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Why TSN?
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Time-Sensitive Networks
IEEE TSN task group - collection of sub-standards that enhance 802 Ethernet 
with fully deterministic real-time capabilities

Standard Description
802.1ASrev Timing & Synchronization
802.1Qbv Enhancements for Scheduled Traffic (Timed Gates for Egress Queues)
802.1Qbu Frame Preemption
802.1Qca Path Control and Reservation
802.1Qcc Central Configuration Management
802.1Qci Per-Stream Time-based Ingress Filtering and Policing
802.1CB Redundancy, Frame Replication & Elimination
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Functional parameters

Device capabilities Queue configuration 

Scheduled Es Scheduled Sw Scheduled Es+Sw
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Functional parameters

Device capabilities Queue configuration 

Scheduled Es Scheduled Sw Scheduled Es+Sw

• Critical traffic assigned to the scheduled queues
• Non-critical traffic assigned to priority queues (post-analysis through 

network calculus [Frances@ERTS06])
• Isolation: non-critical streams may interfere with each other in priority 

queues, but not with critical streams (isolated in the scheduled queues)
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Network & traffic model

• multi-hop layer 2 switched network via full-duplex multi-speed links
• (multicast) TSN streams with multiple frames per stream 
• synchronised time (<1 usec precision)
• wire and device delays
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• Scheduled 802.1Qbv-compatible devices (Sw + Es)
• Scheduled (mutually exclusive) & priority queues
• Guaranteed delivery of critical traffic with known 

latency, small & bounded jitter
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Deterministic Ethernet Constraints
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see also [Steiner@RTSS10] or [Craciunas@RTNS14]
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Stream and e2e latency constraints

maximum allowed e2e latency

Link 1

0 12

Link 2

0 12

Link 3

0 12

3.3 Virtual link constraints
We introduce virtual link constraints which describe the

sequential nature of a communication from a producer task
to a consumer task. The generic condition that applies for
network as well as for CPU links is that frames on sequen-
tial links in the communication path have to be scheduled
sequentially on the time-line. Virtual frames of producer or
consumer tasks are special cases of the above condition. All
virtual frames of a producer task must be scheduled before
the scheduled window on the first link in the communica-
tion path. Conversely, all virtual frames of the consumer
task must be scheduled after the scheduled window on the
last network link in the communication path.

End-to-end communication with low latency and bounded
jitter is only possible if all network nodes (which have in-
dependent clock sources) are synchronized with each-other
in the time domain. TTEthernet provides a fault-tolerant
clock synchronization method [31] encompassing the whole
network which ensures clock synchronization. On a real net-
work, the precision achieved by the synchronization protocol
is subject to jitter in the microsecond domain. Hence, we
also consider, similar to [35], the synchronization jitter which
is a global constant and describes the maximum di↵erence
between the local clocks of any two nodes in the network.
We denote the synchronization jitter (also called network
precision) with �, where typically � ⇡ 1µsec [15, p. 186].
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The constraint expresses that, for a frame, the di↵erence
between the start of the transmission window on one link
and the end of the transmission window on the precedent
link has to be greater than the hop delay for that link plus
the precision for the entire network.

3.4 End-to-End Latency constraints
Let src(vl

i

) and dest(vl
i

) denote the CPU links on which
the producer task and, respectively, the consumer task of
virtual link vl

i

are scheduled on. We introduce latency con-
straints that describe the maximum latency of a communi-
cation from a producer task to a consumer task, namely
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In essence, the condition states that the di↵erence between
the end of the last chunk of the consumer task and the start
of the first chunk of the producer task has to be smaller
than or equal to the maximum end-to-end latency allowed.
In this paper we consider the maximum end-to-end latency
to be smaller than or equal to the message period (which is
the same as the period of the associated tasks).

