications. The drawback of incremental heap
management is lower throughput since the sum of the phases of a heap manage-
ment operation is generally larger than the duration of the operation when not
interrupted. Note that the focus of this paper is on making explicit heap manage-
ment incremental while bounding memory fragmentation, which is one of the two
fundamental prerequisites for incremental garbage collection. The other prerequi-
site is incrementally computing unreachability which is addressed elsewhere, e.g. in
Metronome [4].

Memory fragmentation is the phenomenon of unoccupied memory blocks being
dispersed in memory (external fragmentation) and/or designated through partition-
ing (internal fragmentation). If contiguous memory blocks of different size may be
allocated and deallocated in arbitrary order, uncontrolled memory fragmentation
may lead to unbounded gross memory consumption even if net memory consump-
tion is bounded.

Compact-fit avoids external fragmentation and bounds internal fragmentation
through partitioning and so-called partial compaction. Upon deallocating a memory
object partial compaction may move another same-size object into its place but
only if a given threshold on fragmentation is exceeded. In this case, deallocation
takes time linear in the size of the deallocated object. Otherwise, deallocation is
constant-time. Memory allocation as well as access are always constant-time. The
principle topic of this paper is to make partial compaction incremental such that
objects are moved incrementally in phases of constant duration and yet may still be
accessed in constant time in between compaction phases. The result is what we call
incremental Compact-fit, the first memory allocator that bounds the full spectrum
of temporal and spatial overhead of memory allocation, deallocation, and access
in terms of configurable constants. With incremental Compact-fit the duration
of any heap management activity as well as the degree of memory fragmentation
are bounded by constants, which makes this allocator the principle choice for any
application in which constant bounds on both temporal and spatial overhead are
required.

Note that there are memory allocators that either bound temporal overhead in
terms of constants such as Half-fit [28] and TLSF [25] or else spatial overhead such
as the allocator of the Jamaica VM [36] but not both. Half-fit and TLSF provide
constant-time memory allocation, deallocation, and access, but only control and not
bound memory fragmentation through coalescing neighboring, unoccupied memory
blocks. The Jamaica allocator avoids external fragmentation and bounds internal
fragmentation but at the expense of constant-time memory allocation, deallocation,
and access as well as memory locality by allocating small, same-size but generally
dispersed memory blocks and assembling them into larger memory objects through
trees (logarithmic-time access) or lists (linear-time access) that fit the requested
size.

Next, we discuss the design principles and features of Compact-fit before pro-
viding an overview of the rest of the paper.

1.1. Compact-fit. Compact-fit partitions memory into virtual pages of equal size
by maintaining a list of free pages and a segregated list of finitely many so-called
size-classes where each size-class is a doubly-linked list of used pages that are fur-
ther partitioned into virtual, so-called page-blocks of equal and unique size. A

4 S.S. CRACIUNAS, C.M. KIRSCH, H. PAYER, H. RÖCK, AND A. SOKOLOVA

memory object is allocated as contiguous block of memory in a free page-block
of the size-class with the smallest page-block size that still fits the object. Mem-
ory allocation, deallocation, and access takes constant time (unless compaction is
necessary when deallocating, which takes linear time in the size of the deallocated
object). Allocation of memory objects larger than the page size is not part of CF
itself but may be done on top of CF by array, tree-, or list-based data structures
that combine sufficiently many pages to accommodate large objects resulting in
allocation and deallocation times that are linear and memory access times that are
constant, logarithmic, or linear, respectively, in the size of the objects. However,
we do not consider large-object management here.

The size-class concept is generally subject to fragmentation through partitioning,
that is, to bounded page-block-internal, page-internal, and size-external fragmenta-
tion [3], but enables CF to keep memory size-class-compact at all times [9]. Memory
is size-class-compact if each of its size-classes is compact. A size-class is compact
with respect to a so-called partial compaction bound κ if the size-class contains only
non-empty pages of which at most κ are not-full. A size-class is said to be totally
compact, fully compact, or partially compact if it is compact with respect to κ = 0,
κ = 1, or κ > 1, respectively. Note that, as opposed to the leftover space caused by
fragmentation through partitioning, which is wasted for any request, the free space
in not-full pages of a size-class, called size-class fragmentation, is wasted for any
request but the requests that actually match the size-class. Partial compaction can
only control the degree of size-class fragmentation.

CF always keeps all size-classes compact with respect to individual, per-size-
class partial compaction bounds κ > 0. Overall memory fragmentation is therefore
bounded and predictable in constant time. Note that κ = ∞ is also permissible
and means that any number of not-full pages in a size-class is tolerated. A memory
object is allocated, in constant time, in a free page-block either of a not-full page
of the adequate size-class (implicitly compacting allocation), or else, if there is no
not-full page in the size-class, of a free page that is then removed from the list of free
pages and assigned to the size-class (non-compacting allocation). A memory object
is deallocated, either in constant time, by marking the page-block used by the object
as free, if the size-class remains partially compact (non-compacting deallocation),
or else in linear time in the size of the object, by marking a used page-block of
a not-full, so-called source page as free after copying the content of that (source)
page-block to the (target) page-block used by the object, which, in this case, must
be located in a full, so-called target page (compacting deallocation). If the page in
which a page-block was marked as free becomes empty, the page is removed from
the size-class and returned to the list of free pages.

In order to facilitate compacting memory that may contain references in time
linear in the size of the moved objects, CF maintains a map (A2C) from abstract
object addresses that do not change when moving objects, also referred to as han-
dles, to the concrete object addresses in memory. Objects may only refer to other
objects using their abstract addresses, which implies that memory access requires
one level of indirection, unless compaction is turned off with κ = ∞. As a result,
whenever an object is moved in memory, only its concrete address in the A2C map
needs to be updated. CF stores the abstract address of each object in the object
itself so that the object’s entry in the A2C map can be determined in constant time.
Otherwise, determining the abstract addresses of objects selected for compaction,

CONCURRENCY AND SCALABILITY WITH COMPACT-FIT 5

for which only the concrete addresses are known, would require searching the A2C
map.

There is also a non-moving version of CF [9], which virtualizes the concrete ad-
dress space using an additional level of indirection that merely requires reprogram-
ming a map (V2P) from virtual to physical addresses upon compaction instead of
moving the actual content of the objects. Since objects do not move, their physical
addresses can be used to generate unique abstract addresses, which avoids storing
abstract addresses in objects. Nevertheless, in the worst case, the V2P map requires
just as much memory as the object storage for abstract addresses. Moreover, ex-
periments have shown that the non-moving version of CF may only pay off when
used for larger objects [9]. In the rest of the article, we only consider the moving
version of CF.

1.2. Overview. After discussing related work (Section 2) and discussing the previ-
ously described, moving (and non-incremental) version of CF in detail (Section 3),
we first argue probabilistically that, for particular mutator behavior, both com-
paction and worst-case size-class fragmentation are less likely to happen with in-
creasing partial compaction bounds κ. For systems whose memory resources are
less constrained and applications that do not require tight guarantees, partial com-
paction may therefore be set to large κ, or even turned off entirely. This observation
has lead us to develop an optimized, non-compacting version of CF without abstract
addressing that does not maintain the A2C map and can therefore be used in any
application without modifications. Macrobenchmarks show that the optimized ver-
sion performs almost as fast as other constant-time state-of-the-art memory allo-
cators. Moreover, less than 5% of the fragmentation can be attributed to size-class
fragmentation and the rest to fragmentation through partitioning (Section 8). We
argue that partitioning memory as in CF still has the benefit of being subject to
a probabilistic and not just an experimental fragmentation analysis (Section 4), at
the expense of increased memory consumption.

We then introduce incremental CF for slow systems, at the other end of the
spectrum, whose memory resources are constrained and that run applications re-
quiring tight guarantees, in particular on system latency and memory consumption
(Section 5). Incremental CF uses a global compaction increment ι > 0, which
breaks up compaction into logically atomic operations that do not move more than
ι bytes at a time. If n is the degree of concurrency, then there may be at most
n pending incremental compaction operations moving objects stored in n source
page-blocks from n source pages to n target pages. The memory occupied by the
n source page-blocks causes so-called transient size-class fragmentation in the n
source pages. The key result is that the time complexity of memory allocation,
deallocation, and access remains asymptotically the same as with non-incremental
CF while overall memory fragmentation is still bounded and predictable in con-
stant time (Section 6). Incremental CF may improve system latency at the expense
of allocation and deallocation throughput and transient size-class fragmentation
(Section 8).

