
Configuring ADAS Platforms for
Automotive Applications Using
Metaheuristics
Shane D. McLean1, Emil Alexander Juul Hansen1, Paul Pop1* and Silviu S. Craciunas2

1Technical University of Denmark Kongens Lyngby, Kongens Lyngby, Denmark, 2TTTech Computertechnik AG, Vienna, Austria

Modern Advanced Driver-Assistance Systems (ADAS) combine critical real-time and non-
critical best-effort tasks and messages onto an integrated multi-core multi-SoC hardware
platform. The real-time safety-critical software tasks have complex interdependencies in
the form of end-to-end latency chains featuring, e.g., sensing, processing/sensor fusion,
and actuating. The underlying real-time operating systems running on top of the multi-core
platform use static cyclic scheduling for the software tasks, while the communication
backbone is either realized through PCIe or Time-Sensitive Networking (TSN). In this
paper, we address the problem of configuring ADAS platforms for automotive applications,
which means deciding the mapping of tasks to processing cores and the scheduling of
tasks and messages. Time-critical messages are transmitted in a scheduled manner via
the timed-gate mechanism described in IEEE 802.1Qbv according to the pre-computed
Gate Control List (GCL) schedule. We study the computation of the assignment of tasks to
the available platform CPUs/cores, the static schedule tables for the real-time tasks, as well
as the GCLs, such that task and message deadlines, as well as end-to-end task chain
latencies, are satisfied. This is an intractable combinatorial optimization problem. As the
ADAS platforms and applications become increasingly complex, such problems cannot be
optimally solved and require problem-specific heuristics or metaheuristics to determine
good quality feasible solutions in a reasonable time. We propose two metaheuristic
solutions, a Genetic Algorithm (GA) and one based on Simulated Annealing (SA), both
creating static schedule tables for tasks by simulating Earliest Deadline First (EDF)
dispatching with different task deadlines and offsets. Furthermore, we use a List
Scheduling-based heuristic to create the GCLs in platforms featuring a TSN backbone.
We evaluate the proposed solution with real-world and synthetic test cases scaled to fit the
future requirements of ADAS systems. The results show that our heuristic strategy can find
correct solutions that meet the complex timing and dependency constraints at a higher
rate than the related work approaches, i.e., the jitter constraints are satisfied in over 6 times
more cases, and the task chain constraints are satisfied in 41% more cases on average.
Our method scales well with the growing trend of ADAS platforms.

Keywords: automotive applications, task scheduling, task preemption, time-sensitive networking, TSN, IEEE
802.1Qbv

Edited by:
Dakshina Dasari,

Robert Bosch, Germany

Reviewed by:
Risat Pathan,

University of Gothenburg, Sweden
Navid Razmjooy,

Independent researcher, Belgium

*Correspondence:
Paul Pop

paupo@dtu.dk

Specialty section:
This article was submitted to

Robotic Control Systems,
a section of the journal

Frontiers in Robotics and AI

Received: 21 August 2021
Accepted: 14 October 2021
Published: 04 January 2022

Citation:
McLean SD, Juul Hansen EA, Pop P
and Craciunas SS (2022) Configuring

ADAS Platforms for Automotive
Applications Using Metaheuristics.

Front. Robot. AI 8:762227.
doi: 10.3389/frobt.2021.762227

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 7622271

ORIGINAL RESEARCH
published: 04 January 2022

doi: 10.3389/frobt.2021.762227

http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2021.762227&domain=pdf&date_stamp=2022-01-04
https://www.frontiersin.org/articles/10.3389/frobt.2021.762227/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.762227/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.762227/full
http://creativecommons.org/licenses/by/4.0/
mailto:paupo@dtu.dk
https://doi.org/10.3389/frobt.2021.762227
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2021.762227

1 INTRODUCTION

Advanced Driver Assistance Systems (ADAS), present in more
andmore modern consumer vehicles, perform complex functions
that range from driver assistance, e.g., automated or assisted
parking, lane changing, etc., to fully autonomous driving. In
modern ADAS systems, there is a drive towards moving functions
from hardware to software and the architecture from distributed
to centralized, allowing modularization within an integrated
hardware platform that can be cooperatively used and
centrally managed (Niedrist, 2018). This drive has multiple
advantages, like reusability and portability, but presents several
challenges, especially in terms of real-time, testing, and safety
(Gietelink et al., 2006). The fusion of multiple software functions
of different criticality levels onto the same hardware platform has
to be done in a composable manner with guaranteed temporal
and spatial isolation without sacrificing real-time capabilities.
This mixed-criticality paradigm applied to the automotive
domain requires new concepts in terms of safety-critical
temporal and spatial isolation, new scheduling results and
configurations tools, as well as analysis methods for SIL
certification (c.f. (Hammond et al., 2015; Niedrist, 2018)).

