

Scheduling Real-Time Communication in IEEE 802. I Qbv Time Sensitive Networks

Silviu S. Craciunas, Ramon Serna Oliver, Martin Chmelik, Wilfried Steiner

TTTech Computertechnik AG

RTNS 2016, Brest, France, October 18-21, 2016

Why TSN?

www.tttech.com

Time-Sensitive Networks

IEEETSN task group - collection of sub-standards that enhance 802 Ethernet with fully deterministic real-time capabilities

Standard	Description
802.1ASrev	Timing & Synchronization
802.1Qbv	Enhancements for Scheduled Traffic (Timed Gates for Egress Queues)
802. I Qbu	Frame Preemption
802. Qca	Path Control and Reservation
802. Qcc	Central Configuration Management
802. l Qci	Per-Stream Time-based Ingress Filtering and Policing
802.ICB	Redundancy, Frame Replication & Elimination

Time-Sensitive Networks

www.tttech.com

IEEETSN task group - collection of sub-standards that enhance 802 Ethernet with fully deterministic real-time capabilities

Standard	Description
802.1ASrev	Timing & Synchronization
802.1Qbv	Enhancements for Scheduled Traffic (Timed Gates for Egress Queues)
802.1Qbu	Frame Preemption
802.1Qca	Path Control and Reservation
802. Qcc	Central Configuration Management
802. l Qci	Per-Stream Time-based Ingress Filtering and Policing
802.ICB	Redundancy, Frame Replication & Elimination

Time-Sensitive Networks

www.tttech.com

IEEETSN task group - collection of sub-standards that enhance 802 Ethernet with fully deterministic real-time capabilities

Standard	Description
802 LASrev	Timing & Synchronization
802.1Qbv	Enhancements for Scheduled Traffic (Timed Gates for Egress Queues)
802.1Qbu	Frame Preemption
802.1Qca	Path Control and Reservation
802. Qcc	Central Configuration Management
802. l Qci	Per-Stream Time-based Ingress Filtering and Policing
802.ICB	Redundancy, Frame Replication & Elimination

Ensuring Reliable Networks

www.tttech.com

Ensuring Reliable Networks

Ensuring Reliable Networks

www.tttech.com

 $\langle G(E), G(Q) \rangle$

Device capabilities

G(E)

 V_{s}

Queue configuration

$$G(Q) = \langle \aleph, \aleph_{tt}, \aleph_{prio} \rangle$$

Scheduled Es

 V_{e}

Scheduled Sw Scheduled Es+Sw

 V_{e+s}

www.tttech.com

 $\langle G(E), G(Q) \rangle$

Device capabilities

G(E)

 V_{s}

Queue configuration

$$G(Q) = \langle \aleph, \aleph_{tt}, \aleph_{prio} \rangle$$

Scheduled Es Scheduled Sw

 V_{e}

 V_{e+s} Scheduled Es+Sw

www.tttech.com

 $\langle G(E), G(Q) \rangle$

 V_{e+s}

Scheduled Es+Sw

Device capabilities

G(E)

Queue configuration

$$G(Q) = \langle \aleph, \aleph_{tt}, \aleph_{prio} \rangle$$

 $\aleph_{tt} \geq 1$

 V_{e} V_{s} Scheduled Es Scheduled Sw

www.tttech.com

 $\langle G(E), G(Q) \rangle$

Device capabilities

Queue configuration

G(E) V_e V_s V_{e+s} Scheduled Es Scheduled Sw Scheduled Es+Sw $G(Q) = \langle \aleph, \aleph_{tt}, \aleph_{prio} \rangle$

 $\aleph_{tt} \geq 1$

- Critical traffic assigned to the scheduled queues
- Non-critical traffic assigned to priority queues (post-analysis through network calculus [Frances@ERTS06])
- Isolation: non-critical streams may interfere with each other in priority queues, but not with critical streams (isolated in the scheduled queues)

Network & traffic model

- multi-hop layer 2 switched network via full-duplex multi-speed links
- (multicast) TSN streams with multiple frames per stream
- synchronised time (<I usec precision)
- wire and device delays

www.tttech.com

- Scheduled 802. I Qbv-compatible devices (Sw + Es)
- Scheduled (mutually exclusive) & priority queues
- Guaranteed delivery of critical traffic with known latency, small & bounded jitter

Copyright ©TTTech Computertechnik AG. All rights reserved.