Figure 1 gives an intuitive overview of the effect of different versions and con-
figurations of CF on allocation and deallocation throughput, system latency, and
memory fragmentation.1 A configuration 1-CF(κ, ι) denotes a single instance of

1See Section 6 for a table with allocation/deallocation complexities of each version.

6 S.S. CRACIUNAS, C.M. KIRSCH, H. PAYER, H. RÖCK, AND A. SOKOLOVA

Low

Medium

High Low

Medium

High

Low

Medium

High

LatencyThroughput

M
em

or
y

n−CF(∞,∞)

1−CF(∞,∞)

n−CF(1,∞)

n−CF(κ,∞)

1−CF(κ,∞) 1−CF(κ,ι)

1−CF(1,∞) 1−CF(1,ι)

in
cr

ea
si

ng
 κ

Figure 1. Allocation and deallocation throughput, system la-
tency, and memory fragmentation with different versions and con-
figurations of Compact-fit

a CF system with a per-size-class partial compaction bound κ > 0 and a global
compaction increment ι > 0. The instance may be shared by concurrently run-
ning threads using a number of different, standard synchronization techniques (Sec-
tion 7). Incremental compaction is off if ι =∞. Partial compaction is off if κ =∞,
which implies that incremental compaction is also off. Full compaction is on if
κ = 1. The fully compacting, non-incremental 1-CF(1,∞) configuration minimizes
memory fragmentation at the expense of throughput and latency. In comparison,
the fully compacting, incremental 1-CF(1, ι) configuration may require more mem-
ory because of transient size-class fragmentation and provide less throughput but
may reduce latency. With κ > 1, memory fragmentation may go up proportion-
ally to κ with both configurations while throughput may be higher and latency
may be lower as there may be fewer compaction operations. The non-compacting
1-CF(∞,∞) configuration may provide even higher throughput and lower latency
but may also consume even more memory. The key advantage of this configuration
is that it may be optimized as mentioned above.

A configuration n-CF(κ, ι) denotes n instances of a CF system, one for each of
n threads, which is meant to improve scalability on multiprocessor and multicore
systems (Section 7). Compared to the single-instance configurations, throughput
may be higher but memory fragmentation may also go up with the compacting con-
figurations since partial compaction bounds are enforced per instance and therefore
per thread. Our experiments show that partial compaction on fast systems may

CONCURRENCY AND SCALABILITY WITH COMPACT-FIT 7

only have an effect on scalability by a constant factor since the time required to
perform a single compaction operation on such systems is close to the time required
to perform any other CF operation, independently of the size of the involved object.
More relevant to scalability is the degree of data sharing, in particular, through the
A2C map (Section 8).

The contributions of this article are the design, implementation, and compre-
hensive, formal and experimental evaluation of concurrent versions of (1) an opti-
mized, non-compacting CF system, (2) the previously described, compacting, non-
incremental CF system [9], and (3) a new, compacting, incremental CF system.

2. Related Work

Scalability of concurrent memory allocators [7] and garbage collection systems [12,
21] is the key for high performance in parallel environments. We relate our work
to dynamic heap management systems of different kinds: explicit sequential allo-
cators, explicit concurrent allocators, and concurrent garbage-collection-based sys-
tems with compaction (cf. [17] for an extensive online bibliography).

Most of the established explicit sequential dynamic heap management systems [24,
32] are optimized to offer excellent best-case and average-case response times, but
in the worst-case are unbounded in the size of the memory allocation or deallocation
request, i.e., depend on the global state of memory. The best known are First-fit,
Best-fit [22] and DL [23] with allocation times depending on the global state of
memory. Half-fit [28] and TLSF [25] are exceptions offering constant response-time
bounds for allocation and deallocation, but even they may suffer from unbounded
and unpredictable memory fragmentation.

Several concurrent dynamic memory allocators have been designed for scalable
performance on multiprocessor systems. Hoard [7] provides fast and scalable mem-
ory allocation and deallocation operations, using locks for synchronization and
avoiding false sharing of cache lines. A lock-free memory allocator with lower
latency based on the principles of Hoard is given in [26]. A partly lock-free non-
portable memory allocator, which requires special operating system support, is
discussed in [10]. McRT-Malloc [14] is a non-blocking scalable heap management
algorithm, which avoids atomic operations on typical code paths by accessing only
thread-local data and uses the same memory layout (pages and size-classes) as CF.
None of these systems provides temporal or spatial guarantees.

Incremental compaction typically performs the compaction phase of a garbage
collection cycle incrementally, i.e., multiple objects are moved atomically. The
incremental compaction algorithms discussed in this paragraph and the following
paragraph are based on that concept. Our incremental compaction approach in
CF is different. CF allows to move a single object incrementally, which may re-
duce the latency of a compaction operation even further. There are many concur-
rent compaction strategies implemented in garbage-collected systems, which do not
provide temporal or spatial guarantees. In [11] a parallel stop-the-world memory
compaction algorithm is given, where multiple threads compact the whole heap.
Compressor [20] is a concurrent, parallel, and incremental compaction algorithm
which compacts the whole heap during a single heap pass, achieving perfect com-
paction. A further parallel incremental compaction approach is presented in [5]
where the heap is split into pieces which are compacted one at a time by moving
objects to a new memory region. A fixup pass takes care of reference updates. An

8 S.S. CRACIUNAS, C.M. KIRSCH, H. PAYER, H. RÖCK, AND A. SOKOLOVA

algorithm with improved compaction pause times via concurrent reference updates,
using only half of the heap, is given in [29]. Each thread performs reference updates
proportional to its allocation requests. In [18] the authors discuss object replication
versus forwarding pointer based compaction strategies. They evaluate the perfor-
mance in a non-concurrent virtual machine and show that object replication may
provide higher throughput there.

Garbage-collecting heap management systems that do provide response-time
guarantees on allocation and deallocation operations are Jamaica [36] as well as
Metronome [4]. With Jamaica allocation and deallocation take linear time in the
size of the operation request. Compaction is not needed since memory objects do
not occupy contiguous blocks of memory. Another garbage collection approach
based on non-contiguous memory allocation is discussed in [30] where memory ac-
cess can be performed in constant time. Metronome is a time-triggered garbage
collector, which uses the same memory layout as CF. Compaction in Metronome is
part of the garbage collection cycles. The time used for compaction is estimated to
at most 6% of the collection time [3], without precise guarantees. The performance
of Metronome depends highly on the mutator behavior. MC2 [34] is an incre-
mental soft real-time garbage collector designed for memory constrained devices,
which cannot provide hard guarantees on maximum pause time and CPU utiliza-
tion, but comes with low space overhead and tight space bounds. Stopless [31] is
another garbage collector with soft guarantees on response times. It provides low
latency while preserving lock-freedom, supporting atomic operations, controlling
fragmentation by compaction, and supporting multiprocessor platforms. The main
contribution of Stopless is a compaction algorithm which moves objects in the heap
concurrently with program execution. Exact bounds for response times, as well
as fragmentation, are missing in Stopless. Another incrementally compacting real-
time garbage collection algorithm where memory is divided into multiple pieces of
equal size, which get scavenged periodically resulting in bounded pause times is
presented in [27]. In [19] the authors show experimentally that the cost of handles
in a real-time garbage collector is negligible in comparison to implementations that
do not use handles. In [6] the authors discuss worst-case fragmentation bounds
for different heap management strategies. Scheduling of garbage collection tasks in
real-time environments is discussed in [35].

We remark that CF, like many of the above mentioned systems, is based on seg-
regated lists. Approaches that are not based on segregated lists, but rather on data
structures which maintain locality of objects, are known to perform better when
accessing objects by utilizing memory caches more effectively. However, the use of
segregated lists enables providing and trading-off temporal and spatial guarantees.

3. Non-incremental Compact-fit

Compact-Fit (CF) is an explicit, dynamic heap management system that pro-
vides strict temporal and spatial (fragmentation) guarantees. Allocation as well
as deallocation without compaction takes constant time, whereas deallocation with
compaction takes linear time in the size of the object.

To be precise, there are two CF implementations [9], but in this article we only
focus on the more fundamental so-called moving implementation.

The set-up of CF is as follows: The memory is divided in pages of equal size.
Each page (in use) contains a certain number of constant-sized page-blocks. In total

CONCURRENCY AND SCALABILITY WITH COMPACT-FIT 9

EMPTY NOT-FULL

FULL

COMPACTION

Figure 2. Size-class automaton with π > 1

there are finitely many available page-block sizes, which determine to which size-
class a page belongs (namely all pages with a given page-block size belong to one
size-class). The pages are assigned to a size-class only if they are used (non-empty).
The number of page-blocks π per page in a size-class is therefore determined by the
size of a page and the block size. The state of a size-class depends on the state of
the pages that belong to it and is described by the values of the variable tuple

〈h, n, u1, . . . un〉

where h is the total number of allocated page-blocks in the size-class (its portion
of the heap), n is the number of not-full pages, and for each not-full page i, ui is
the number of used page-blocks in the page.