3.5 Task constraints
For any sequence of virtual frames scheduled on a CPU

link, the first virtual frame has to start after the o↵set of the
task and the last virtual frame has to be scheduled before

the deadline of the task. Hence, we have
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3.6 Virtual frame sequence constraints
For a CPU link, we check in the condition in Section 3.2

that the scheduling windows of virtual frames generated by
di↵erent tasks do not overlap. Additionally, we have to check
that virtual frames generated by the same task do not over-
lap in the time domain. This condition can be expressed
similar to the condition in Section 3.2, however, we express
it, without losing generality, in terms of the ordering of the
virtual frame set.
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3.7 Task precedence constraints
Task dependencies are usually expressed as precedence

constraints [5], e.g., if task ⌧v

a

i

and ⌧
v

b

j

have precedence con-
straints (⌧v

a

i

� ⌧
v

b

j

) then ⌧v

a

i

has to finish executing before
⌧
v

b

j

starts. Even though these dependencies arise typically
between tasks co-existing on the same CPU, we generalize
dependencies between tasks executing on any end-system.
Task dependencies are partially expressed in [28] as frame
dependencies in the sense that one frame is scheduled before
another frame, which can be used to specify aspects of the
existing task schedule. We introduce constraints for simple
task precedences in our model as follows
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Note that both tasks must have the same period or “rate”.
Multi-rate precedence constraints (extended precedences as
they are called in [10]) are subject for future work.

3.8 Memory constraints
The time-triggered paradigm enables us to define the

memory constraints for the switches and end-system nodes
as an upper bound on the time that a frame can reside inside
the transmitting queue of a node, i.e., the time a frame can
logically remain on a CPU or network link.
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Note that an alternative method to directly constrain the
memory utilization in terms of frame and bu↵er lengths im-
plies a non-trivial extension that may require quantifiers in
the logical formulas. The added level of expressiveness, how-
ever, does not justify the inherent increase in complexity and
the required added run-time to solve the problem.

4. SMT-BASED CO-SYNTHESIS
Satisfiability Modulo Theories (SMT) checks the satisfia-

bility of logic formulas in first-order formulation with regard
to certain background theories like linear integer arithmetic
(LA(Z)) or bit-vectors (BV) [2, 27]. A first-order formula
uses variables as well as quantifiers, functional and predicate
symbols, and logical operators [21]. Scheduling problems are

3.3 Virtual link constraints
We introduce virtual link constraints which describe the

sequential nature of a communication from a producer task
to a consumer task. The generic condition that applies for
network as well as for CPU links is that frames on sequen-
tial links in the communication path have to be scheduled
sequentially on the time-line. Virtual frames of producer or
consumer tasks are special cases of the above condition. All
virtual frames of a producer task must be scheduled before
the scheduled window on the first link in the communica-
tion path. Conversely, all virtual frames of the consumer
task must be scheduled after the scheduled window on the
last network link in the communication path.

End-to-end communication with low latency and bounded
jitter is only possible if all network nodes (which have in-
dependent clock sources) are synchronized with each-other
in the time domain. TTEthernet provides a fault-tolerant
clock synchronization method [31] encompassing the whole
network which ensures clock synchronization. On a real net-
work, the precision achieved by the synchronization protocol
is subject to jitter in the microsecond domain. Hence, we
also consider, similar to [35], the synchronization jitter which
is a global constant and describes the maximum di↵erence
between the local clocks of any two nodes in the network.
We denote the synchronization jitter (also called network
precision) with �, where typically � ⇡ 1µsec [15, p. 186].
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The constraint expresses that, for a frame, the di↵erence
between the start of the transmission window on one link
and the end of the transmission window on the precedent
link has to be greater than the hop delay for that link plus
the precision for the entire network.