Ensuring Reliable Netwo

TTE-Switch

[[ech

Deterministic Ethernet Constraints Ensuring Reliable Networks

Stream and e2e latency constraints Ensuring Reliable Networks

www.tttech.com

see also [Steiner@RTSS10] or [Craciunas@RTNS14]

www.tttech.com

www.tttech.com

In order to maintain jitter and latency requirements we expect at each device a certain timely order of frames

www.tttech.com

In order to maintain jitter and latency requirements we expect at each device a certain timely order of frames

www.tttech.com

www.tttech.com

www.tttech.com

www.tttech.com

www.tttech.com

Queue Interleaving

www.tttech.com

Queue Interleaving

- synchronization errors, frame loss, time-based ingress policing (e.g. IEEE 802. I Qci) may lead to non-deterministic placement in queues during runtime
- timed gates control events on the egress port, not the order of frames in the queue
- placing of frames in the scheduled queues at runtime may be non-deterministic

Timely behaviour of streams may oscillate, accumulating jitter for the overall end-to-end transmission

www.tttech.com

www.tttech.com

www.tttech.com

www.tttech.com

www.tttech.com

Solves the non-determinism problem but reduces the solution space

www.tttech.com

www.tttech.com

www.tttech.com

www.tttech.com

www.tttech.com

www.tttech.com

www.tttech.com

www.tttech.com

- Once a flow has arrived, no other flow can arrive in the same queue until the first flow has been completely sent
- Better than queue isolation but still restrictive

www.tttech.com

- Once a flow has arrived, no other flow can arrive in the same queue until the first flow has been completely sent
- Better than queue isolation but still restrictive

www.tttech.com

- Once a flow has arrived, no other flow can arrive in the same queue until the first flow has been completely sent
- Better than queue isolation but still restrictive

www.tttech.com

www.tttech.com

www.tttech.com

www.tttech.com

www.tttech.com

www.tttech.com

www.tttech.com

www.tttech.com

www.tttech.com

www.tttech.com

www.tttech.com

www.tttech.com

- Ensure that there are only frames of one flow in the queue at a time
- Frames from another flow may only enter the queue if the already queued frames of the initial flow have been serviced
- Less performant than stream isolation since the solver has to consider at all frame interleavings

The constraint for minimum jitter scheduling of critical traffic for 802. I Qbv networks is:

isolate frames/streams in the **time domain** OR isolate streams in **different queues**

802. I Qbv configurations

 $\{V_{e+s}, \langle 1|1|0\rangle\}$ $\{V_{e+s}, \langle n|1|n-1\rangle\}$

 $\{V_{e+s}, \langle n|n|0\rangle\}$

$$\{V_{e+s}, \langle n|m|n-m\rangle\}$$

 $\{V_{e+s}, \langle n|0|n\rangle\}$

Only critical traffic (serialized similar to bus systems)

Ensuring Reliable Networks

Legacy AVB systems that require a few additional highcriticality flows [Specht@ECRTS16]

Maximize solution space for critical traffic, non-critical traffic can be scheduled by inverting the cumulated schedule of scheduled queues

High-criticality applications that feature both scheduled and non-scheduled traffic, trade-off between schedulability of critical traffic and timeliness properties and flexibility for non-scheduled traffic

Standard AVB (IEEE 802.1BA) network in which flows are serviced according to the priority

Copyright ©TTTech Computertechnik AG. All rights reserved.

Trech

www.tttech.com

www.tttech.com

Find **offsets** and **queue assignments** for individual frames of TSN streams along the route that conform to the constraints

Find **offsets** and **queue assignments** for individual frames of TSN streams along the route that conform to the constraints

Reduces to finding a solution for a set of inequalities resulting from

- frame constraints
- link constraints
- stream constraints
- end-to-end latency constraints
- stream or frame isolation constraints

Copyright ©TTTech Computertechnik AG. All rights reserved.

> 802.10bv

Find **offsets** and **queue assignments** for individual frames of TSN streams along the route that conform to the constraints

Reduces to finding a solution for a set of inequalities resulting from

- frame constraints
- link constraints

www.tttech.com

- stream constraints
- end-to-end latency constraints
- stream or frame isolation constraints

802.IQbv

NP-complete
Satisfiability Modulo Theories

satisfiability of logical formulas in first-order formulation background theories $\mathcal{LA}(\mathbb{Z}) \ \mathcal{BV}$ variables x_1, x_2, \dots, x_n logical symbols $\lor, \land, \neg, (,)$ non-logical symbols $+, =, \%, \leq$ quantifiers \exists, \forall optimization (OMT) [Bjørner@TACAS15]

A lot of solvers and a very active community OpenSMT [Bruttomesso@TACAS10] Yices [Dutertre@CAV14] CVC4 [Barrett@CAV11] Z3 [de Moura@TACAS08]

Copyright ©TTTech Computertechnik AG. All rights reserved.