An allocation request for an object of size l is served by a page of a best-fitting
size-class. That is, for allocating an object a single page-block is used in a page
whose page-blocks are of the smallest size still big enough to fit l. For example, if
there are two size-classes, one with page-blocks of size 10 and one with page-blocks
of size 20 units, then an allocation request for an object of size l ∈ {11, 12, . . . 20}
will be served by a page of the size-class 20. If all pages in the best-fitting size-class
are full, then a new empty page is added to the size-class and the object is allocated
in this new page.

We allow for a constant number κ > 0 of not-full pages per size-class. The aim in
the design of CF is to control size-class fragmentation, which is the space occupied
by free page-blocks in not-full pages (space not available for allocation in other
size-classes). If deallocation happens, and the number of not-full pages becomes
κ + 1 after this deallocation operation, then compaction is invoked. Compaction
consists of moving a single object from a not-full page to the page-block of the
deallocated object, which is the only empty page-block in that page. As a result,
after compaction, the number of not-full pages in a size-class does not exceed κ.

An object is assigned a unique abstract address (handle), which has to be derefer-
enced whenever accessing an object field. This introduces a constant object deref-
erencing overhead but facilitates predictability of reference updates during com-
paction, i.e., whenever an object is moved in memory it requires to update just its
abstract address space entry.

We show the CF algorithm in full detail in Figure 2, using a deterministic au-
tomaton, one per size-class. For presentation purposes, we draw a quotient of the
state space of the size-class: EMPTY stands for the single state 〈0, 0〉 representing an

10 S.S. CRACIUNAS, C.M. KIRSCH, H. PAYER, H. RÖCK, AND A. SOKOLOVA

empty size-class; NOT-FULL represents all states with at least one not-full page where
no compaction is needed, that is 〈h, n, u1, . . . un〉 with 0 < n ≤ κ; the state FULL

represents all states with no not-full pages and at least one full page, that is 〈h, 0〉
with h > 0; finally, COMPACTION represents states 〈h, κ + 1, u1, . . . , uκ+1〉 in which
compaction must be invoked.

The transitions in the automaton are labelled in the following way: A denotes
allocation, Di deallocation in page i (which may be full or not-full, the latter is
recognized by i ≤ n), and C denotes a compaction step. Moreover, a transition
fires if its premise is satisfied, and results in a change of state described by its
conclusion. For updating a state, we use the operators ← for assignment, dec for
decrement, inc for increment, and sl for shift left. More precisely, sl(i) removes ui
from a state sequence, i.e., it changes a state 〈h, n, u1, . . . , ui−1, ui, ui+1, . . . , un〉 to
the sequence 〈h, n, u1, . . . , ui−1, ui+1, . . . , un〉.

We explain several instructive transitions in full detail, and refer the reader to
Figure 2 for the full algorithm.

A
(
h←1, n←1, u1←1

)
from EMPTY to NOT-FULL

This transition fires whenever allocation is requested in the empty state. As a result
the state changes to 〈1, 1, 1〉.

Di

(
i≤n, ui> 1

dec(h), dec(ui)

)
from NOT-FULL to NOT-FULL

This transition is taken upon a deallocation step in a not-full page which remains
non-empty after the deallocation. The change in the state is that the number of
used page-blocks is decremented by 1, and, as in every deallocation step, the heap
size decreases by 1.

A
(

inc(h), n←1, u1←1

)
from FULL to NOT-FULL

Whenever an object is allocated in a state of the class FULL a new empty page has
to be added to the size-class, and allocation happens in this page. As a result this
new page becomes the only not-full page of the size-class with a single page-block
used. The value of h increases by one, as with any allocation operation.

Di

(
n=κ, i>n

dec(h),inc(n),un←π−1

)
from NOT-FULL to COMPACTION

With this transition we are in a situation when after the required deallocation
operation, in the i-th page which was full, we have more than κ not-full pages.
Therefore, compaction must be invoked in the next step.

C
(

u1=1, n>2
sl(1), dec(dec(n))

)
from COMPACTION to NOT-FULL

Being in state COMPACTION, the next transition has to be of type C. Moreover, note
that n = κ + 1 ≥ 2. During the compaction step a page-block is moved from the
first not-full page (represented by u1) to the last not-full page, namely the one in
which deallocation just happened. This particular transition fires if the first not-full
page has just one page-block. As a result it becomes empty after the transition,

CONCURRENCY AND SCALABILITY WITH COMPACT-FIT 11

EMPTY FULL

Figure 3. Size-class automaton with π = 1

whereas the last not-full page becomes full. Since n > 2 the transition leads to the
state NOT-FULL. The operation shift left is needed to remove the value u1 for the
now empty page.

We note that in case π = 1, i.e., in a size-class in which each page consists of
exactly one page-block, there are no not-full pages. A page is either empty or full.
In this case compaction can never happen. Therefore, the size-class automaton
simplifies significantly as shown in Figure 3.

We have chosen the automaton presentation of CF in order to prepare the ground
for the concurrent version. For the original presentation of CF, we refer the in-
terested reader to [9]. We extend the non-incremental CF with blocking and non-
blocking synchronization mechanisms so that multiple threads can share a single (or
multiple) instance(s). In particular, we make the size-class automaton transitions
(including a combination of a deallocating transition followed by a compacting step)
atomic. As a result, multiple threads can execute and use CF in parallel, interleav-
ing between the atomic transitions. The details of the particular implementation
and the various choices of synchronization mechanisms are discussed in Section 7.
The results are encouraging for throughput oriented environments, see Section 8.

4. Probabilistic Analysis

We present a probabilistic analysis of CF which shows that, for particular mu-
tator behavior, both compaction and worst-case size-class fragmentation are less
likely to happen with increasing partial compaction bounds κ. Compaction may
therefore be set to large κ or even turned off if guarantees on memory fragmentation
are not required.

We conjecture that compaction in CF may actually be turned off in some appli-
cations while maintaining bounded memory fragmentation with high probability.
The probabilistic analysis of CF we present here is not a complete proof of this
conjecture but nevertheless motivates non-compacting CF and points in the direc-
tion of potential solutions outside the scope of this paper which will need to involve
representative classes of mutator behavior. Interestingly, it is the partitioned mem-
ory layout of CF that allows for such an analysis, since the partitioning into pages

12 S.S. CRACIUNAS, C.M. KIRSCH, H. PAYER, H. RÖCK, AND A. SOKOLOVA

and size-classes significantly reduces the state space of the model. Other memory
allocators may not allow such an analysis.

We aim at answering the following two questions:

1. What is the probability that compaction happens?
2. What is the probability of worst-case fragmentation?

We analyze the behavior of CF given a mutator, which is a sequence of allocations
A and deallocations D, hence a word in {A,D}∗. A mutator is not aware of the
internal CF configuration, e.g. in which page deallocation happens. Therefore,
we abstract away from the index i in the deallocation label Di and the CF size-
class automaton becomes a probabilistic I/O automaton (PIOA)2 [37], with input
actions A and D provided by the mutator, and an output action C provided by
CF. The states of this automaton are either input states in which A and D are
enabled, or output states in which C is enforced, which makes it simpler than
general PIOA. In an input state, each input action leads to a discrete probability
distribution over possible next states. Hence, in an input state, if A happens, we
reach a next state with a given probability, and the sum of the probabilities after
A equals 1. Symmetrically, after D we reach a next state with a given probability
and the sum of the probabilities after D equals 1. In an output state, the single
output action C happens with probability 1. For brevity we only discuss in
detail the behavior of a single state. In a state 〈h, n, u1, . . . , un〉 with n ≤ κ, upon
deallocation D, there are several possible next states that are reached with different
probabilities: for all i with ui > 1, with probability ui

h deallocation happens in the
not-full page i which will remain not-full afterwards and the next state becomes
〈h−1, n, u1, . . . , ui−1, ui−1, ui+1, . . . , un〉; for all i such that ui = 1 with probability
1
h deallocation happens in page i reducing the number of not-full pages and the next

state is 〈h − 1, n − 1, u1, . . . , ui−1, ui+1 . . . , un〉; and with probability
h−

∑
i ui

h the
next state is 〈h− 1, n+ 1, u1, . . . , un, π − 1〉 as deallocation happens in a full page.
The allocation and compaction transitions remain the same as in the deterministic
automaton, they happen with probability 1 in states in which they are enabled.
This way we get the full PIOA model, with initial state 〈0, 0〉.