Generally, integrated ADAS platforms are composed of
heterogeneous multi-core CPUs and Systems-on-chip (SoCs)
of different performance and safety levels that are interlinked
by a (real-time) communication network (Sommer et al., 2013;
Becker et al., 2016b). In such integrated platforms, the ADAS
functions have complex timing requirements and feature a
complex interdependence between sensors, control software,
and actuators. For example, one function for driver assistance
collects sensor data from both cameras and distance sensors
(ultrasonic, LIDAR) into a sensor fusion layer which transmits
the data via the time-aware communication backbone to control
algorithms that activate, e.g., the emergency brake system. This
succession of function execution and message transmission
creates a temporal dependency chain, which has to comply
with a set of timing requirements in terms of latency. In order
to guarantee both the interdependence and real-time behavior of
tasks and their messages, the safety-critical ADAS functions and
their communication frames have to be scheduled appropriately.
Moreover, other less critical systems, like infotainment, are also
integrated into the same platform and must not interfere with the
real-time behavior of critical functions.

1.1 Related Work
The scheduling of task sets with dependencies has been a well-
studied topic within the real-time community. Task schedules
with inter-task dependencies are computed in (Chetto et al.,
1990) by modifying the offsets and deadlines of the individual
tasks and then using EDF to schedule the new task set (Buttazzo,
2011). In (Choi and Agrawala, 2000) the notion of absolute and
relative timing constraints (i.e., events are temporally dependent
on each other) for source and sink task requirements are
introduced. Furthermore, the authors present a scheduling
approach for uniprocessor systems with complex timing
constraints such as jitter requirements. In (Fohler, 1994) the
authors compute static schedules for tasks that communicate

through bounded delay protocols like TDMA or TTP using
dependency graphs. The work in (Tindell and Clark, 1994)
presents an analysis of the schedulability of tasks that
communicate using the TDMA protocol. In (Abdelzaher and
Shin, 1999) an optimal task schedule for communicating tasks is
generated using a branch-and-bound approach. A similar
approach is introduced in (Peng et al., 1997) with modified
optimization criteria. (Craciunas et al., 2014) presents a similar
heuristic scheduling approach to ours which uses EDF simulation
to create static schedules for tasks with communication and
precedence dependencies but in contrast to our work, the
results only apply for dependencies between tasks with equal
periods. The temporal dependencies between tasks presented in
the prior work described above are not as complex as the ones
arising from the ADAS task chains where not only task periods
can be different, but the correctness of the chain dependency is
related to individual task jobs. Multi-rate tasks and complex
precedence constraints have been analyzed in (Forget et al., 2011,
2017; Mubeen and Nolte, 2015). Additionally, in (Isović and
Fohler, 2000), a two-step approach for distributed systems is
introduced, which is based on an offline computation and an
online EDF mechanism for scheduling tasks with complex
constraints like jitter and job-level precedence requirements.

In the context of ADAS, the complex task chain requirements
have been addressed in terms of computing the worst-case end-
to-end latency of multi-rate chains, c.f. (Becker et al., 2017),
depending on the available system information, e.g., scheduling
algorithm or task offsets. Our approach is different in that it
generates schedules that already adhere to the task chain
requirements, which does not necessitate a further analysis
since the schedule construction guarantees the real-time
requirements. In (Rajeev et al., 2010), the authors present a
model-checking-based method to compute worst-case response
times and end-to-end latencies of tasks that have chain
dependency and communication constraints. In (Becker et al.,
2016a), the authors introduce a task chain latency analysis that
does not require information about the concrete scheduling
algorithm. (Verucchi et al., 2020) use an existing list-
scheduling algorithm but apply it on a directed acyclic graph
(DAG), which is constructed from multi-rate task sets such that
complex precedence and timing constraints are captured and
satisfied.