Ensuring Reliable Networ

Tlech

Satisfiability Modulo Theories

background theories

variables x_1, x_2, \ldots, x_n

logical symbols $\lor, \land, \neg, (,)$

non-logical symbols $+,=,\%,\leq$

quantifiers 3,4

optimization (OMT) [Bjørner@TACASI5]

A lot of solvers and a very active community

OpenSMT [Bruttomesso@TACAS10] Yices [Dutertre@CAV14] CVC4 [Barrett@CAV11] Z3 [de Moura@TACAS08]

Copyright ©TTTech Computertechnik AG. All rights reserved.

Ensuring Reliable Networ

ſſech

Optimization

Optimize schedule with respect to certain properties of the system (e.g. minimize end-to-end latency of selected streams)

802. I Qbv-specific optimizations:

- **QoS properties**: minimize required scheduled queues in order to increase QoS properties of non-critical traffic
- **Design space exploration** in case of infeasible use-cases, i.e. find the minimal number of queues required for scheduled traffic such that a schedule is found

Many more optimization opportunities in combination with other TSN sub-standards (e.g. frame preemption)

Experiments

- **Z3** v4.4.1 solver (64bit) (Yices v2.4.2 with quantifier-free linear integer arithmetic)
- 64bit 4-core **3.40GHz** Intel Core-i7 PC with 4GB memory
- 3 predefined topologies ranging from 3 end-systems connected to one switch to 7 end-systems connected through 5 switches via IGbit/s links with a Iusec macrotick granularity (generate high utilization on the links)
- Time-out value for a run to **5 hours**
- System configuration: $\{V_{e+s}, \langle 8, 8, 0 \rangle\}$

Scalability and schedulability experiments

Ensuring Reliable Networks

- Frame isolation method (using an incremental backtracking algorithm with step size of I)
- Vary the problem set in **3 dimensions**:
 - I. topology size,
 - 2. number of flows,
 - 3. flow periods (chosen randomly from 3 sets of predefined periods)
- Data size uniformly between 2 and 8 MTU-sized frames
- Senders and receivers are chosen randomly

www.tttech.com

www.tttech.com

www.tttech.com

Frame vs. Stream Isolation

- 381 randomly generated test cases with up to 1000 streams
- 17 reached the time-out
- Stream isolation was on average **13%** faster with a median of **8.03%**
- 36.7h for stream isolation and 59h for frame isolation 30.73% improvement

www.tttech.com

Copyright © TTTech Computertechnik AG. All rights reserved.

Ensuring Reliable Networks

TITech

Schedulability Experiments

- Generated inputs that force streams to **interleave** if scheduled in the same egress queue
- Runs **w/ and w/o optimization** objectives using both stream and frame isolation methods
- Minimize **accrued sum** of the number of **queues** used per egress port
- No incremental steps for optimization runs

Schedulability Experiments

www.tttech.com

Scheduling problem arising from the IEEE 802.1 Qbv extension on multi-hop fully switched TSN networks

www.tttech.com

Scheduling problem arising from the IEEE 802.1 Qbv extension on multi-hop fully switched TSN networks

• key functional parameters affecting the behaviour of 802.1 Qbv networks

Scheduling problem arising from the IEEE 802.1 Qbv extension on multi-hop fully switched TSN networks

- key functional parameters affecting the behaviour of 802. I Qbv networks
- 802. I Qbv-specific constraints for creating correct offline schedules guaranteeing low and bounded jitter as well as deterministic end-to-end latencies for critical traffic

Scheduling problem arising from the IEEE 802.1 Qbv extension on multi-hop fully switched TSN networks

- key functional parameters affecting the behaviour of 802. I Qbv networks
- 802. I Qbv-specific constraints for creating correct offline schedules guaranteeing low and bounded jitter as well as deterministic end-to-end latencies for critical traffic
- use **SMT/OMT** solvers to create static schedules for 802. I Qbv devices

Scheduling problem arising from the IEEE 802.1 Qbv extension on multi-hop fully switched TSN networks

- key functional parameters affecting the behaviour of 802. I Qbv networks
- 802. I Qbv-specific constraints for creating correct offline schedules guaranteeing low and bounded jitter as well as deterministic end-to-end latencies for critical traffic
- use **SMT/OMT** solvers to create static schedules for 802. Qbv devices
- optimization directions & system configurations and their trade-offs

Scheduling problem arising from the IEEE 802.1 Qbv extension on multi-hop fully switched TSN networks

- key functional parameters affecting the behaviour of 802. I Qbv networks
- 802. I Qbv-specific constraints for creating correct offline schedules guaranteeing low and bounded jitter as well as deterministic end-to-end latencies for critical traffic
- use **SMT/OMT** solvers to create static schedules for 802. Qbv devices
- optimization directions & system configurations and their trade-offs
- evaluation in terms of scalability and schedulability

www.tttech.com

Thank you!

Copyright ©TTTech Computertechnik AG. All rights reserved.

www.tttech.com