The full PIOA model together with a mutator induces a discrete-time Markov
chain, the full DTMC, by pruning out the allocation/deallocation possibilities that
the mutator does not prescribe in each state and abstracting away from the transi-
tion labels. The full DTMC model results in a large state space already for small
values of h, π, and κ.

To reduce the number of states, we consider only mutators of the shape AhDd

which perform h allocations followed by d deallocations. We analyze portions of
the full model by setting the state reached after performing h allocations as initial
state. This is the state 〈h, 0〉 if h mod π = 0, or 〈h, 1, h mod π〉 otherwise. Then
we consider the portion of the full model reachable in d deallocations. We refer to
d as the deallocation level. Even such versions of the full model are too big: for
h = 80, π = 10, and κ = 5 the DTMC model in Prism [1] has 1429506 states and
2818395 transitions, and for h = 80, π = 10, and κ = 6, Prism runs out of memory.

The probability of compaction is the probability of reaching a compacting state,
i.e., a state with n = κ + 1. The probability of reaching a specified state in a

2The full definition of a PIOA is out of scope of this paper, instead of giving the general
definition we describe the concrete CF size-class automaton as a PIOA.

CONCURRENCY AND SCALABILITY WITH COMPACT-FIT 13

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

pr
ob

ab
ili

ty
 o

f c
om

pa
ct

io
n

deallocation level

κ=1
κ=2
κ=3
κ=4
κ=5
κ=6
κ=7
κ=8
κ=9

κ=10

(a) compaction

0

1.0e-5

0.001

0.01

0.1

1

 0 5 10 15

pr
ob

ab
ili

ty
 o

f w
or

st
-c

as
e

fr
ag

m
en

ta
tio

n

deallocation level

κ=1 κ=2 κ=3 κ=4 κ=5 κ=6

(b) worst-case fragmentation

Figure 4. Probability of reaching compaction and worst-case
fragmentation

DTMC is the sum over all paths of the probability of reaching the state along a
path, where the probability of reaching the state along a path is calculated as the
product of the probabilities on the path until the state is reached, or equals zero
if the state is not reached (in at most d steps). We run both Prism and our own
program for exact calculation of the probability of compaction on the model (in
Prism only as long as no state space explosion occurs).3 The results of our exact
calculations and of Prism coincide, and they are presented in Figure 4(a) for the

3Prism is a general multi-purpose probabilistic model checker applicable to many different

models. As all model checkers it suffers from state space explosion. We have implemented a
simple single-purpose program that calculates the probabilities of the full DTMC as described

14 S.S. CRACIUNAS, C.M. KIRSCH, H. PAYER, H. RÖCK, AND A. SOKOLOVA

values h = 1400, π = 100, and varying values of κ and d. The particular values of
h and π are not significant, we have chosen them so that the probability graphs are
sufficiently apart from each other. As expected, the probability of reaching a state
where compaction happens for a fixed κ increases with increasing d, and it overall
decreases when increasing κ.

Given a state 〈h, n, u1, . . . , un〉 the (size-class) fragmentation in this state is
calculated as F = n · π −

∑n
i=1 ui. The probability of worst-case fragmentation

is the probability of reaching a worst-case fragmentation state, i.e., a state with
fragmentation F = κ · (π − 1). The results are shown in Figure 4(b) for h = 120,
π = 3, and varying values of κ and d. We present the results for small values of π so
that the effect of emptying a page within d deallocations can be seen even for small
values of d. Given a partial compaction bound κ, the probability of worst-case
fragmentation oscillates periodically as d increases, reaching a maximum value for
certain values of d. This maximal probability of worst-case fragmentation decreases
with increasing κ, as intuitively expected. Note that the y-axes has a logarithmic
scale, and the maximum probabilities of worst-case fragmentation are very low, for
κ > 1.

5. Incremental Compact-fit

For applications which require low latency and run on memory-constrained sys-
tems, we provide an extension of CF that allows for incremental compaction, i.e.,
incremental moving of a single object.

The incremental extension of CF performs compaction, i.e., moving of a single
object, by an incremental moving operation. The reason why compaction is made
incremental is its dominating linear complexity. This incremental extension is the
first step towards a design of latency-efficient concurrent CF. For a concurrent
incremental version of CF, allocation, deallocation, and incremental compaction
are made atomic, leaving space for other interleaving threads between the atomic
steps. As a result the waiting times of concurrent threads, and therefore their
response times, decrease, although the compaction throughput may also decrease.

There is a global fixed compaction increment ι > 0 which determines the portion
of a page-block being moved in an incremental step. The value of ι may even be
larger than some page-block sizes, in which case the whole compaction operation
is done non-incrementally, in one step. We refer to a page-block under incremental
moving as the source page-block, and the page-block to which the object is moved
as the target page-block. The state of each size-class and its administration gain
complexity in the incremental version. In a size-class, apart from the full and
not-full pages, there may exist one source page. In a source page there are used
page-blocks and source page-blocks. The latter are page-blocks that are in the
process of being incrementally moved. One source page suffices, since compaction
in CF requires moving a used page-block which is now always taken from the
source page. Allocation never happens in a source page. A source page always
contains at least one used page-block. If a source page looses all its used page-
blocks (due to deallocation or compaction), it is removed from the size-class and
placed into a global pool E of emptying source pages. All pages in the pool contain
page-blocks that are involved in ongoing incremental compaction operations. The

above. The results coincide with Prism, but with our simple program we were able to calculate
the probabilities on our simple models for larger models than with Prism.

CONCURRENCY AND SCALABILITY WITH COMPACT-FIT 15

space occupied by source page-blocks and free page-blocks in (emptying) source
pages, which is (temporarily) not available for allocation in any size-class, is called
transient size-class fragmentation. When all incremental compaction operations in
an emptying source page finish, then the page is returned to the global list of free
pages. On the other hand, if all incremental compaction operations within a source
page finish, i.e., the source page has no more source page-blocks, and if there are
still used page-blocks in the source page, then there are two possibilities: (1) the
source page becomes a not-full page, if the number of not-full pages is smaller than
the partial compaction bound, or (2) the source page is kept as a potential source
page without source page-blocks, otherwise. The evolution of a page is shown in
Figure 5.

full not-full source

emptying
source

empty

in a size-class

Figure 5. The lifetime of a page

The state of a size-class is described by a tuple

〈h, n, u1, . . . , un, us, s,m1, . . . ,ms〉

where, as before, h denotes the current heap size, n is the number of not-full pages
such that n ≤ κ+ 1 with κ being the partial compaction bound, and the values of
u1, . . . , un are the numbers of used page-blocks in the not-full pages, respectively.
The value of us equals the number of used page-blocks in the source page, with
us = 0 representing that there is no source page in the size-class. The variable s
contains the number of source page-blocks in the source page and equals 0 if there is
no source page. Note that s = 0 and us > 0 represents the existence of a potential
source page, as discussed above. Finally, m1, . . . ,ms are the sizes of the portions
of the s source page-blocks that have already been moved.

Figure 6 shows an abstraction of the size-class behavior. Similar to Figure 2, we
use abstract states to describe the state changes: EMPTY stands for the single state
〈0, 0, 0, 0〉 representing an empty size-class; the state NOT-FULL, no source represents
all states with at least one not-full page where no compaction is needed and no
source page is present, that is 〈h, n, u1, . . . un, 0, 0〉 with 0 < n ≤ κ; the state FULL,

no source represents all states with no not-full pages, at least one full page, and no
source page, that is 〈h, 0, 0, 0〉 with h > 0; NOT-FULL, source represents all states with
at least one not-full page where no compaction is needed and a source page, that
is 〈h, n, u1, . . . un, us, s,m1, . . . ,ms〉 with 0 < n ≤ κ, us > 0; FULL, source represents
all states with no not-full pages, at least one full page, and a source page, that

16 S.S. CRACIUNAS, C.M. KIRSCH, H. PAYER, H. RÖCK, AND A. SOKOLOVA

EMPTY NOT-FULL FULL

COMPACTION

no source no source

NOT-FULL FULL
source source

Figure 6. Incremental size-class automaton with π > 1

is 〈h, 0, us, s,m1, . . . ,ms〉 with h > 0 and us > 0; finally, COMPACTION is used to
represent states 〈h, κ+1, u1, . . . , uκ+1, us, s,m1, . . . ,ms〉 in which compaction must
be invoked. We note that the automaton and the discussion in this section is under
the assumption that the number of page-blocks in a page is larger than 1, π > 1.
The degenerate case with π = 1 is of no interest.