3.4 End-to-End Latency constraints
Let src(vl

i

) and dest(vl
i

) denote the CPU links on which
the producer task and, respectively, the consumer task of
virtual link vl

i

are scheduled on. We introduce latency con-
straints that describe the maximum latency of a communi-
cation from a producer task to a consumer task, namely
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In essence, the condition states that the di↵erence between
the end of the last chunk of the consumer task and the start
of the first chunk of the producer task has to be smaller
than or equal to the maximum end-to-end latency allowed.
In this paper we consider the maximum end-to-end latency
to be smaller than or equal to the message period (which is
the same as the period of the associated tasks).

3.5 Task constraints
For any sequence of virtual frames scheduled on a CPU

link, the first virtual frame has to start after the o↵set of the
task and the last virtual frame has to be scheduled before

the deadline of the task. Hence, we have
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3.6 Virtual frame sequence constraints
For a CPU link, we check in the condition in Section 3.2

that the scheduling windows of virtual frames generated by
di↵erent tasks do not overlap. Additionally, we have to check
that virtual frames generated by the same task do not over-
lap in the time domain. This condition can be expressed
similar to the condition in Section 3.2, however, we express
it, without losing generality, in terms of the ordering of the
virtual frame set.
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3.7 Task precedence constraints
Task dependencies are usually expressed as precedence

constraints [5], e.g., if task ⌧v
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starts. Even though these dependencies arise typically
between tasks co-existing on the same CPU, we generalize
dependencies between tasks executing on any end-system.
Task dependencies are partially expressed in [28] as frame
dependencies in the sense that one frame is scheduled before
another frame, which can be used to specify aspects of the
existing task schedule. We introduce constraints for simple
task precedences in our model as follows
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Note that both tasks must have the same period or “rate”.
Multi-rate precedence constraints (extended precedences as
they are called in [10]) are subject for future work.

3.8 Memory constraints
The time-triggered paradigm enables us to define the

memory constraints for the switches and end-system nodes
as an upper bound on the time that a frame can reside inside
the transmitting queue of a node, i.e., the time a frame can
logically remain on a CPU or network link.
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Note that an alternative method to directly constrain the
memory utilization in terms of frame and bu↵er lengths im-
plies a non-trivial extension that may require quantifiers in
the logical formulas. The added level of expressiveness, how-
ever, does not justify the inherent increase in complexity and
the required added run-time to solve the problem.

4. SMT-BASED CO-SYNTHESIS
Satisfiability Modulo Theories (SMT) checks the satisfia-

bility of logic formulas in first-order formulation with regard
to certain background theories like linear integer arithmetic
(LA(Z)) or bit-vectors (BV) [2, 27]. A first-order formula
uses variables as well as quantifiers, functional and predicate
symbols, and logical operators [21]. Scheduling problems are

see also [Steiner@RTSS10] or [Craciunas@RTNS14]
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In order to maintain jitter and latency requirements we expect at each device 
a certain timely order of frames
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Queue Interleaving

• synchronization errors, frame loss, time-based ingress policing (e.g. IEEE 802.1Qci) 
may lead to non-deterministic placement in queues during runtime

• timed gates control events on the egress port, not the order of frames in the queue
• placing of frames in the scheduled queues at runtime may be non-deterministic

Timely behaviour of streams may oscillate, accumulating jitter for 
the overall end-to-end transmission

expected
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Queue Isolation

Solves the non-determinism problem but 
reduces the solution space

expected
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• Once a flow has arrived, no other flow can arrive in the same queue until the 
first flow has been completely sent

• Better than queue isolation but still restrictive

expected
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• Ensure that there are only frames of one flow in the queue at a time
• Frames from another flow may only enter the queue if the already queued 

frames of the initial flow have been serviced
• Less performant than stream isolation since the solver has to consider at all 

frame interleavings

expected

Frame isolation
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802.1Qbv scheduling constraint

The constraint for minimum jitter scheduling of critical 
traffic for 802.1Qbv networks is:

isolate frames/streams in the time domain
OR 

isolate streams in different queues
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802.1Qbv configurations
Only critical traffic (serialized similar to bus systems)

