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Abstract
Time-Sensitive Networking (TSN) aims to extend the IEEE 802.1Q Ethernet standard with real-time
and time-aware capabilities. Each device’s transmission of time-critical frames is done according
to a so-called Gate Control List (GCL) schedule via the timed-gate mechanism described in IEEE
802.1Qbv. Most schedule generation mechanisms for TSN have a constraining assumption that both
switches and end-systems in the network must have at least the TSN capabilities related to scheduled
gates and time synchronization. However, many TSN networks use off-the-shelf end-systems, e.g.,
for providing sensor data, which are not scheduled and/or synchronized.

In this paper, we propose a more flexible scheduling strategy that considers a worst-case delay
analysis within the scheduling synthesis step, leveraging the solution’s optimality to support TSN
networks with unscheduled and unsynchronized end-systems while still being able to guarantee
bounded latency for critical messages. Our method enables real-world systems that feature off-
the-shelf microcontrollers and sensor nodes without TSN capabilities connected to state-of-the-art
TSN networks to communicate critical messages in a real-time fashion. We evaluate our approach
using both synthetic and real-world test cases, comparing it with existing scheduling mechanisms.
Furthermore, we use OMNET++ to validate the generated GCL schedules.

2012 ACM Subject Classification Computer systems organization → Dependable and fault-tolerant
systems and networks

Keywords and phrases TSN, real-time, scheduling

1 Introduction

Standardized communication protocols allowing safety-critical communication with real-time
guarantees are becoming increasingly relevant in application domains beyond aerospace, e.g.,
in industrial automation and automotive. Time-Sensitive Networking (TSN) [17] amends the
standard Ethernet protocol with real-time capabilities ranging from clock synchronization and
frame preemption to redundancy management and schedule-based traffic shaping [5]. These
novel mechanisms allow standard best-effort (BE) Ethernet traffic to coexist with isolated
and guaranteed scheduled traffic (ST) within the same multi-hop switched Ethernet network.
The main enablers of this coexistence are a network-wide clock synchronization protocol
(802.1ASrev [18]) defining a global network time, known and bounded device latencies (e.g.,
switch forwarding delays), and a Time-Aware Shaper (TAS) mechanism [16] with a global
communication schedule implemented in so-called Gate Control Lists (GCLs), facilitating
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ST traffic with bounded latency and jitter in isolation from BE communication. The TAS
mechanism is implemented as a gate for each transmission queue that either allows or denies
the sending of frames according to the configured GCL schedule.

The schedule generation for GCLs [5, 24, 21] has focused on enforcing deterministic
transmission with isolation and compositional system design for ST flows requiring end-to-
end guarantees. Craciunas et al. [5] proposed a Satisfiability Modulo Theories (SMT)-based
method that binds a transmission slot (window) to at most one ST frame producing a schedule
with 0-jitter and defined end-to-end latencies critical flows. Deterministic transmission and
forwarding is enabled by isolating critical streams either in time or in different traffic classes.
A drawback of this model is that the solution space may be significantly reduced, and the
number of GCL entries may be too high for the storage capabilities of TSN devices [22].
In [24], multiple ST frames are allowed to share a transmission slot (window), and hence
they may delay each other (if they are not isolated in the space domain). Hence, [24] relaxes
the 0-jitter assumption while still maintaining deterministic end-to-end temporal behavior.
However, both approaches necessitate that the traffic leaves the sending end systems in a
scheduled and synchronized fashion (i.e., requiring TSN capabilities on both end systems
and switches) since the schedule controls the transmission and forwarding of frames from
sending node to receiving node within the network, requiring that the interference between
ST frames is either 0 or bounded by the schedule construction.

The limitation of previous approaches requiring end systems to be scheduled and
synchronized to the network, i.e., to have 802.1Qbv and 802.1ASrev TSN capabilities,
is often not realistic since many systems use, e.g., off-the-shelf microcontrollers, industrial
PCs, and sensor nodes without TSN mechanisms. Hence, there is a need for GCL synthesis
mechanisms that can schedule TSN networks with unscheduled and unsynchronized end
systems in real-world applications. Other work, c.f. [22, 13], introduce class-based GCLs
without the requirement for synchronized end systems. However, their scheduling models are
quite limited, requiring all sending windows to be aligned among all switches and not using
formal verification methods for the delay analysis within the scheduling step.

In this paper, we relax the requirement that end-systems need to be synchronized and/or
scheduled and consider relative offsets of windows on different nodes. We intertwine the worst-
case delay analysis from [32] with the scheduling step in order to generate correct schedules
where the end-to-end requirements of ST flows are met. Furthermore, we describe different
TSN scheduling approaches that have been proposed in the literature (see Table 3 for an
overview) and compare them to our flexible window-based approach. We define the analysis-
driven window optimization problem resulting from our more flexible approach with the goal
to be able to enlarge the solution space, reduce computational complexity, and apply it to
end-systems without TSN mechanisms. Depending on industrial applications’ requirements,
our evaluation can help system designers choose the most appropriate combination of
configurations for their use-case. The main contributions of the paper are:
• We propose a novel flexible window-based scheduling method that does not individually

schedule ST frames and flows but rather schedules open gate windows for individually
scheduled queues. Hence, we can support non-deterministic queue states and hence
networks with unscheduled and/or unsynchronized end-systems by integrating the WCD
Network Calculus (NC) analysis into the scheduling step. The NC analysis is used to
construct a worst-case scenario for each flow to check its schedulability, considering
arbitrary arrival times of flows and the open GCL window placements.

• We compare and evaluate our flexible window-based scheduling method with existing
scheduling methods for TSN networks. To the best of our knowledge, this is the first
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work comparing such mechanisms for TSN.
• We propose a proxy function as an extension for the analysis in [32] and implement it in

our problem formulation.
• We formulate and solve a window optimization problem that uses the proxy function

and provides timing guarantees for real-time flows even in systems with unscheduled and
unsynchronized end systems.

• We evaluate the proposed approach on both synthetic and real-world test cases, validating
the correctness and the scalability of our implementation and use the OMNET++
simulator to validate the generated solutions.
We start by presenting a review of related research, focusing on the existing scheduling

mechanisms that we compare our work to, in Sect. 2. We introduce the system, network, and
application models, as well as a description of the main TSN standards, in Sect. 3. We outline
the problem formulation in Sect. 4. In Sect. 5, we present the novel scheduling mechanism
and the optimization strategy based on the Constraint Programming (CP) followed by the
comparison and evaluation results in Sect. 6. We conclude the paper in Sect. 7.

2 Related Work

Since its introduction, significant research efforts have focused on studying the real-time
properties of Time-Sensitive Networking enabled by mechanisms such as 802.1Qbv and
802.1Asrev and the resulting TSN scheduling problems. In [8] the TSN scheduling problem is
reduced to having one single queue for ST traffic and solving it using Tabu Search, as well as
an optimization that reduces the number of guard-bands in order to optimize bandwidth usage.
The work in [14] proposes a scheduling model for TSN networks in industrial automation
with different traffic types and a hierarchical scheduling procedure for isochronous traffic.