A state change in a size-class happens upon allocation (A), deallocation (Di, D
t
i),

or incremental compaction (I, Ij , IE) transitions. A transition I represents an
initial incremental compaction step, Ij is any further incremental compaction step
which involves a source page, and IE is a further incremental compaction step which
involves an emptying source page.

We next present the actual changes of states in a size-class in full detail upon
allocation, deallocation, and incremental compaction.

Allocation. Allocation steps are the same as in the non-incremental automa-
ton since the source page is not influenced by allocation. In detail, in a state
〈h, n, u1, . . . , un, us, s,m1, . . . ,ms〉 there are three cases:

1. If n = 0, that is, there are no not-full pages, then after allocation h increases by
1, n becomes 1, and u1 becomes 1.

2. If 0 < n ≤ κ and un < π − 1, that is, there is a not-full page and after an
allocation it will not get full, then both h and un increase by 1.

3. If 0 < n ≤ κ and un = π−1, that is, a not-full page will get full, then h increases
by 1 and n decreases by 1. Note that this may change a state from “not-full” to
“full” in case n = 1.

Allocation is not possible in a “compaction” state, i.e., a state with n = κ+ 1.

Deallocation. We distinguish two types of deallocation steps denoted by Di and
Dt
i . A step Di denotes deallocation in page i where the deallocated page-block is

not a target of an ongoing incremental moving. In contrast, Dt
i denotes deallocation

in page i of a page-block which happens to be a target of an ongoing incremental
moving. If i = 0, then deallocation happens in the source page; if 1 ≤ i ≤ n,

CONCURRENCY AND SCALABILITY WITH COMPACT-FIT 17

then deallocation happens in one of the not-full pages; and if i > n a page-block is
deallocated in a full page.

Similar to the non-incremental CF, the change of state after Di can be described
by the following cases:

1. If 1 ≤ i ≤ n ≤ κ and ui > 1, or if i = 0, us > 1, and n ≤ κ, i.e., dealloca-
tion happens in a not-full or source page which will not get empty(ing), then h
decreases by 1 and either ui or us decreases by 1, respectively.

2. If 1 ≤ i ≤ n ≤ κ and ui = 1, i.e., deallocation happens in a not-full page which
becomes empty afterwards, then both h and n decrease by 1, and the variable
ui is removed from the state.

3. If i = 0, us = 1, and n ≤ κ, i.e., deallocation happens in a source page which
becomes emptying afterwards, then the source page is moved to the pool of
emptying source pages E and both s and us are set to 0. As a result the size-
class does not have a source page.

4. If i > n ≤ κ, which means that deallocation happens in a full page, then h
decreases by 1, n increases by 1, and un gets the value π−1. If originally n = κ,
then this step triggers a compaction operation.

In addition, there are four cases describing the change of state after Dt
i steps.

They correspond to the cases for Di except that at the end of such a step the
ongoing incremental compaction operation to the deallocated target page-block is
canceled, the target page-block is deallocated, and the source page-block is deallo-
cated. Hence, the (canceled) ongoing compaction operation finishes earlier than it
normally would. We refer to the situation when a thread performs a Dt

i step as a
deallocation conflict.

Deallocation is also not possible in a “compaction” state with n = κ+ 1.

Incremental compaction. Incremental compaction is triggered in case n = κ+1,
just like compaction is triggered in the non-incremental CF. In addition, there may
be incremental compaction steps involving emptying source pages from any other
state, and incremental compaction steps involving the source page from any state
with a source page.

In a state 〈h, κ + 1, u1 . . . , uκ+1, us, s,m1, . . . ,ms〉 an initial incremental com-
paction step is the only possible step. Note that in such a state uκ+1 = π− 1 since
the previous step was a deallocation in a full page. We refer to this unique free
page-block in the last not-full page as tb. The initial incremental compaction step
must be atomic together with the preceding deallocation step. We use β to denote
the size of page-blocks in the size-class. We have the following cases:

1. If us = 0, meaning that there is no source page in the size-class, then since
n = κ+ 1 ≥ 2 the first page becomes the new (potential) source page, i.e., us is
assigned the value of u1, s becomes 0, n decreases by 1, and u1 is removed from
the state. After this, the state is no longer a “compaction” state.

2. If us > 0, then a source page-block pb is to be moved to tb. There are two
possible cases:
- The page-block pb is not a target page-block of an ongoing incremental moving

operation. In this case there are two subcases representing an initial incre-
mental compaction step: (1) if ι < β, in which case the compaction operation
needs more than just one step, then us decreases by 1, s increases by one, ms

18 S.S. CRACIUNAS, C.M. KIRSCH, H. PAYER, H. RÖCK, AND A. SOKOLOVA

is assigned the value of ι and a portion of size ι is moved from pb to tb; (2) if
ι ≥ β, then the whole pb is moved to tb in one step and us decreases by 1.

- The page-block pb is a target of a (unique) ongoing incremental operation
from a source page-block sb. In this case we are in a situation of a compaction
conflict. Note that sb must be in an emptying source page in E. Then
the ongoing incremental moving operation from sb to pb is canceled, pb is
deallocated, and a new initial incremental moving operation starts from sb to
tb. Again us decreases by 1.

In any case, n decreases by 1. In case us = 0, the source page becomes emptying,
it is moved to the pool of emptying source pages E, and s becomes 0.

Note that the chosen way to resolve the compaction conflict is crucial for bounded
compaction response times, since it avoids transitive compaction chains. Namely, a
compaction conflict ends an existing compaction and starts a new one, so the dura-
tion of a particular compaction operation may only decrease due to a compaction
conflict.

In addition, there are three more cases for a change of state due to an ongo-
ing incremental compaction step Ij , where j is an index of a source page-block
in the source page that the incremental compaction step applies to. In a state
〈h, n, u1 . . . , un, us, s,m1, . . . ,ms〉 where Ij is applicable, i.e., us > 0 and s ≥ j,
after an incremental compaction step Ij we have:

3. If mj + ι < β, then mj is incremented by ι, i.e., another portion of the source
page-block gets copied to the target page-block.

4. If mj + ι ≥ β and s > 1, i.e., this is the last incremental step for the compaction
operation which still keeps the source page, then the number of source page-
blocks s decreases by 1, the variable mj is removed from the state.

5. If mj + ι ≥ β and s = 1, i.e., the compaction operation finishes after this
incremental step and the source page will no longer exist in the size-class, then s
gets the value 0. Furthermore, the source page either becomes a not-full page if
n < κ (in which case n increases by 1, un is assigned the value of us, us becomes
0) or it is kept as a potential source page.

Finally, there is a possibility for incremental operations IE which do not change
the state, but only change the global pool E of emptying source pages. We skip
the details on the description and the update of E due to IE operations.

We remark that the behavior of any thread can be expressed by a sequence of
allocations and deallocations. If a deallocation triggers compaction, then before the
thread can continue with any other allocation or deallocation operation all incre-
mental steps needed for the compaction must be finished. The first of these steps is
an initial incremental compaction step I which may be an initial incremental mov-
ing step in case of compaction conflict. If it is the case, then all other incremental
steps are of type IE . Otherwise, if there is no compaction conflict, a sequence of Ij
incremental steps will be performed, and in case the source page becomes emptying
a sequence of IE incremental steps, in order to complete the compaction operation.

6. Complexity vs. Fragmentation

Table 1 shows the time complexity of malloc and free as well as the worst-case
system latency, memory size, and size-class fragmentation per CF configuration
with n threads and m per-thread-allocated page-blocks in a size-class with π page-
blocks of size β per page. The fragmentation caused by partitioning memory [3, 9]

CONCURRENCY AND SCALABILITY WITH COMPACT-FIT 19

malloc free latency memory size size-class
fragmentation

1-CF(∞,∞) O(n) O(n) O(1) O(n ∗m ∗ π ∗ β) O(n ∗m∗
(π − 1) ∗ β)

1-CF(κ,∞) O(n) O(n+ β) O(β) O((n ∗m+
κ ∗ (π− 1))∗
β)

O(κ∗(π−1)∗
β)

n-CF(∞,∞) O(1) O(1) O(1) O(n ∗m ∗ π ∗ β) O(n ∗m∗
(π − 1) ∗ β)

n-CF(κ,∞) O(1) O(β) O(β) O(n ∗ (m+
κ ∗ (π− 1))∗
β)

O(n ∗ κ∗
(π − 1) ∗ β)

1-CF(κ, ι) O(n) O(n+ β+

bβ
ι
c)

O(min(β, ι)) O((n ∗m+
n ∗ π+
κ ∗ (π− 1))∗
β)

O((n ∗ π+
κ ∗ (π− 1))∗
β)

Table 1. Time complexity of malloc and free as well as worst-case
system latency, memory size, and size-class fragmentation per CF
configuration and size-class

is not considered here. Although the partial compaction bound κ and the com-
paction increment ι are kept constant in our current implementations, both κ and
ι may be changed dynamically at runtime, which is an interesting topic for future
work. System latency is here the portion of the delay a thread may experience, from
invoking malloc or free until the operation actually begins executing, caused by cur-
rently executing, non-preemptive CF operations, not including the synchronization
overhead. Recall that i-CF(κ, ι) denotes a CF configuration where i instances of
concurrent CF run in parallel with partial compaction bound κ and compaction
increment ι. If ι = ∞, then incremental compaction is turned off. If κ = ∞, then
compaction (and hence also incremental compaction) is turned off.