Legacy AVB systems that require a few additional high-
criticality flows [Specht@ECRTS16]

Maximize solution space for critical traffic, non-critical 
traffic can be scheduled by inverting the cumulated 
schedule of scheduled queues

High-criticality applications that feature both scheduled 
and non-scheduled traffic, trade-off between 
schedulability of critical traffic and timeliness properties 
and flexibility for non-scheduled traffic

Standard AVB (IEEE 802.1BA) network in which flows 
are serviced according to the priority
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Scheduling problem

Reduces to finding a solution for a set of inequalities resulting from
• frame constraints
• link constraints
• stream constraints
• end-to-end latency constraints
• stream or frame isolation constraints 

Find offsets and queue assignments for individual frames of  
TSN streams along the route that conform to the constraints

NP-complete

802.1Qbv
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Satisfiability Modulo Theories

A lot of solvers and a very active community

OpenSMT [Bruttomesso@TACAS10]

CVC4 [Barrett@CAV11]

Yices [Dutertre@CAV14]

Z3 [de Moura@TACAS08]

LA(Z) BV
satisfiability of logical formulas in first-order formulation
background theories
variables
logical symbols
non-logical symbols
quantifiers

x1, x2, . . . , xn

_,^,¬, (, )

9, 8
+,=,%,

optimization (OMT) [Bjørner@TACAS15]
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Optimization

Optimize schedule with respect to certain properties 
of the system (e.g. minimize end-to-end latency of 
selected streams)

802.1Qbv-specific optimizations:
• QoS properties: minimize required scheduled queues in order to 

increase QoS properties of non-critical traffic
• Design space exploration in case of infeasible use-cases, i.e. find the 

minimal number of queues required for scheduled traffic such that a 
schedule is found

Many more optimization opportunities in combination with other TSN 
sub-standards (e.g. frame preemption)
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• Z3 v4.4.1 solver (64bit) (Yices v2.4.2 with quantifier-free linear 
integer arithmetic)

• 64bit 4-core 3.40GHz Intel Core-i7 PC with 4GB memory
• 3 predefined topologies ranging from 3 end-systems connected 

to one switch to 7 end-systems connected through 5 switches 
via 1Gbit/s links with a 1usec macrotick granularity (generate 
high utilization on the links)

• Time-out value for a run to 5 hours
• System configuration: 

Experiments

Scalability and schedulability experiments
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• Frame isolation method (using an incremental backtracking 
algorithm with step size of 1) 

• Vary the problem set in 3 dimensions: 
1. topology size, 
2. number of flows, 
3. flow periods (chosen randomly from 3 sets of 

predefined periods)
• Data size uniformly between 2 and 8 MTU-sized frames
• Senders and receivers are chosen randomly

Scalability Experiments
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Scalability Experiments
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• 381 randomly generated test cases with up to 1000 streams
• 17 reached the time-out 
• Stream isolation was on average 13% faster with a median of 8.03%
• 36.7h for stream isolation and 59h for frame isolation - 30.73% improvement

Frame vs. Stream Isolation
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• Generated inputs that force streams to interleave if scheduled 
in the same egress queue

• Runs w/ and w/o optimization objectives using both stream 
and frame isolation methods

• Minimize accrued sum of the number of queues used per 
egress port

• No incremental steps for optimization runs

Schedulability Experiments
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Schedulability Experiments
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Conclusions

Scheduling problem arising from the IEEE 802.1Qbv extension on multi-hop 
fully switched TSN networks

• key functional parameters affecting the behaviour of 802.1Qbv networks

• 802.1Qbv-specific constraints for creating correct offline schedules 
guaranteeing low and bounded jitter as well as deterministic end-to-end 
latencies for critical traffic 

• use SMT/OMT solvers to create static schedules for 802.1Qbv devices

• optimization directions & system configurations and their trade-offs

• evaluation in terms of scalability and schedulability
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Thank you!

www.tttech.com