In (Lukasiewycz et al., 2012) a modular framework for ILP-
based scheduling of time-triggered distributed automotive
systems is presented, where both bus access and operating
system schedules are created. The end-to-end latency of chains
only applies single-rate dependency chains, and the method
suffers from an exponential increase in runtime with
increasing the number of tasks and messages. An extension
that adds an incremental step in order to reduce the runtime
complexity of the schedule generation has been proposed in
(Sagstetter et al., 2014), where the focus is on integrating
locally optimized schedules into a globally non-optimal
solution. In terms of the communication backbone, the
scheduling problem for TSN networks has been addressed in,
e.g., (Craciunas et al., 2016; Serna Oliver et al., 2018) for fully
deterministic communication needs, including latency and jitter

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 7622272

McLean et al. Configuring ADAS Platforms

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

requirements without taking into account the schedule of the
communicating tasks. Furthermore, the combined task and
message scheduling problem has also been thoroughly studied
for other types of networks, e.g., TTEthernet (Craciunas and
Serna Oliver, 2016), shared registers (Becker et al., 2016a), or the
Universal Communication Model (Pop et al., 2003).

1.2 Contributions
In our earlier work (McLean et al., 2020) we considered that the
communication backbone is done via Peripheral Component
Interconnect Express (PCIe), and we have used a periodic
real-time task model in which the worst-case execution time
(WCET) of a task changes based on the core speed and the
communication is modeled as overhead at the end of task
instance execution. This paper extends our work to consider
the IEEE 802.1 Time-Sensitive Networking (TSN) deterministic
Ethernet standard for the communication. TSN is becoming a de-
facto standard in several areas, e.g., industrial, automotive,
avionics, space, with a broad industry adoption and several
vendors developing TSN switches. This paper presents a
heuristic-based scheduling algorithm for ADAS platforms that
considers the different dimensions of timing and dependency
requirements and is designed with scalability in mind. The
optimization approaches are based on metaheuristics
(Simulated Annealing and Genetic Algorithm), which take into
account not only the timing constraints but also design goals,
such as function allocation on computing units. We consider both
PCIe and TSN for the communication. Future work may also
include the LET model (Biondi and Di Natale, 2018) which is
becoming increasingly popular in the automotive domain since it
can provide deterministic communication behavior.

To the best of our knowledge, this is the first work to propose a
heuristic-based solution to the combined scheduling problem in
ADAS platforms that requires a solution for the task-to-core
assignment, static task schedule generation, and the scheduling of
TSN messages sent by the tasks, which respects both task and
complex task chain timing constraints.

We start by introducing the platform and application models
in Section 2 followed by a description of the scheduling problem
in Section 3. We introduce the algorithm in Section 4 followed by
an experimental evaluation in Section 5 and conclude the paper
in Section 6.

2 PLATFORM AND APPLICATION MODELS

2.1 System Model
The modern integrated ADAS hardware platform features a
multi-core multi-SoC embedded ECU with a variety of CPUs
and Graphics Processing Units (GPUs) running at different
speeds, which are interconnected through either a
deterministic Ethernet backbone, such as TSN (IEEE, 2016b)
or TTEthernet (Steiner et al., 2011), or through PCIe.
RazorMotion (TTTech Computertechnik AG, 2018), for
example, features a Renesas RH850P/1H-C ASIL D MCU with
lockstep cores running at 240 MHz and two Renesas R-Car H3

ASIL B SoCs with four Cortex A57, four Cortex A53, one Cortex
R7, one IMP-X5, and one IMG PowerVR GX6650 GPU.

Figure 1 presents a high-level view of the ADAS platform,
which is similar to the platform described in (Marija Sokcevic,
2020). Each host can run a different operating system depending
on the safety and performance requirements. Each such OS can
have a different scheduling policy, ranging from fixed-priority
(AUTOSAR (Bunzel, 2011)) to table-driven or dynamic priority
scheduling (typically in safety RTOSes). However, there is a
growing tendency to use a table-driven static schedule
execution due to the compositionality and isolation properties
(Lukasiewycz et al., 2012; Sagstetter et al., 2014; Mehmed et al.,
2017; Ernst et al., 2018), i.e., tasks that are already scheduled are
not influenced by new tasks being added to the system. In order to
provide a common execution environment and hardware
abstraction, a middleware layer, e.g., the MotionWise (TTTech
Computertechnik AG, 2018) layer, is running on top of each
operating system. The middleware layer also ensures portability
of software functions to be located according to their execution
and safety requirements (Niedrist, 2018). Moreover, the
middleware layer provides the capability to execute tasks
according to a table-driven pre-computed schedule
independent of the underlying OS dispatching mechanisms,
which ensures temporal isolation (Mehmed et al., 2017).
Hence, in this paper, we focus on creating static schedules for
the table-driven dispatching mechanism of such ADAS systems.