The most relevant work for providing real-time communication properties in TSN networks
(and to which we compare our approach to) has been presented in [5, 24, 21]. The main goal
of these works is to allow temporal isolation and compositional system design for ST flows
with end-to-end guarantees and deterministic communication behavior. The work in [5],
which we call 0GCL, presents a solution that generates the most deterministic and strict
schedules for TSN. The scheduling constraints result in frame transmission with 0 jitter in
each hop and guaranteed end-to-end latency. The deterministic behavior comes from the
frame-based scheduling approach, which does not allow any variation in the transmission
times and thus no interference between ST frames even when placed in the same queue. The
work in [21] maintains the strict determinism but solves the problem using heuristics instead
of SMT-solvers in order to improve scalability. Additionally, the ST schedules are generated
such that the worst-case delays of AVB streams are minimized. The scheduling approach
in [24], which we call Frame-to-Window-based, relaxes the 0-jitter constraint of [5] and thus
allows more variance in the transmission times of frames along the hops of the TSN network.
This increases the solution space at the expense of increased complexity in the correctness
constraints. This method is also window-based, as is ours, but requires a unique mapping
between GCL windows and frames in order to avoid non-deterministic delays in the queues.

The mentioned approaches require an essential property, namely, that both the end-
systems and switches have TSN capabilities (i.e., are in a scheduled and synchronized fashion).
Thus, the schedule controls the transmission and forwarding of frames from a sending node
to a receiving node within the network, requiring that the interference between ST frames is
either 0 or bounded by the schedule construction. The open gate windows are then either a
result of the frame transmission schedule [5, 21] or are uniquely associated with predefined
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Table 1 Summary of notations

Symbol System model
G = (V , E) Network graph with the set of nodes (V ) and links (E)
[va, vb] ∈ E Link
[va, vb].C, [va, vb].mt Link speed and macrotick
p ∈ P Output port
p.Q Eight priority queues in an output port p

q ∈ p.QST A queue used for ST traffic in p

⟨ϕ, w, T ⟩q GCL configuration for a queue q ∈ p.QST , where q.ϕ, q.w,
and q.T are the window offset, the window length , and the
window period for a queue q, respectively.

f.l, f.T, f.P, f.D Payload size, period, priority, and deadline of a flow f ∈ F
f.r = [[v1, v2], ..., [vn−1, vn]] Route for a flow f ∈ F

subsets of frames [24]. However, the above property is a significant limitation. In many
use cases, the endpoints (e.g., off-the-shelf) sensors, microcontrollers, industrial PCs, and
edge devices do not have TSN capabilities (i.e., the 802.1Qbv timed-gate mechanism or
the time-synchronization protocol of 802.1ASrev). The different scheduling mechanisms
described above that we compare our work to are summarized in Table 3.

The work in [22] proposed a similar window-based approach (WND) but without the
CP-based solution and with a very limited model since the offsets of the windows on different
nodes are not considered, thereby essentially limiting the mechanisms by requiring all windows
to be aligned among all switches. Moreover, [22] uses a less advanced analysis step (c.f. [31])
in the scheduling decisions and a simpler heuristic approach. In [13], a class-based GCL was
proposed without per-flow scheduling nor requirement of synchronized end-systems. The
method proposed in [13] for calculating the worst-case delay bounds, unlike our approach, is
not based on any formal verification methods (e.g., network calculus). The worst-case delay
calculation is overly pessimistic for small-scale networks and not safe for large-scale networks.

Classical approaches like strict priority (SP) and AVB [15] do not require a time-gate
mechanism and also work with unscheduled end-systems. In order to provide response-
time guarantees, a worst-case end-to-end timing analysis through methods like network
calculus [23, 6] or Compositional Performance Analysis (CPA) [7] are used. In [33, 35, 1],
the rate-constrained (RC) flows of TTEthernet [19, 26] are analyzed using network calculus.
Other works, such as [29, 20], study the response-time analysis for TDMA-based networks
under the strict priority (SP) and weighted round-robin (WRR) queuing policies. Zhao et
al. [32] present a worst-case delay analysis, which we use in this paper, for determining the
interference delay between ST traffic on the level of flexible GCL windows.

In [27], the authors present hardware enhancements to standard IEEE 802.1Qbv bridges
(along with correctness constraints for the schedule generation) that remove the need for
the isolation constraints between frames scheduled in the same egress queue defined in [5].
Another hardware adaptation for TSN bridges, which has been proposed by Heilmann et
al. [12] is to increase the number of non-critical queues in order to improve the bandwidth
utilization without impacting the guarantees for critical messages.

3 System Model

This section defines our system model for which we summarize the notation in Table. 1.
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3.1 Network Model

We represent the network as a directed graph G = (V , E) where V = ES
⋃

SW is the set of
end systems (ES) and switches (SW) (also called nodes), and E is the set of bi-directional full-
duplex physical links. An ES can receive and send network traffic while SWs are forwarding
nodes through which the traffic is routed. The edges E of the graph represent the full-duplex
physical links between two nodes, E ⊆ V × V . If there is a physical link between two nodes
va, vb ∈ V , then there exist two ordered tuples [va, vb], [vb, va] ∈ E. An equivalence between
output ports p ∈ P and links [va, vb] ∈ E can be drawn as each output port is connected to
exactly one link. A link [va, vb] ∈ E is defined by the link speed C (Mbps), propagation delay
dp (which is a function of the physical medium and the link length), and the macrotick mt.
The macrotick is the length of a discrete time unit in the network, defining the granularity
of the scheduling timeline [5]. Without loss of generality, we assume dp = 0 in this paper.

As opposed to previous work, we do not require that end-system are either synchronized
or scheduled. Since ESs can be unsynchronized and unscheduled, they transmit frames
according to a strict priority (SP) mechanism. Switches still need to be synchronized and
scheduled using the 802.1ASrev and 802.1Qbv, respectively.

3.2 Switch Model

Fig. 1a depicts the internals of a TSN switch. The switching fabric decides, based on the
internal routing table to which output port p a received frame will be forwarded. Each egress
port has a priority filter that determines in which of the available 8 queues (traffic-classes) of
that port a frame will be put. Each priority queue q ∈ p.Q stores the frames to be forwarded
in first-in-first-out (FIFO) order. Similar to [5], a subset of the queues (p.QST ) is used for ST
traffic, while the rest (p.Q) are used for non-critical communication. As opposed to regular
802.1Q bridges, where enqueued frames are sent out according to their respective priority, in
802.1Qbv bridges, there is a Time-Aware Shaper (TAS), also called timed-gate, associated
with each queue and positioned behind it. A timed-gate can be either in an open (O) or
closed (C ) state. When the gate is open, traffic from the respective queue is allowed to be
transmitted, while a closed gate will not allow transmission, even if the queue is not empty.
When multiple gates are open simultaneously, the highest priority queue has preference,
blocking others until it is empty or the corresponding gate is closed. The 802.1Qbv standard
includes a mechanism to ensure that no frames can be transmitted beyond the respective
gate’s closing point. This look-ahead checks whether the entire frame present in the queue
can be fully transmitted before the gate closes and, if not, it will not start the transmission.