Since all operations of the non-compacting 1-CF(∞,∞) configuration take con-
stant time, the complexity of malloc and free only depends linearly on the number
of competing threads assuming fair scheduling. System latency is bounded by a
constant. However, the worst case in memory consumption is one page for each
allocated object due to potentially high size-class fragmentation, which has asymp-
totically the same bound as the overall memory consumption. The compacting
1-CF(κ,∞) configuration trades-off complexity of free and worst-case latency for
better bounds on memory consumption by limiting size-class fragmentation through
partial compaction. Note that in this case size-class fragmentation is independent
from the number of threads and allocated objects.

The results for the n-CF configurations, in particular the worst cases in memory
size and size-class fragmentation, as shown here, are obtained under the assump-
tion that there is no sharing among the n CF instances. The time complexity
of malloc and free of both multiple-instance configurations goes up to the respec-
tive single-instance cases if there is sharing among the n CF instances. While
the non-compacting n-CF(∞,∞) configuration requires in the worst case no more
memory than the non-compacting single-instance configuration, the compacting n-
CF(κ,∞) configuration actually does require in the worst case more memory than

20 S.S. CRACIUNAS, C.M. KIRSCH, H. PAYER, H. RÖCK, AND A. SOKOLOVA

size-class lock

incremental

thread-local size-classes global size-classes

non-incremental

non-compacting

page lock

incremental non-incremental

non-compacting non-compacting

size-class lock

incremental non-incremental

non-compacting

page lock

incremental non-incremental

Figure 7. Concurrent CF versions

the compacting single-instance configuration since partial compaction is performed
per instance. However, allocation and deallocation throughput may increase with
both multiple-instance configurations with a decreasing degree of sharing among
the n CF instances (without an increase in worst-case system latency).

The incremental 1-CF(κ, ι) configuration actually improves the worst case in
system latency whenever the compaction increment ι is less than the page-block
size of the size-class with the largest page-blocks, at the expense of the complexity of
free through more preemptions and at the expense of memory consumption through
increased transient size-class fragmentation. In comparison to the non-incremental,
compacting 1-CF(κ,∞) configuration, there may be up to n additional (emptying)
source pages in the system where n is the number of threads. The worst case in
non-transient size-class fragmentation does not increase.

7. Implementation

Sequential CF [9] uses three data structures to manage its heap: abstract address,
page, and size-class. Additionally, empty pages and available abstract addresses are
organized in global LIFO lists.

An abstract address is a forwarding pointer word.
A page contains a page header holding the meta data of the page and the storage

space into which objects are allocated. The size of each page is 16KB. All pages are
kept aligned in memory. The page header consists of: two pointers used to insert
the page into a doubly-linked list, a counter of allocated page-blocks in the page, a
reference to the size-class of the page, and a bitmap where each set bit represents
a used page-block in the storage space. The bitmap is used for fast location of free
and used blocks.

A size-class contains two doubly-linked lists of pages which store the full and the
not-full pages, respectively, and a counter of the number of not-full pages.

Global data structures are used to organize data structures which do not belong
to a particular size-class. Such are a LIFO list of empty pages and a LIFO list of
free abstract addresses. The implementation details that make these data structures
concurrent and scalable will be discussed in the following subsections.

Figure 7 presents an overview of all implemented CF versions (leafs of the tree)
and introduces terminology.

7.1. Concurrent Non-incremental CF. We use blocking and non-blocking mech-
anisms to allow for concurrent use of CF by multiple threads. In particular, locks
are used to make the size-class automaton transitions atomic (allocation, deallo-
cation that does not cause compaction, and deallocation with compaction) and

CONCURRENCY AND SCALABILITY WITH COMPACT-FIT 21

non-blocking mechanisms are used to render access to the global LIFO lists atomic
and scalable.

In all concurrent implementations size-classes are kept 128B aligned in memory,
to avoid cache conflicts of concurrent threads.

We implement locks at two possible levels: size-class locks and page locks. The
choice of lock level is evident in the different implementation versions in Figure 7.
The page lock level is finer than the size-class lock level, which exists in all imple-
mentations. In the presence of page locks, during compaction the size-class lock is
released and only the page locks of the source and target page are locked. As a
result, other threads may perform memory operations within the size-class that do
not affect the source and the target page.

Our managing of the global lists of empty pages and free abstract addresses
is inspired by the free list implementation used in [14]. Each of the two lists is
organized on two (public and private) levels. Each thread owns one private list (of
free elements) which is only accessible to the owner thread. Therefore the access to
free elements in the private list needs no synchronization mechanisms. The public
list is a list of lists of free elements. Its head contains a version number (used for
synchronization between threads) and a reference to the first element (sublist) in
the list. Both fields in the list head are updated simultaneously using a double-word
compare-and-swap operation, hence the update is atomic. Whenever the reference
to the first element changes, the version number increases, which prevents the ABA
problem [13]. If a thread needs a free element, then it first accesses its private list.
If the private list is empty, then it accesses the public list, in order to fetch the head
of the public list of lists. After this, the newly fetched list becomes the private list
of the thread. There is also a mechanism that returns elements from a private list
to the public list, which is invoked if the private list grows beyond a predefined
bound.

There is a slight difference in the implementation of the public list for the list of
empty pages and for the list of free abstract addresses. In order to represent the
public list in memory, we need for each sublist a pointer to the next sublist. In
case of the list of empty pages, we use the empty space of the first page of each
sublist to store such a pointer. For the list of free abstract addresses, an additional
two-word data structure for storing the pointers is needed.

7.2. Concurrent Incremental CF. For incremental compaction, each page-block
stores an additional field called compaction-block field. The field has a size of 4B,
which is relatively small compared to the size of the page-blocks in size-classes with
large page-blocks (larger than 1KB), which are typically subject to incremental
compaction. If a page-block becomes a source/target of an incremental compaction
operation, then its compaction-block field stores a reference to its corresponding
target/source page-block, respectively. Whether a page-block involved in incremen-
tal compaction is a source or a target page-block is determined by the status of its
page and the status of the page of its compaction block.

In addition, each abstract address contains a flag bit which signals whether the
object that the abstract address refers to is a target of a canceled incremental
compaction operation. We have discussed deallocation and compaction conflicts
in Section 5. In the implementation, a deallocation conflict is detected if the
compaction-block field of the page-block under deallocation contains a memory
reference. A compaction conflict is also recognized by a memory reference in the

22 S.S. CRACIUNAS, C.M. KIRSCH, H. PAYER, H. RÖCK, AND A. SOKOLOVA

compaction-block field of the source page-block under compaction. In case of a
deallocation or a compaction conflict, an ongoing compaction operation needs to
be canceled. This is done by setting the flag bit in the abstract address of the object
that was deallocated and triggered the compaction operation. When the thread in
charge of the canceled compaction gets to execute again, it first checks the flag
in the abstract address and if the flag is set the thread terminates its compaction
operation and releases the abstract address.

7.3. Local vs. Global Size-classes. An orthogonal optimization for concurrent
CF which improves scalability is using thread-local size-classes. Every thread has
a private heap organized in private size-classes. Each thread allocates only in its
private heap, but may deallocate shared objects in other thread’s heaps. If the
percentage of shared objects in the system is low, this optimization leads to less
conflicts, thus improving the overall performance.

8. Experiments

We report on micro- and macrobenchmarks with non-concurrent non-incremental
CF, concurrent non-incremental CF, and microbenchmarks with concurrent incre-
mental CF.

8.1. Hardware Setup. The experiments with concurrent non-incremental CF ran
on a server machine with two quad-core 2GHz AMD Opteron processors and 16GB
of memory. The experiments with non-concurrent and non-incremental CF and con-
current incremental CF were conducted on an XScale PXA 270 CPU with 600MHz
and 128MB of memory. The operating system for both machines was Linux with
real-time preemption patches applied [33]. On the Opteron machine and the XS-
cale machine the Linux kernel version was 2.6.24 and 2.6.21, respectively. In all
experiments the benchmark threads were executed with real-time priorities.