Tasks performing software functions of different criticality
levels communicate with each other both on- and off-chip
through different means. On-chip communication is usually
done through buffers, message passing, or shared memory,
while off-chip communication is achieved either through PCIe
or TSN. The safety-critical communication also has to adhere to
stringent timing requirements and has to be aligned to the
execution schedule of the real-time tasks. For example, when
PCIe is used, a message sending cost has to be taken into account
when scheduling the respective communicating tasks. When
using time-aware switched Ethernet technologies like TSN, the
schedule of the messages has to be aligned to the execution of the
tasks, and the end-to-end latency requirements comprising both
task execution and message transmission have to be met.

FIGURE 1 | High-level platform model.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 7622273

McLean et al. Configuring ADAS Platforms

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

We model an ADAS platform as a graph A(V, E). A vertex
vi ∈ V is either an end system (ES) that performs computations,
the set of all ESes denoted with ES, or a TSN switch (SW), their
set being denoted with SW. The edges E are the communication
links. Each ES vi ∈ ES has a set of computation cores Ci.

2.2 TSN
Time-Sensitive Networking (IEEE, 2016b) addresses the need to have
more determinism and real-time capabilities over standardized
Ethernet networks. To achieve this, TSN defines a series of
amendments to the IEEE 802.1Q standard, as well as stand-alone
mechanisms and protocols (e.g., 802.1ASrev). TSN has already seen
adoption in the industrial domain and is becoming increasingly
relevant in the automotive domain. The main mechanisms out of
the TSN ecosystem that we consider in this paper are the clock
synchronization protocol IEEE 802.1ASrev (IEEE, 2016a), which
provides a synchronized clock reference, and the timed-gate
functionality of IEEE 802.1Qbv (IEEE, 2015) bringing scheduled
communication capabilities on the egress ports of devices. The
timed-gate mechanism is essentially a shaping gate that forwards
selected message streams from each egress queue according to the
transmission schedule encoded in so-called Gate-Control Lists (GCL).
A TSN stream is defined by a payload size, a talker (sender), one or
more listeners (receivers), and optional timing requirements in terms
of jitter and latency. The global schedule synthesis has been studied in
(Craciunas et al., 2016; Dürr and Nayak, 2016; Pop et al., 2016; Serna
Oliver et al., 2018) focusing on enforcing deterministic transmission,
temporal isolation, and compositional system design for critical
streams with end-to-end latency requirements.

A communication link is modeled as a directed edge is
represented by two vertices [va, vb] ∈ E. All physical links in
the system are bidirectional and so for each [va, vb] ∈ E, there
exists a [vb, va] ∈ E with the same properties except that source
and destination are swapped. In TSN-based systems, a directional
virtual edge is created for each core, i.e., the edge [va, va] is added
to E. Each link [va, vb] ∈ E has a set of attributes. We denote with
[va, vb].s the transmission bandwidth of the link, [va, vb].c denotes
the number of queues in associated egress port.

2.3 Application Model
On top of this platform, many different software functions
implemented by different vendors must be integrated and
deployed. It is crucial that software functions (which may be
tested independently) can be integrated with other software
functions compositionally. The system is composed of
applications (called tasks or runnables) that are either pre-
assigned to cores or must be assigned by the scheduling
algorithm. Tasks have real-time requirements, both in terms of
execution (offset, deadline, jitter) as well as temporal
dependencies arising from task chains (defined below). We
model the applications as a set of n periodic tasks, Γ � {τi|1 ≤
i ≤ n}, similar to the model in (Liu and Layland, 1973). A task τi is
defined by the tuple (σi, ri, ϕi, Ci, Ti, Di) with σi representing the
core, Ci denoting the worst-case execution time (WCET), Ti the
period, ri the earliest release time, ϕi the initial offset/
displacement of task arrival times and Di the relative deadline
of the task under the assumption that Di ≤ Ti. Each real-time task

τi yields an infinite set of instances (jobs) τi,k, k � 1, 2, . . .
(Buttazzo, 2011, p. 80). Tasks can be preempted at any time
instant on a timeline with macrotick granularity given by the
underlying OS capabilities.