The state of the queues is encoded in a GCL. A fundamental difference to the similar
technology TTEthernet (SAE AS6802) [19], is that in TSN the scheduling is done on the
level of traffic-classes instead of on an individual frame level [4]. Hence, an imperfect time
synchronization, frame loss, ingress policing (c.f. [5]), or the variance in the arrival of frames
from unscheduled and/or unsynchronized ESs may lead to non-determinism in the state of
the egress queues and, as a consequence, in the whole TSN network. If the state of the queue
is not deterministic at runtime, the order and timing of the sending of ST frames can vary
dynamically. In Fig. 1b, the schedule for the queue of the (simplified) switch SW, opens for
two frames and then, sometime later, for the duration of another two frames. The arrival
of frames from unscheduled and/or unsynchronized end systems may lead to a different
pattern in the egress queue of the switch, as illustrated in the top and bottom figures of
Fig. 1b. Note that we do not actually know the arrival times of the frames, and what we
depict in the figure are just two scenarios to illustrate the non-determinism. There may be
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(a) TSN Switch Internals

ES1

ES2
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24

13 24

SW

13 24
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ES2
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13 24

SW

13 24

(b) Queue states (inspired by [27]).

Figure 1 Switch internals and non-deterministic queue states due to variations in frame arrivals
from unscheduled and/or unsynchronized ESs.

scenarios where one of the frames, e.g., frame “2”, arrives much later. This variance makes
it impossible to isolate frames in windows and obtain deterministic queue states, and, as a
consequence, deterministic egress transmission patterns, as required by previous methods for
TSN scheduling (e.g. [5, 24, 21, 8]). We refer the reader to [5] for an in-depth explanation of
the TSN non-determinism problem.

The queue configuration is expressed by a tuple q = ⟨QST , Q⟩. The decision in which
queue to place frames is taken either according to the priority code point (PCP) of the VLAN
tag or according to the priority assignment of the IEEE 802.1Qci mechanism. In order to
formulate the scheduling problem, the GCL configuration is defined as a tuple ⟨ϕ, w, T ⟩q for
each queue q ∈ p.QST in an output port p, with the window offset ϕ, window length w and
window period T .

3.3 Application Model
The traffic class we focus on in this paper is scheduled traffic (ST), also called time-sensitive
traffic. ST traffic is defined as having requirements on the bounded end-to-end latency
and/or minimal jitter [5]. Communication requirements of ST traffic itself are modeled with
the concept of flows (also called streams), representing a communication from one sender
(talker) to one or multiple receivers (listeners). We define the set of ST flows in the network
as F . A flow f ∈ F is expressed as the tuple ⟨l, T, P, D⟩f , including the frame size, the flow
period in the source ES, the priority of the flow, and the required deadline representing
the upper bound on the end-to-end delay of the flow. The route for each flow is statically
defined as an ordered sequence of directed links,e.g., a flow f ∈ F sending from a source ES
v1 to another destination ES vn has the route r = [[v1, v2], ..., [vn−1, vn]]. Without loss of
generality, the notation is simplified by limiting the number of destination ES to one, i.e.,
unicast communication. Please note that the model can be easily extended to multicast
communication by adding each sender-receiver pair as a stand-alone flow with additional
constraints between them on the common path.

4 Problem Formulation

The problem formulation is as follows: Given (1) a set of flows F with statically defined
routes R, and (2) a network graph G, we are interested in determining GCLs, which is
equivalent to determining (i) the offset of windows q.ϕ, (ii) the length of windows q.w, and
(iii) the period of windows q.T such that the deadlines of all flows are satisfied and the overall
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bandwidth utilization (defined in Sect. 5.1) is minimized.
Let us illustrate the importance of determining optimized windows. Recall that with

flexible window-based scheduling we do not know the arrival times of frames, and frames of
different ST flows may interfere with each other. Frames that arrive earlier will delay frames
that arrive later; also, a frame may need to wait until a gate is open, or arrive at a time just
before a gate closure and cannot fit in the interval that remains for transmission.

We illustrate in Fig. 2 three window configurations (a), (b), and (c), motivating the need
to optimize the windows. The vertical axis represents each egress port in the network, and
the horizontal axis represents the timeline. The tall grey rectangles give the gate open time
for a priority queue. As mentioned, we do not know the arrival times of the frames, thus
it is necessary to provide a formal analysis method to ensure real-time performance. In
this paper, the timing guarantees are provided for a given window configuration using the
Network Calculus (NC)-based approach from [32] to determine the worst-case end-to-end
delay bounds (WCDs) for each flow. In the motivational example, the WCDs are determined
by constructing a worst-case scenario for each flow. Hence, in Fig. 2 we show worst-case
scenarios. The red and blue rectangles in the figure represent ST frames’ transmission. There
are two periodic flows f1 (blue rectangles) and f2 (red rectangles) with the same frame
size and priority. We use the arrows pointing down to mark the arrival time for ST frames
creating the worst-case case for f2. Let us assume that the deadline of each flow equals its
period fi.T . In each configuration in Fig. 2 we show that arrival scenario which would lead
to the worst-case situation for frame f2, i.e., the largest WCD for f2.

Since the ESs are unscheduled (without TAS) and/or without time synchronization
capabilities, the frames can arrive and be transmitted by the ES at any time (the offset of
a periodic flow on the ES is in an arbitrary relationship with the offsets of the windows in
the SWs). However, on the switches, frame transmissions are allowed to be forwarded only
during the scheduled window. The worst-case for f2 happens when the frame (1.1) of f1
arrives on [ES1, SW1] slightly earlier than the frame (2.1) of f2 arrives on [ES2, SW1], and

Figure 2 Motivational example showing the importance of optimizing the windows. Note that the
arrival times of frames are not known beforehand, hence we decided to illustrate in each configuration
(a) to (c) an arrival scenario that leads to the worst-case delay for frame f2.
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at the same time, they arrive on the subsequent egress port [SW1, SW2] at a time when the
remaining time during the current window is smaller than the frame transmission time. In
this case, the guard band delays the frames until the next window slot.

With the windows configuration in Fig. 2(a), the WCD of f2 is larger than its deadline,
i.e., WCD(f2) > f2.T , hence, f2 is not schedulable. If the window period is narrowed
down, as shown in Fig. 2(b), the WCD of f2 satisfies its deadline. However, there is a large
bandwidth usage occupied by the windows. Fig. 2(c) uses the same window period as in
Fig. 2(a) but changes the window offset. As can be seen in the figure, the WCD of the flow
f2 is also smaller than its deadline f2.T , and compared with Fig. 2(b), the bandwidth usage
of the windows is reduced. With the increasing complexity of the network, e.g., multiple
flows joining and leaving at any switch in the network and/or an increased number of ST
flows and priorities, an optimized window configuration cannot be done manually; therefore,
optimization algorithms are needed to solve this problem.

5 Optimization Strategy

The problem presented in the previous section is intractable. The decision problem associated
with the scheduling problem has been proved to be (NP)-complete in the strong sense [25].
Hence, we use an optimization strategy, called Constraint Programming-based Window
Optimization (CPWO), which is more suitable to find good solutions in a reasonable time.