We use two different processors since we are interested in evaluating the behav-
ior of concurrent CF versions both on a multi-core server and on an embedded
processor. The multi-core server has high computational power which removes the
need of incremental compaction. These experiments are shown in Section 8.2. To
demonstrate the behavior of incremental CF in an embedded environment we use
the XScale processor. These experiments are shown in Section 8.3. Note that we
compare the different concurrent versions of CF among themselves. See [9] for a
comparison of the original CF with other allocators.

8.2. Concurrent Non-incremental CF. The microbenchmarks all run mutator
threads that each allocate 2048 objects of random size, then deallocate the objects,
and then start over again. The sizes of allocated objects correspond to the dis-
tribution of object sizes allocated in a popular optimizer for programmable logic
arrays called Espresso used in several memory allocator performance evaluations,
e.g. in [15]. Each microbenchmark runs for ten seconds performing more than one
million allocation/deallocation operations.

Figure 8 shows the impact of partial compaction on the allocation throughput
of a single thread. Larger partial compaction bounds κ provide higher allocation
throughput because of less compaction activity. Independently of κ, the size-class
lock configuration performs better then the page-lock configuration since the latter
needs locks for both the size-class and the source and target pages.

CONCURRENCY AND SCALABILITY WITH COMPACT-FIT 23

 1e+06

 1.05e+06

 1.1e+06

 1.15e+06

 1.2e+06

 1.25e+06

 1.3e+06

 1.35e+06

1 3 5 ∞

al
lo

ca
tio

ns
/s

ec

partial compaction bound κ

size-class lock, global size-class
size-class lock, thread-local size-class

page lock, global size-class
page lock, thread-local size-class

Figure 8. Allocation throughput of a single thread with decreas-
ing partial compaction

Figure 9 depicts the allocation throughput with an increasing number of threads.
Up to seven threads run in parallel on seven cores while the eighth core is used to
minimize the influence of collecting data on the performance data. The performance
of the fully compacting and the optimized, non-compacting version of CF without
abstract addressing (in both cases with no sharing across the thread-local CF in-
stances) are shown in Figures 9(a) and 9(b), respectively. The thread-local size-
class versions show linear scalability in the number of threads whereas the global
size-class versions neither scale in the fully compacting nor in the non-compacting
configurations. Again, the size-class lock configurations result in better alloca-
tion throughput than the page lock configurations. Scalability only improves by a
constant factor with increasing partial compaction (cf. Figures 9(a) versus 9(b)).
Scalability of the thread-local size-class versions depends on the degree of sharing
across the thread-local CF instances. Figure 9(c) shows allocation throughput at
varying degrees of sharing: mutator threads allocate and deallocate 512 objects
periodically according to the Espresso object size distribution. Each mutator frees
its own just allocated objects and objects previously allocated by other threads in
a ratio that determines the degree of sharing.

The macrobenchmarks are based on Emacs and Hummingbird allocation/deallo-
cation traces [8]. In the Emacs trace about 51% of the allocated objects are of size
40B, 15% are of size 648B, and 11% are of size 104B. The remaining objects of the
trace are also of small size. In the Hummingbird trace about 25% of the allocated
objects are of size 8B and 23% are of size 32B. The remaining allocation requests
vary from 16B to around 38.1MB (object sizes greater than 16KB are ignored here).
Hummingbird’s allocation behavior is very different from the behavior of a typical
mutator where 99% of the objects are of small and similar sizes [15].

Figure 10 shows the allocation throughput of a single thread running the Hum-
mingbird and Emacs benchmarks. Larger κ values allow the Hummingbird bench-
mark to allocate more objects per second. In the Emacs benchmark the allocation
throughput does not improve for larger κ.

24 S.S. CRACIUNAS, C.M. KIRSCH, H. PAYER, H. RÖCK, AND A. SOKOLOVA

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 2 3 4 5 6 7

al
lo

ca
tio

ns
/s

ec

number of threads

size-class lock, thread-local size-class
page lock, thread-local size-class
size-class lock, global size-class

page lock, global size-class

(a) full compaction

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 2 3 4 5 6 7

al
lo

ca
tio

ns
/s

ec

number of threads

size-class lock, thread-local size-class
page lock, thread-local size-class
size-class lock, global size-class

page lock, global size-class

(b) optimized, non-compacting

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 2 3 4 5 6 7

al
lo

ca
tio

ns
/s

ec

number of threads

0% sharing
6.25% sharing
12.5% sharing

25% sharing
50% sharing

100% sharing

(c) opt., non-comp. with sharing

Figure 9. Allocation throughput with an increasing number of threads

CONCURRENCY AND SCALABILITY WITH COMPACT-FIT 25

 370000

 380000

 390000

 400000

 410000

 420000

1 3 5 10 15 20 25 ∞

al
lo

ca
tio

ns
/s

ec

partial compaction bound κ

emacs

 186000
 188000
 190000
 192000
 194000
 196000
 198000
 200000
 202000
 204000

1 3 5 10 15 20 25 ∞

al
lo

ca
tio

ns
/s

ec

hummingbird

Figure 10. Allocation throughput for Hummingbird and Emacs

 2160

 2162

 2164

 2166

 2168

 2170

1 3 5 10 15 20 25 ∞
 40

 50

 60

 70

 80

 90

 100

m
em

or
y

si
ze

 in
 p

ag
es

nu
m

be
r

of
 n

ot
-f

ul
l p

ag
es

partial compaction bound κ

emacs

memory size
not-full pages

 15320

 15325

 15330

 15335

 15340

1 3 5 10 15 20 25 ∞
 0
 200
 400
 600
 800
 1000
 1200
 1400
 1600
 1800
 2000

m
em

or
y

si
ze

 in
 p

ag
es

nu
m

be
r

of
 n

ot
-f

ul
l p

ag
eshummingbird

memory size
not-full pages

Figure 11. Memory usage and size-class fragmentation for Hum-
mingbird and Emacs

26 S.S. CRACIUNAS, C.M. KIRSCH, H. PAYER, H. RÖCK, AND A. SOKOLOVA

malloc (in clock ticks) free (in clock ticks)

TLSF CF TLSF CF

avg max avg max avg max avg max
time time time time time time time time

Emacs 228 93359 260 81662 153 71159 279 74798

Hummingbird 411 109079 529 98820 500 69192 574 79914

Table 2. Performance: TLSF versus optimized, non-compacting
CF (without abstract addressing)

Figure 11 shows the required memory size (in number of used pages) and size-
class fragmentation (in number of not-full pages) during the execution of the Hum-
mingbird and Emacs traces with increasing κ. As expected, size-class fragmentation
increases with increasing κ, whereas the required memory size remains constant for
κ ≥ 5 with the Hummingbird trace and κ ≥ 3 with the Emacs trace since most
not-full pages with smaller page-block sizes tend to remain relatively full (in line
with our probabilistic claims of Section 4).

Finally, Table 2 shows the results of macrobenchmarking TLSF [25] and the
optimized, non-compacting version of CF without abstract addressing (configured
to 16B, and alternatively to 32B, for the smallest page-block size). The temporal
performance of malloc and free operations (in clock ticks measured on the Opteron
machine) for TLSF and non-compacting CF is similar with TLSF slightly outper-
forming CF (except for malloc in the worst case where CF is slightly better).

8.3. Concurrent Incremental CF. The microbenchmark runs mutator threads
allocating and deallocating objects from 16B to 16KB randomly, where 90% of the
allocated objects are smaller than 64B [16]. The threads operate on global size
classes.

Figure 12(a) shows that the allocation throughput decreases with decreasing
compaction increments ι since the incremental compaction overhead increases, due
to an increasing number of lock acquire/release operations, administrative data
updates, and memory copy interruptions. System latency, shown in Figure 12(b),
tends to decrease measurably if page-block sizes larger than around 512B are in-
volved, with decreasing ι. Here, we ran one mutator thread with higher priority
than seven other mutator threads, periodically yielding to avoid starvation, and
measured the maximum time the higher-priority thread spent in the atomic por-
tion of any incremental compaction operation. True system latency that includes
the wait time for locking was too noisy with the version of Linux we used. Tran-
sient size-class fragmentation, which is bounded by the number of threads, generally
increases slightly with increasing ι as shown in Figure 12(c).