If a task τi is pre-assigned to a core, then its core σi will be
given. Otherwise, we decide their assignment to a specific core, in
that the σi of a task τi can take any value from a finite set of core
values Ci. The assignment of tasks to cores is captured by the
mapping function M: Γ → Ci.

The scheduling allows preemption, i.e., a schedule table can be
constructed such that a task is interrupted by another task and
then resumes its execution. Currently, tasks cannot migrate at run
time after they have been assigned to a core, but in the future, we
envision that task migration, when done correctly with respect to
the deterministic timing behavior, will allow even better resource
utilization.

Tasks may exchange messages. A message is modeled as a flow
(stream)Φi ∈ LΦ, which has a periodΦi.Twhich is the same as its
sender and receiver tasks, a deadlineΦi.D, which can be arbitrary
but smaller than or equal to the period Φi.T, a message size Φi.P,
and a fixed route Φi.r. Messages are transmitted as frames. If a
message exceeds the maximum transmission unit (MTU) of 1,500
bytes defined for standard Ethernet, then the message is split into
k � QΦi .P

1500Q fragments. The message is split such that each resultant
frame is its maximum size until the last, which has the last bytes.
A frame θ[va,vb]i,m is an instance of the frame on the link [va, vb]. It is
associated with the ith flow and has sequence numberm. A frame
has a transmission duration of θ[va,vb].Lmicroseconds on the link
[va, vb] where it is transmitted. A frame can have a maximum
payload of MTU 1,500 bytes plus the 42 bytes Ethernet header.

2.4 Timing Constraints
Each task may have implicit timing constraints arising from the
task definition and explicit design parameters related to arrival
offsets and/or deadline requirements. Hence, a task must execute
periodically with the given period Ti, and in each period, it must
finish its worst-case execution Ci within the defined deadline Di,
starting after the earliest release time ri. In addition, tasks may also
have jitter requirements, i.e., constraints on the variance of execution
of consecutive period instances (Buttazzo, 2011, p. 81-82), due to
control loop considerations (Di Natale and Stankovic, 2000). We
denote the jitter requirements of a task τi with Ji and the observed
jitter ji, i.e., the maximal deviation of both starting and finishing
times for any two consecutive task instances are bounded by Ji.

Other timing requirements are related to message passing
between tasks, where the communication latency has to be
considered. The most complex set of timing requirements
come from the so-called task (or event) chains (c.f. (Becker
et al., 2016a)). A task chain specifies that at least one instance
of every task in the given task chain list has to be executed in the
specified order within a given maximum end-to-end reaction
latency. These chains also have a priority, pi, which can be used
for optimization criteria. Since the tasks in the chain can be on
different hosts/cores, the communication needs have to be
included in the end-to-end latency considerations. In a PCIe
backbone, the latencies between communicating tasks are
modeled and enforced as an additional delay after executing

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 7622274

McLean et al. Configuring ADAS Platforms

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

the sending tasks. In the case of TSN, the frame schedule must be
aligned to the task execution to ensure that the messages are sent
after the sending task has been executed and before the receiving
task starts. Please note that tasks in the chains may have different
activation patterns and periodicity, i.e., we are considering multi-
rate chains (c.f. (Becker et al., 2017)).

We give a simple example of a task chain in Figure 2
composed of 4 tasks, a source (τ1), two processing tasks (τ2,
τ3) and a sink (τ4) with periods of 20ms, 20ms, 10ms and
20ms, respectively. The critical communication between τ1 and
τ2 is done off-chip through the TSN network over two switches
(SW1 and SW2) since τ1 and τ2 are running on different SoCs. For
the purposes of this illustration, tasks τ2, τ3, and τ4 are located
on the same core, and the communication is assumed to be in
0-time. From each instance of the source, there needs to be a
succession of instances of the other tasks in the right order
such that the latency is not exceeded. It is allowed that an
instance of the processing or sink tasks merges multiple
signals. In the example, the sink merges the signal from
two execution instances of the processing task τ3. The
communication frames from τ1 to τ2 have to be scheduled
in such a way that the message is forwarded through the
switches and arrives at τ2 before the respective instance of τ2
executes. The latency of the communication needs to be also
included in the total end-to-end latency.