CPWO takes as the inputs the architecture and application models and outputs a set of
the best solutions found during search (see Fig. 3). We use Constraint Programming (CP)
to search for solutions (the “CP solver” box). CP performs a systematic search to assign
the values of variables to satisfy a set of constraints and optimize an objective function,
see the “CP model” box: the sets of variables are defined in Sect. 5.2, the constraints in
Sect. 5.3 and the objective function in Sect. 5.1. A feasible solution is a valid solution that is
schedulable, i.e., the worst-case delays (WCDs) of streams are within their deadlines. Since
it is impractical to check for schedulability within a CP formulation, we employ instead the
Network Calculus (NC)-based approach from [32] to determine the WCDs, see the “WCD
Analysis” box in Fig. 3. The WCD Analysis is called every time the CP solver finds a
“new solution” which is valid with respect to the CP constraints. The “new solution” is not
schedulable if the calculated latency upper bounds are larger than the deadlines of some
critical streams.

Although CP can perform an exhaustive search and find the optimal solution, this is
infeasible for large networks. Instead, CPWO employs two strategies to speed up the search
to find optimized schedulable solutions in a reasonable time, at the expense of optimality.

CP solver

New solution
Variables
Domains
Constraints

Timing (pruning)
Objective function

CP model

Search traversal 
strategy: Metaheuristic

WCD Analysis
Network Calculus

Schedulable 
solutions

β

Architecture model Application model

Best solutions found

Figure 3 Overview of our proposed CPWO optimization strategy
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(i) A metaheuristic search traversal strategy: CP solvers can be configured with user-
defined search strategies, which enforce a custom order for selecting variables for assignment
and for selecting the values from the variable’s domain. Here, we use a metaheuristic strategy
based on Tabu Search [2].

(ii) A timing constraint specified in the CP model that prunes the search space: Ideally,
the WCD Analysis would be called for each new solution. However, an NC-based analysis is
time-consuming, and it would slow down the search considerably if called each time the CP
solver visits a new valid solution. Hence, we have introduced “search pruning” constraints
in the CP model (the “Timing (pruning)” constraints in the “CP model” box in Fig. 3),
explained in detail in Sect. 5.4.

These timing constraints implement a crude analysis that indicates if a solution may
be schedulable and are solely used by the CP solver to eliminate solutions from the search
space. These constraints may lead to both “relaxed-pruning” scenarios that are actually
unschedulable or “aggressive-pruning” scenarios that eliminate solutions that are schedulable.
The proxy function (pruning constraint) can thus be parameterized to trade-off runtime
performance for search-space pruning in the CP-model.

The timing constraints assume that for a given stream, its frames in a queue will be
delayed by other frames in the same queue, including a backlog of frames of the same
stream. A parameter B is used to adjust the number of frames in the backlog, tuning the
pruning level of the CP model’s timing constraints. Note that NC still checks the actual
schedulability, so it does not matter if the CP analysis is too relaxed—this will only prune
fewer solutions, slowing down the search. However, using overly aggressive pruning runs the
risk of eliminating schedulable solutions of good quality. We consider that B is given by
the user, controlling how fast to explore the search space. In the experiments, we adjusted
B based on the feedback from the WCD Analysis and the pruning constraint. If, during a
CPWO run, the pruning constraint from Sect. 5.4 was invoked too often, we decreased B, as
it was pruning too aggressively; otherwise, if the WCD analysis was invoked too often and
was reporting that the solutions were schedulable, we increased B.

We first define the terms needed for the CP model in Table. 2. Then, we continue with
the definition of the objective function, model variables, and constraints of the CP model.

5.1 Objective Function
The CP solver uses the objective function Ω, which minimizes the average bandwidth usage:

∀p ∈ P, ∀q ∈ p.Q : Ω =
∑ q.w

q.T

N (P ) . (1)

The average bandwidth usage is calculated as the sum of each window’s utilization, i.e., the
window length over its period, divided by the total number of windows in the CP model.

Table 2 Definition of terms used in CP model formulation

Term Definition
N (P ) Total number of windows assigned to priority queues
K(p) Hyperperiod of the port p

L(q) Maximum size of any frame from all flows assigned to the queue q

GB(q) Maximum transmission time of ST frames competing in the queue q

R(q) All flows assigned to the queue q

X (q) All flows arriving from a switch and assigned to the queue q
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Note that solutions found by a CP solver are guaranteed to satisfy the constraints defined in
Sect. 5.3. In addition, the schedulability is checked with the NC-based WCD Analysis [32].

5.2 Variables
The model variables are the offset, length, and period of each window, see Sect. 3.2. For
each variable, we define a domain which is a set of finite values that can be assigned to the
variable. CP decides the values of the variables as an integer from their domain in each
visited solution during the search. The domains of offset q.ϕ, length q.w, and period q.T

variables are defined, respectively, by

∀p ∈ P, ∀q ∈ p.Q :

0 < q.T ≤ K(p)
[va, vb].mt

, 0 ≤ q.ϕ ≤ K(p)
[va, vb].mt

,

L(q)
[va, vb].mt × [va, vb].C + GB(q) ≤ q.w ≤ K(p)

[va, vb].mt
. (2)

The domain of the window period is defined in the range from 0 to the hyperperiod of the
respective port p, i.e., the Least Common Multiple (LCM) of all the flow periods forwarded
via the port. The window period is an integer and cannot be zero. The domain of the window
offset is defined in the range from 0 to the hyperperiod of the respective port p. Finally, the
domain of the window length is defined in the range from minimum accepted window length
to the hyperperiod of the respective port p. The minimum accepted window length is the
length required to transfer the largest frame from all flows assigned to the queue q, protected
by the guard band GB(q) of the queue. A port p is attached to only one link [va, vb]; and
values and domains are scaled by the macrotick mt of the respective link.

5.3 Constraints
The first three constraints need to be satisfied by a valid solution: (1) the window is valid, (2)
two windows in the same port do not overlap, and (3) windows’ bandwidth is not exceeded.
The last two constraints reduce the search space by restricting the periods of (4) queues and
(5) windows to harmonic values in relation to the hyperperiod. Harmonicity may eliminate
some feasible solutions but we use this heuristic strategy to speed up the search.
(1) The Window Validity Constraint (Eq. (3)) states that the offset plus the length of a
window should be smaller or equal to the window’s period:

∀p ∈ P, ∀q ∈ p.Q : (q.w + q.ϕ) ≤ q.T. (3)

(2) Non-overlapping Constraint (Eq. (4)). Since we search for solutions in which windows
of the same port do not overlap, the opening or closing of each window on the same port
(defined by its offset and the sum of its offset and length, respectively) is not in the range of
another window, over all period instances:

∀p ∈ P, ∀q ∈ p.Q, ∀q′ ∈ p.Q, Tq,q′ = max(q.T, q′T ), ∀a ∈ [0, Tq,q′/q.T ), ∀b ∈ [0, Tq,q′/q′.T ) :
(q.ϕ + q.w + a × q.T ) ≤ (q′.ϕ + b × q′.T ) ∨ (q′.ϕ + q′.w + b × q′.T ) ≤ (q.ϕ + a × q.T )

(4)

(3) The Bandwidth Constraint (Eq. (5)) ensures that all the windows have enough
bandwidth for the assigned flows:

∀p ∈ P, ∀q ∈ p.Q, ∀f ∈ F(q) : q.w

q.T
≥

∑ f.l

f.T
. (5)
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(a) example capacity (b) example transmission demand

Figure 4 Example capacity and transmission demand for a window.

where F(q) is the set of flows assigned to the queue q.
(4) The Port Period Constraint (Eq. (6)) imposes that the periods of all the queues in a
port should be harmonic. This constraint is used to avoid window overlapping as well as
reducing the search space.