9. Conclusions

Compact-fit is an explicit, dynamic heap management system that allows, through
the notion of partial and incremental compaction, formally relating fragmentation,
compaction, throughput, and latency when managing contiguous blocks of mem-
ory. We have studied this relationship, formally and experimentally. All versions
of CF can be made concurrent and scalable with partial compaction being only a

CONCURRENCY AND SCALABILITY WITH COMPACT-FIT 27

 8000

 9000

 10000

 11000

 12000

 13000

 14000

 15000

 16000

 17000

 18000

 19000

128512102420484096∞

al
lo

ca
tio

ns
/s

ec

compaction increment ι

1 thread
2 threads
4 threads
6 threads
8 threads

(a) allocation throughput

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

16 48 160 552 2048 8000

sy
st

em
 la

te
nc

y
in

 µ
se

c

block size in bytes

ι 128
ι 512

ι 1024
ι 2048
ι 4096

ι ∞

(b) system latency with 8 threads

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

128512102420484096∞

nu
m

be
r

of
 s

ou
rc

e
pa

ge
s

compaction increment ι

1 thread
2 threads
4 threads
6 threads
8 threads

(c) transient size-class fragmentation

Figure 12. Allocation throughput, system latency, and transient
size-class fragmentation with decreasing compaction increments

28 S.S. CRACIUNAS, C.M. KIRSCH, H. PAYER, H. RÖCK, AND A. SOKOLOVA

constant factor. Scalability rather depends on the degree of sharing and synchro-
nization mechanisms, similar to other heap management systems.

Incremental CF may open up a path to dynamic heap management on memory-
constrained systems running high-performance applications that require tight tem-
poral and spatial guarantees, although further studies involving specialized operat-
ing system infrastructure for embedded devices may be necessary there.

References

1. PRISM - probabilistic symbolic model checker, http://www.prismmodelchecker.org.
2. D. F. Bacon, P. Cheng, and V. T. Rajan, A unified theory of garbage collection, Proc. OOP-

SLA, ACM, 2004.
3. David F. Bacon, Perry Cheng, and V. T. Rajan, Controlling fragmentation and space con-

sumption in the Metronome, a real-time garbage collector for Java, Proc. LCTES, ACM,

2003.
4. , A real-time garbage collector with low overhead and consistent utilization, Proc.

POPL, ACM, 2003.

5. Ori Ben-Yitzhak, Irit Goft, Elliot K. Kolodner, Kean Kuiper, and Victor Leikehman, An
algorithm for parallel incremental compaction, Proc. MSP/ISMM, ACM, 2002.

6. A. Bendersky and E. Petrank, Space overhead bounds for dynamic memory management with

partial compaction, Proc. POPL, ACM, 2011, pp. 475–486.
7. Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wilson, Hoard: A

scalable memory allocator for multithreaded applications, Proc. ASPLOS, ACM, 2000.

8. Aniruddha Bohra and Eran Gabber, Are mallocs free of fragmentation?, Proc. ATC, USENIX,
2001.

9. Silviu S. Craciunas, Christoph M. Kirsch, Hannes Payer, Ana Sokolova, Horst Stadler,
and Robert Staudinger, A compacting real-time memory management system, Proc. ATC,

USENIX, 2008.

10. Dave Dice and Alex Garthwaite, Mostly lock-free malloc, Proc. ISMM, ACM, 2002.
11. Christine H. Flood, David Detlefs, Nir Shavit, and Xiolan Zhang, Parallel garbage collection

for shared memory multiprocessors, Proc. JVM, USENIX, 2001.

12. L. Gidra, T. Gaël, J. Sopena, and M. Shapiro, Assessing the scalability of garbage collectors
on many cores, Proc. PLOS, ACM, 2011.

13. M. Herlihy and N. Shavit, The art of multiprocessor programming, Morgan Kaufmann Pub-

lishers Inc., 2008.
14. Richard L. Hudson, Bratin Saha, Ali-Reza Adl-Tabatabai, and Benjamin C. Hertzberg, McRT-

Malloc: a scalable transactional memory allocator, Proc. ISMM, ACM, 2006.

15. Mark S. Johnstone and Paul R. Wilson, The memory fragmentation problem: solved?, Proc.
ISMM, ACM, 1998.

16. M.S. Johnstone and P.R. Wilson, The memory fragmentation problem: solved?, Proc. ISMM,
ACM, 1998, pp. 26–36.

17. Richard Jones, The garbage collection page, http://www.cs.ukc.ac.uk/people/staff/rej/

gc.html.
18. T. Kalibera, Replicating real-time garbage collector for java, Proc. (JTRES), ACM, 2009,

pp. 100–109.

19. Tomas Kalibera and Richard Jones, Handles revisited: optimising performance and memory
costs in a real-time collector, Proc. ISMM, ACM, 2011.

20. Haim Kermany and Erez Petrank, The Compressor: concurrent, incremental, and parallel

compaction, Proc. PLDI, ACM, 2006.
21. C.M. Kirsch, H. Payer, and H. Röck, Hierarchical PLABs, CLABs, TLABs in Hotspot, Proc.

International Conference on Systems (ICONS), 2012.

22. Donald E. Knuth, Fundamental algorithms, The Art of Computer Programming, Addison-
Wesley, 1973.

23. Doug Lea, A memory allocator, Unix/Mail/, 6/96, 1996.

24. Miguel Masmano, Ismael Ripoll, and Alfons Crespo, A comparison of memory allocators for
real-time applications, Proc. JTRES, 2006.

http://www.prismmodelchecker.org
http://www.cs.ukc.ac.uk/people/staff/rej/gc.html
http://www.cs.ukc.ac.uk/people/staff/rej/gc.html

CONCURRENCY AND SCALABILITY WITH COMPACT-FIT 29

25. Miguel Masmano, Ismael Ripoll, Alfons Crespo, and Jorge Real, TLSF: A new dynamic

memory allocator for real-time systems, Proc. ECRTS, 2004.

26. Maged M. Michael, Scalable lock-free dynamic memory allocation, SIGPLAN 39 (2004), no. 6.

27. K. Nilsen, Differentiating features of the PERC
TM

virtual machine, http://www.aonix.com/

pdf/PERCWhitePaper.pdf, 2009.
28. T. Ogasawara, An algorithm with constant execution time for dynamic storage allocation,

Proc. RTCSA, 1995.

29. Yoav Ossia, Ori Ben-Yitzhak, and Marc Segal, Mostly concurrent compaction for mark-sweep
GC, Proc. ISMM, 2004.

30. F. Pizlo, L. Ziarek, P. Maj, A.L. Hosking, E. Blanton, and J. Vitek, Schism: fragmentation-
tolerant real-time garbage collection, Proc. PLDI, ACM, 2010, pp. 146–159.

31. Filip Pizlo, Daniel Frampton, Erez Petrank, and Bjarne Steensgaard, Stopless: a real-time

garbage collector for multiprocessors, Proc. ISMM, ACM, 2007.
32. Isabelle Puaut, Real-time performance of dynamic memory allocation algorithms, Proc.

ECRTS, 2002.

33. Real-time Linux, Real-time Linux, http://rt.wiki.kernel.org.

34. Narendran Sachindran, J. Eliot B. Moss, and Emery D. Berger, MC2: high-performance

garbage collection for memory-constrained environments, Proc. OOPSLA, ACM, 2004.
35. M. Schoeberl, Scheduling of hard real-time garbage collection, Real-Time Systems 45 (2010),

no. 3, 176–213.

36. Fridtjof Siebert, Real-time garbage collection in the Jamaica VM 3.0, Proc. JTRES, ACM,
2007.

37. S.-H. Wu, S. A. Smolka, and E. W. Stark, Composition and behaviors of probabilistic I/O

automata, Theoretical Computer Science 176 (1997).

Department of Computer Sciences, University of Salzburg, Austria

E-mail address: ck@cs.uni-salzburg.at

URL: cs.uni-salzburg.at/~ck

http://www.aonix.com/pdf/PERCWhitePaper.pdf
http://www.aonix.com/pdf/PERCWhitePaper.pdf
http://rt.wiki.kernel.org

	1. Introduction
	1.1. Compact-fit
	1.2. Overview

	2. Related Work
	3. Non-incremental Compact-fit
	4. Probabilistic Analysis
	5. Incremental Compact-fit
	6. Complexity vs. Fragmentation
	7. Implementation
	7.1. Concurrent Non-incremental CF
	7.2. Concurrent Incremental CF
	7.3. Local vs. Global Size-classes

	8. Experiments
	8.1. Hardware Setup
	8.2. Concurrent Non-incremental CF
	8.3. Concurrent Incremental CF

	9. Conclusions
	References