∀p ∈ P, ∀q ∈ p.Q, ∀q′ ∈ p.Q : (q.T%q′.T = 0) ∨ (q′.T%q.T = 0). (6)

(5) The Period Limit Constraint (Eq. (7)) reduces the search space by considering window
periods q.T that are harmonic with the hyperperiod of the port K(p) (divide it):

∀p ∈ P, ∀q ∈ p.Q : K(p)%q.T = 0. (7)

5.4 Timing constraints
As mentioned, it is infeasible to use a Network Calculus-based worst-case delay analysis to
check the schedulability of each solution visited. Thus, we have defined a Timing Constraint
as a way to prune the search space. Every solution that is not eliminated via this timing
constraint is evaluated for schedulability with the NC WCD analysis. The timing constraint
is a heuristic that prunes the search space of (potentially unschedulable) solutions; it is
not a sufficient nor a necessary schedulability test. The timing constraint is related to the
optimality of the solution, not to its correctness in terms of schedulability. A too aggressive
pruning may eliminate good quality solutions, and too little pruning will slow down the
search because the NC WCD analysis is invoked too often.

The challenge is that the min+ algebra used by NC cannot be directly expressed in
first-order formulation of CP. However, the NC formulation from [32] has inspired us in
defining the CP timing constraints. The Timing Constraint is defined in Eq. (8) and uses
the concepts of window capacity WC and transmission demand WD to direct the CP solver
to visit only those solutions where the capacity of each window, i.e., the amount of time
available to transmit frames assigned to its queue, is greater than or equal to its transmission
demand, i.e., the amount of transmission time required by the frames in the queue. A window
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capacity larger than the transmission demand indicates that a solution has high chances to
be schedulable:

∀p ∈ P, ∀q ∈ p.Q : WD ≤ WC . (8)

Thus, we first calculate the capacity WC of each window within the hyperperiod. This
capacity is similar to the NC concept of a service curve, and its calculation is similar to the
service curves proposed in the literature [28] for resources that use Time-Division Multiple
Access (TDMA), which is how our windows behave. For e.g., a window with a period of
10 µs, a length of 4 µs, and an offset of 3 µs; forwards 150 bytes over a 100 Mbps link in a
hyperperiod of 30 µs. In Fig. 4a, the capacity of such a window is depicted where the blue
line shows the throughput of the window for transferring data. The capacity increases when
the window opens (the rising slopes of the curve). The effect of window offset on the capacity
(the area under the curve) can be observed in the figure. The function WC calculates the
area under the curve to characterize the amount of capacity for a window in a hyperperiod,
defined in Eq. (9), where the link [va, vb] is attached to the port p and assigned to the queue q;
and function Y captures the transmission time of a single byte through link [va, vb].

To calculate the area under the curve, we consider 3 terms that are S1, S2, and S3. They
represent the total area under the curve caused by the window length, the window closure in
the remainder of the window period, and the window period, respectively. The WC value of
the example in Fig. 4a is 2,250 Bytes × µs, where the S terms are shown.

∀p ∈ P, ∀q ∈ p.Q :

I = K(p)
q.T

, J = (q.w − GB(q)) × Y([va, vb])
[va, vb].C ,

S1 = I × q.w × J

2 , S2 = I × (q.T − q.w. − q.ϕ) × J,

S3 = I × (I − 1)
2 × q.T × J, WC = S1 + S2 + S3 (9)

Secondly, we calculate the transmission demand WD using Eq. (10), where the function R(q)
captures all the flows that are assigned to the queue q. The transmission demand is inspired
by the arrival curves of NC. These are carefully determined in NC considering that the
flows pass via switches and may change their arrival patterns [32]. In our case, we have
made the following simplifying assumptions in order to be able to express the “transmission
demand” in CP. We assume that all flows are strictly periodic and arrive at the beginning of
their respective periods. This is “optimistic” with respect to NC in the sense that NC may
determine that some of the flows have a bursty behavior when they reach our window. To
compensate for this, we consider that those flows that arrive from a switch may be bursty
and thus have a backlog B of frames that have accumulated; flows that arrive from ESs do
not accumulate a backlog. Fig. 4b shows three flows, f1 to f3, and only f3 arrives from a
switch and hence will have a backlog of frames captured by the flow denoted with f ′

3 (we
consider a B of 1 in the example). We also assume that the backlog f ′

3 will not arrive at
the same time as the original flow f3, and instead, it is delayed by a period. Again, this
is a heuristic used for pruning, and the actual schedulability check is done with the NC
analysis. So, the definition of the “transmission demand” does not impact correctness, but,
as discussed, it will impact our algorithm’s ability to search for solutions.

Since, in our case, the deadlines can be larger than the periods, we also need to consider
for each flow bursts of frames coming from SWs and an additional frame for each flow coming
from ESs (the ES periods are not synchronized with the SWs GCLs). Since we do not



M. Barzegaran et. al. 13

perform a worst-case analysis, we instead use a backlog parameter B, which captures the
possible number of delayed frames in a burst within a flow forwarded from another SW. Note
that as explained in the overview at the beginning of Sect. 5, B is a user-defined parameter
that controls the “pruning level” of our timing constraint, i.e., how aggressively it eliminates
candidates from the search space.

We give an example in Fig. 4b where the flows f1 < 50, 5, 0, 5 > and f2 < 60, 6, 0, 6 >

have been received from an ES and the flow f3 < 100, 15, 0, 15 > has been received from a
SW. For the flow f3 forwarded from a previous switch, we consider that one instance of the
flow (determined by the backlog parameter B = 1), let us call it f ′

3, may have been delayed
and received together with the current instance f3. This would cause a delay in the reception
of the flows in the current node. The reception curve in Fig. 4b is the sum of curves for each
stream separately in a hyperperiod of 30 µs.

We give the general definition of the transmission demand value WD as the area under
the curve for the accumulated data amount of received flows and backlogs of the flows
arrived from switches in a hyperperiod. For calculating the transmission demand WD, we
consider 2 terms that are A1 and A2. The term A1 calculates the area under the curve for
the accumulated data of all flows assigned to the queue q captured by R(q), in a hyperperiod.
Any frames of all flows R(q) have arrived at the beginning of their period. The term A2
calculates the area under the curve for the accumulated backlog data of the flows arrived
from a switch captured by X (q). The backlog data of the flows X (q) are delayed for a period
and controlled by B, which captures the number of backlogs. The function WD returns
16,650 Bytes × µs in our example, see also Fig. 4b for the values of the terms A1 and A2.

∀p ∈ P, ∀q ∈ p.Q, ∀f ∈ R(q), ∀f ′ ∈ X (q) :

I = K(p)
f.T

, I ′ = K(p)
f ′.T

A1 = I × (I + 1)
2 × f.T × f.l,

A2 = I ′ × (I ′ + 1 − 2 × B)
2 × f ′.T × f ′.l,

WD = A1 + A2 (10)

Please note that the correctness of the constraints (Eq. (3), (4), (5)) follows from the
implicit hardware constraints of 802.1Q(bv) (see the discussion in [5, 24]) while other
constraints (Eq. (6), (7)) are used to limit the placement of GCL windows and are not related
to correctness, just to optimality. Since the transmission of frames is decoupled from the
GCL windows, the schedule’s correctness concerning the end-to-end latency of streams is
always guaranteed due to the NC analysis, which is intertwined in the schedule step.

6 Evaluation

In this section, we first discuss the ST scheduling approaches in the literature, motivating
our proposed approach called Flexible Window-based GCL (FWND), see Sect. 6.1. We
give details of our setup and test cases in Sect. 6.2 and evaluate our windows optimization
solution CPWO for FWND on synthetic and real-world test cases on Sect. 6.3 and Sect. 6.4,
respectively. We also compare the CPWO results with the related work and validate the
generated GCLs with OMNET++ in Sect. 6.5.
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6.1 Scheduling Approaches

The related work on ST scheduling using 802.1Qbv consists of: (i) zero-jitter GCL (0GCL) [5,
21], (ii) Frame-to-Window-based GCL (FGCL) [24], and (iii) Window-based GCL (WND) [22].

We summarize the requirements of the ST scheduling approaches from the related work
and our FWND approach in the first column of Table 3. The first three requirements refer to
the device capabilities needed for the different approaches, and the next seven rows present
the constraints and isolation requirements. The last two rows present the requirements of
the complexity of the optimization problem that needs to be solved to provide a solution for
the respective approach.

To better understand the fundamental differences and the similarities (in terms of the
imposed correctness constraints and schedulability parameters) between our work and the
approaches that require synchronized and scheduled end systems, we briefly reiterate the
formal constraints of previous work. We describe, based on [5, 4, 24], the relevant scheduling
constraints for creating correct TSN schedules when using frame- and window-based methods.
Table 3 shows which of these are needed by which approach. We adapt some notations
from [5, 4, 3] to describe the constraints and assume certain simplifications without loss
of generality, e.g. the macrotick is the same in all devices, all flows have only one frame
per period, the propagation delay dp is 0. We refer the reader to [5, 24] for a complete
and generalized formal definition of the correctness constraints. We denote the messages
(frames) of a flow fi on a link [va, vb] as m

[va,vb]
i . A message m

[va,vb]
i is defined by the

tuple ⟨m[va,vb]
i .ϕ, m

[va,vb]
i .l⟩, denoting the transmission time and duration of the frame on the

respective link [5, 4].
Frame Constraint. Any frame belonging to a critical flow has to be transmitted

between time 0 and its period Ti. To enforce this, we have the frame constraint from [5]:

∀fi ∈ F , ∀[va, vb] ∈ fi.r :
(

m
[va,vb]
i .ϕ ≥ 0

)
∧

(
m

[va,vb]
i .ϕ ≤ fi.T − m

[va,vb]
i .l

)
.

Table 3 Time-Sensitive Message Transmission Approaches in TSN

Requirements 0GCL
[5][21]

FGCL
[24]

WND
[22] FWND

Device Capabilities 802.1Qbv 802.1Qbv 802.1Qbv 802.1Qbv
ES Capabilities scheduled scheduled non-scheduled non-scheduled
SW Capabilities scheduled scheduled scheduled scheduled
Frame Constraint Yes Yes Yes Yes
Link Constraint1) Yes Yes No No
Bandwidth Constraint No No No Yes
Flow Transmission Constraint2) Yes Yes No No
Frame-to-Window Assignment No Yes No No
Window Size Constraint No Yes Yes Yes
Flow/Frame Isolation Yes Yes No No
End-to-end Constraint Yes Yes Yes Yes

Schedule synthesis Yes
(intractable)

Yes
(intractable)

No (only
windows)

No (only
windows)

Timing analysis required No No Yes Yes
1) No two frames routed through the same physical link can overlap in the time domain, also named

“Ordered Windows Constraint” in [24].
2) The propagation of frames of a flow follows the sequential order along the path of the flow, also

named “Stream Constraint” in [24].
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Link Constraint. Since there can only be one frame at a time on a physical link, we
enforce that no two frames sent on the same egress port may overlap in the time domain.
The link constraint adapted from [5] is hence:

∀[va, vb] ∈ E, ∀m
[va,vb]
i , m

[va,vb]
j (i ̸= j), ∀a ∈ [0, hpj

i /fi.T − 1], ∀b ∈ [0, hpj
i /fj .T − 1] :(

m
[va,vb]
i .ϕ + a × fi.T ≥ m

[va,vb]
j .ϕ + b × fj .T + m

[va,vb]
j .l

)
∨(

m
[va,vb]
j .ϕ + b × fj .T ≥ m

[va,vb]
i .ϕ + a × fi.T + m

[va,vb]
i .l

)
,

where hpj
i = lcm(fi.T, fj .T ) is the hyperperiod of fi and fj .

Flow Transmission Constraint. The (optional) flow transmission constraint enforces
that a frame is forwarded by a device only after it has been received at that device also
taking into account the network precision, denoted with δ:

∀fi ∈ F , ∀[va, vx], [vx, vb] ∈ fi.r, ∀m
[va,vx]
i , ∀m

[vx,vb]
i : m

[vx,vb]
i .ϕ − δ ≥ m

[va,vx]
i .ϕ + m

[va,vx]
i .l.

End-to-End Constraint. The maximum end-to-end latency constraint (expressed by
the deadline fi.D) enforces a maximum time between the sending and the reception of a flow.
We denote the sending link of stream fi with src(fi) and the last link before the receiving
node with dest(fi). The maximum end-to-end latency constraint [5] is hence

∀fi ∈ F : m
dest(fi)
i .ϕ + m

dest(fi)
i .L − m

src(fi)
i .ϕ ≤ fi.D − δ.

Here again the network precision δ needs to be taken into account since the local times of
the sending and receiving devices can deviate by at most δ.

802.1Qbv Flow/Frame Isolation. Due to the non-determinism problem in TSN (c.f.
Sect. 3.2), previous solutions (e.g., [5, 24]) need an isolation constraint that maintains queue
determinism. We refer the reader to [5] for an in-depth explanation and only summarize
here the flow and frame isolation constraint adapted from [5]. Let m

[va,vb]
i and m

[va,vb]
j be,

respectively, the frame instances of fi ∈ F and fj ∈ F scheduled on the outgoing link [va, vb]
of device va. Flow fi arrives at the device va from some device vx on link [vx, va]. Similarly,
flow fj arrives from another device vy on incoming link [vy, va]. The simplified flow isolation
constraint adapted from [5], under the assumption that the macrotick of the involved devices
is the same, is as follows:

∀[va, vb] ∈ E, ∀m
[va,vb]
i , m

[va,vb]
j (i ̸= j), ∀a ∈ [0, hpj

i /fi.T − 1], ∀b ∈ [0, hpj
i /fj .T − 1] :(

m
[va,vb]
i .ϕ + a × fi.T + δ ≤ m

[vy,va]
j .ϕ + b × fj .T

)
∨(

m
[va,vb]
j .ϕ + b × fj .T + δ ≤ m

[vx,va]
i .ϕ + a × fi.T

)
.

Here again hpj
i = lcm(fi.T, fj .T ) is the hyperperiod of fi and fj . The constraint ensures

that once a flow arrives at a device, no other flow can enter the device until the first flow has
been sent.

The above constraints apply to frames that are placed in the same queue on the egress
port. However, the scheduler may choose (if possible) to place streams in different queues,
isolating them in the space domain. Hence, the complete constraint [5] for frame/flow
isolation for two flows fi and fj scheduled on the same link [va, vb] can be expressed as(

Φ[va,vb](fi, fj)
)

∨
(

m
[va,vb]
i .q ̸= m

[va,vb]
j .q

)
,
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with m
[va,vb]
i .q ≤ Ntt and m

[va,vb]
j .q ≤ Ntt and where Φ[va,vb](fi, fj) denotes either the flow

or frame isolation constraint from before.
Decoupling of frames. So far, the constraints were applicable on the level of frames,

and the open windows of the GCLs were constructed from the resulting frame schedule. The
approach in [24] decouples the frame transmission from the respective open gate windows
defined in the GCLs, similar to our approach1. However, in [24] the requirement is that
there is a unique assignment of which frames are transmitted in which windows, although
also multiple frames can be assigned to be sent in the same window. Hence, the assignment
of frames and, consequently, the length of each gate open window are, therefore, an output
of the scheduler. Therefore, we have to construct additional constraints when (partially)
decoupling frames from windows. For a more in-depth description and formalization of these
constraints we refer the reader to [24].

Frame-to-Window Assignment. The frame-to-window assignment restricts a frame to be
assigned to a specific window, although multiple frames can be assigned to the same window.

Window Size Constraint. The length of the gate open window has to be restricted to the
sum of the frame lengths that have been assigned to it.

Comparing the existing approaches with the one proposed in this paper, we see that the
choice of scheduling mechanism is, on the one hand, highly use-case specific and, on the other
hand, is constrained by the available TSN hardware capabilities in the network nodes. While
the frame- and window-based methods from related work result in precise schedules that
emulate either a 0- or constrained-jitter approach (e.g., like in TTEthernet), they require
end systems to not only be synchronized to the network time but also the end devices to
have 802.1Qbv capabilities, i.e., to be scheduled. This limitation might be too restrictive for
many real-world systems relying on off-the-shelf sensors, processing, and actuating nodes.
While our FWND method overcomes this limitation, it does require a worst-case end-to-end
analysis that introduces a level of pessimism into the timing bounds, thereby reducing the
schedulability space for some use cases. However, as seen in Table 3, our method does not
require many of the constraints imposed on the flows and scheduled devices from previous
work, thereby reducing the complexity of the schedule synthesis.

6.2 Test Cases and Setup
FWND is implemented in Java using Google OR-Tools [11] and the Java kernel of the RTC
toolbox [30] and was run on a computer with an i9 CPU at 3.6 GHz and 32 GB of RAM.
We have considered a time limit of 10 to 90 minutes, depending on the test case size. The
macrotick and B parameters are set to 1 µs and 1, respectively, in all the test cases.

We have generated 15 synthetic test cases that have different network topologies (three
test cases for each topology in Fig. 5) inspired by industrial and automotive application
requirements. Similar to [34], the network topologies are small ring & mesh (SRM), medium
ring (MR), medium mesh (MM), small tree-depth 1 (ST), and medium tree-depth 2 (MT).
Flows of the test cases are randomly generated, and the message sizes are randomly chosen
between the minimum and the maximum Ethernet frame size, while their periods are selected
from the set P = {1,500, 2,500, 3,500, 5,000, 7,500, 10,000}, all in µs. The physical link
speed is set for 100 Mbps. The details of the synthetic test cases are in Table 4 where the
second column shows the topology of the test cases, and the number of switches, end systems,

1 Note that [5, 24, 21] cannot be used in our context because they require scheduled and synchronized
ESs
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Table 4 Details of the synthetic test cases

No. Network Total No. Total No. Total No. Hyperperiod
Topology of SWs of ESs of Flows (µs)

1 SRM 2 3 9 15,000
2 SRM 3 3 11 70,000
3 SRM 3 4 15 70,000
4 MR 4 6 15 30,000
5 MR 4 8 21 210,000
6 MR 5 11 27 210,000
7 MM 4 5 13 15,000
8 MM 6 12 30 210,000
9 MM 7 13 35 210,000
10 ST 3 4 7 15,000
11 ST 3 6 12 15,000
12 ST 3 7 16 105,000
13 MT 7 8 18 105,000
14 MT 7 8 25 105,000
15 MT 7 12 32 210,000

and flows are shown in columns 3 to 6.
We have also used two realistic test cases: an automotive case from General Motors (GM)

and an aerospace case, the Orion Crew Exploration Vehicle (CEV). The GM case consists of
27 flows varying in size between 100 and 1,500 bytes, with periods between 1 ms and 40 ms

and deadlines smaller or equal to the respective periods. The CEV case is larger, consisting
of 137 flows, with sizes ranging from 87 to 1,527 bytes, periods between 4 ms and 375 ms,
and deadlines smaller or equal to the respective periods. The physical link speed is set for
1000 Mbps. More information can be found in the corresponding columns in Table 5. Use
cases use the same topologies as in [10] and [32], and we consider that all flows are ST.

6.3 Evaluation on synthetic test cases
We have evaluated our CPWO solution for FWND on synthetic test cases. The results are
depicted in Table 6 where we show the objective function value (average bandwidth Ω from
Eq. (1)) and the mean WCDs. For quantitative comparison, we have also reported the results
for the three other ST scheduling approaches: 0GCL, FGCL, WND. 0GCL and FGCL were
implemented by us with a CP formulation using the constraints from [5] and [24], respectively,
where these techniques were proposed. The WND method has been implemented with the
heuristic presented in [22], but instead of using the WCD analysis from [31], we extend it
to use the analysis from [32] instead, in order not to unfairly disadvantage WND over our
CPWO solution. Note that the respective mean worst-case end-to-end delays in the table are
obtained over all the flows in a test case, from a single run of the algorithms, since the output
of the algorithms is deterministic based on worst-case analyses, not based on simulations.

It is important to note that 0GCL and FGCL are presented here as a means to evaluate
CPWO; however, they are not producing valid solutions for our problem, which considers
unscheduled end systems, see Table 3 for the requirements of each method. As expected, when
end systems are scheduled and synchronized with the rest of the network as is considered in
0GCL and FGCL, we obtain the best results in terms of bandwidth usage (Ω) and WCDs,
with the comment that 0GCL may further reduce the WCDs compared to FGCL.

The only other approach that has similar assumptions to our FWND is WND from [22].
As we can see from Table 6, in comparison to WND, our CPWO solution can slightly reduce
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Figure 5 Network topologies used in the test cases

the bandwidth usage. The most important result is that CPWO significantly reduces the
WCDs compared to WND, with an average of 104% and up to 437% for some test cases
such as TC13. This means that we are able to obtain schedulable solutions in more cases
compared to the work in [22].

Also, when comparing the WCDs obtained by our FWND approach with the case when
the end systems are scheduled, i.e., 0GCL and FGCL, we can see that the increase in WCDs
is not dramatic. This means that for many classes of applications, which can tolerate a slight
increase in latency, we can use our CPWO approach to provide solutions for more types of
network implementations, including those that have unscheduled and/or unsynchronized end
systems. In addition, due to the complexity of their CP model, it takes a long runtime to
obtain solutions for 0GCL and FGCL, and the CP-model for FGCL run out of memory for
some of the test cases (the NA in the table). As shown in the last two columns of Table 6,
where we present the runtimes of 0GCL and FWND, FWND reduces the runtime significantly.
The reason for reduced runtime with FWND is that the CP model has to determine values
for fewer variables compared to 0GCL. FWND introduces 3 variables (offset, period and
length) for each window (queue) in the network, whereas 0GCL introduces a variable for each
frame of each flow. The number of variables in the 0GCL model depends on the hyperperiod,
the number of flows, and the flow periods, whereas the number of variables in the FWND
model depends on the number of switches and used queues.

6.4 Evaluation on realistic test cases
We have used two realistic test cases to investigate the scalability of CPWO and its ability
to produce schedulable solutions for real-life applications. The results of the evaluation are
presented in Table 5 where the mean WCDs, objective value Ω, and runtime for the two test
cases are given. As we can see, CPWO has successfully scheduled all the flows in both test
cases. Note that once all flows are schedulable, CPWO aims at minimizing the bandwidth.
This means that CPWO may be able to achieve even smaller WCD values at the expense
of bandwidth usage. In terms o runtime, the CEV test case takes longer since it has 864

Table 5 Performance of CPWO for FWND on realistic test cases

ORION (CEV) GM
ES 31 20
SW 15 20
Flows 137 27
Mean WCDs (µs) 10,376 1,981
Ω (×1000) 435 84
Runtime (s) 891 17
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Table 6 Evaluation results on synthetic test cases

No. Ω1) Ω1) Ω1) Ω1) Mean worst-case Mean worst-case Mean worst-case Mean worst-case Mean Runtime Mean Runtime
for for for for e2e-delay for e2e-delay for e2e-delay for e2e-delay for for for

0GCL FGCL WND FWND 0GCL (µs) FGCL(µs) WND (µs) FWND (µs) 0GCL (ms) FWND (ms)
1 35 35 614 510 192 126 1838 1556 215 8
2 25 22 640 528 246 151 2461 1806 895 12
3 15 15 549 495 175 486 1964 1384 1518 22
4 13 13 330 285 160 776 2925 1832 525 16
5 14 NA2) 295 285 131 NA2) 2838 2347 5187 16
6 13 NA2) 275 205 129 NA2) 2953 1976 6291 17
7 12 12 238 204 125 764 2913 1561 1152 35
8 13 NA2) 238 202 114 NA2) 2878 1725 7603 36
9 12 NA2) 217 191 122 NA2) 3074 1927 9171 56
10 8 8 329 265 136 2284 4397 4327 2611 165
11 10 10 381 302 159 984 3047 2057 2840 231
12 11 NA2) 516 321 187 NA2) 2543 1326 4650 260
13 10 10 401 302 101 561 2529 471 978 130
14 9 9 611 402 120 785 2254 628 1256 162
15 9 NA2) 544 413 114 NA2) 2680 713 6116 163

1) Values are multiplied by 1000
2) Ran out of memory
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Figure 6 Worst-case delay comparison with simulated response times.

variables, whereas GM has only 102 variables in the CP models.

6.5 Validating the solutions with OMNET++

We have used the OMNET++ simulator with the TSN NeSTiNg extension [9] to validate
the generated GCLs. Thus, we have synthesized the GCLs for all approaches on all synthetic
test cases, and we have observed that the GCLs are correct and the simulation behaves
as expected. The mean WCDs of CPWO for the synthetic test cases and the worst-case
latency observed during multiple OMNET++ simulations (with the windows from CPWO)
are depicted in Fig. 6a. As expected, the latency values reported by OMNET++ are smaller
than the WCDs, as reported by the WCD Analysis from [32]. This is because a simulation
cannot easily uncover the worst-case behavior. However, the simulation indicates the average
behavior, and small delays mean that even for unscheduled/unsynchronized end systems,
we are able to obtain solutions that are not only schedulable (WCDs are smaller than
the deadlines) but also have good average behavior, where most of the time the delays
are reasonable, even smaller than the static schedules obtained by 0GCL and FWND for
scheduled and synchronized ESs. The pessimism result of the WCD analysis is unavoidable
in systems with un-synchronized and/or unscheduled end-systems; in practice, however,
simulated delays are much smaller, as can be seen in Fig. 6a and Fig. 6b. We also show in
Fig. 6b the simulated delays and WCDs for all flows of TC12. All the flows are schedulable,
and, as expected, the simulated delays are smaller than the WCDs, calculated with the
worst-case delay analysis derived in the work from [32].
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Table 7 Scalability evaluation of CPWO

No. Total No. Total No. Total No. Mean WCDs Largest deadline Ω
of Flows of ESs of SWs µs µs (×1000)

TC1 100 50 35 3,226 4,000 249
TC2 150 55 40 3,521 4,000 366
TC3 200 60 40 4,387 5,000 396
TC4 300 65 40 4,911 6,000 468
TC5 400 70 45 5,210 6,000 498
TC6 500 75 45 4,399 5,000 511

6.6 Scalability Evaluation
We have investigated the scalability of CPWO on 6 larger test cases (TC1 to TC6), that
have up to 120 devices (75 ESs and 45 SWs) and 500 flows. The results and the details of
the test cases are presented in Table 7, where columns 2, 3, and 4 show the number of flows,
end-systems, and switches, respectively. Columns 5, 6, and 7 show the mean WCD of flows in
µs, the largest deadline of all flows in µs, and the objective value Ω, related to bandwidth, see
Eq. (1). CPWO was able to generate schedulable solutions in all cases. Furthermore, CPWO
is optimize the schedules for minimum bandwidth usage and has generated solutions that,
besides being schedulable, have mean WCDs on average 14% smaller than the respective
deadlines in all test cases.

7 Conclusions

We have presented a novel, more flexible heuristic schedule synthesis approach for TSN
networks, which decouples the frame scheduling from the generation of time-aware shaper
(TAS) windows. Our method eliminates the often-unrealistic constraint that end systems are
scheduled and synchronized (i.e., they have TSN capabilities) required by previous methods
to provide real-time guarantees for critical traffic in IEEE 802.1Qbv TSN networks. Our
approach intertwines an existing worst-case delay analysis method with a CP-solver into a
novel and scalable heuristic approach that uses a Tabu Search metaheuristic search strategy in
the CP-solver. Furthermore, to improve scalability, we have proposed a novel proxy function
which can be parametrized to trade-off runtime performance for search-space pruning in the
CP-model. We evaluated our approach using synthetic and real-world test cases, comparing
it with existing mechanisms and validated the generated schedules using OMNET++.
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