LetLℵ denote the set of task chains, where a task chain is given
by the tuple ℵi � ({τ1 ≺. . .≺ τk}, Li, pi) with Li being the allowed
end-to-end latency and pi ∈ [0, 1] is the priority. For a chain
ℵi � ({τ1 ≺ . . .≺ τk}, Li, pi) ∈ Lℵ, we formalize the correctness
condition for the in-order execution and end-to-end latency
requirement as follows:

∀τ1,x, x ∈ 0, . . . ,
hpi

T1
{ }: ∃{y2, . . . , yk}, yj ∈ 0, . . . ,

hpi

Tj
{ },∀j ∈ {2, k}

such that

start(τ2,y2)≥ end(τ1,x) ∧ end(τk,yk) − start(τ1,x)≤Li ∧
∀j ∈ {2, k − 1}: start(τj+1,yj+1)≥ end(τj,yj)(), (1)

where hpi is the hyperperiod of the chainℵi calculated as the least
common multiple of the periods of the tasks in the respective
chain and interfering tasks.1 and start(τi,j) and end(τi,j) denote the
start and end of the execution of the job τi,j, respectively.

If there is communication over the TSN network between any
two tasks in the chain, the TSN network schedule needs to reflect
several correctness conditions. Firstly, the correctness conditions
from (Craciunas et al., 2016) for generating GCL schedules need
to be fulfilled in order to have correct and deterministic frame
transmission over IEEE 802.1Qbv TSN devices. In addition to the
technological constraints of standard full-duplex Ethernet
networks, a deterministic timing of frames is enforced in
(Craciunas et al., 2016) through so-called frame/flow isolation
constraints. In the timed-gate mechanism of IEEE 802.1Qbv, the
transmission schedule applies to the entire traffic class (as
opposed to individual frames like in, e.g., TTEthernet).
Therefore, the queue state has to be known and deterministic
in order to ensure that the right frames are sent at the right time.
Hence, the isolation conditions in (Craciunas et al., 2016) enforce
that a correct GCL schedule isolates frames of different flows
either in the space domain by placing them in different egress
queues or in the time domain, preventing frames of different
flows from being in the same queue at the same time. Secondly,
implementation or network-specific correctness conditions need
to be fulfilled. Here we mention the synchronization error and the
microtick of the timeline. The synchronization protocol defined
in IEEE 802.1As-rev ensures a common clock reference; however,
individual clocks may still have a bounded time differential
towards the clock reference. The maximum of all the
individual bounded clock errors is called the network
precision (δ). Furthermore, the (hardware) realization of the
required state machines defined in, e.g., IEEE 802.1Qbv
implementing the TAS mechanism also has a certain
overhead, resulting in a minimum mandatory spacing of
scheduled events (called microtick or link granularity). The

FIGURE 2 | Task chain example with TSN communication.

1I.e., tasks that execute on the same core as the tasks in the chain

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 7622275

McLean et al. Configuring ADAS Platforms

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

microtick or link granularity defines the fastest rate at which
schedule events can be processed by the TSN hardware and
hence, the granularity of the TSN scheduling timeline. Thirdly,
the GCL schedule and, more specifically, the schedule offsets of
the frame transmission need to be aligned to the task schedule.
For example, a message transmitted between two tasks within a
chain has to be scheduled for sending after the execution of the
sending task and has to arrive before the receiving task executes.
Additionally, the communication latency, which adds to the
chain’s overall end-to-end latency, has to be within the given
latency requirements.

For a given mapping M, we denote the schedule table with S.
In this table, each task τi has a list of offsets Oi on its core σi. The
first offset in Oi, denoted with ϕi, captures the initial offset of τi’s
arrival time within the schedule, and the rest of the offsets in Oi

are the times when task τi resumes its execution if preempted. The
schedule table S also contains the GCLs, which are captured via
an offset θ[va,vb]i,m.ϕ, where i and m are the flow and the frame
instance, respectively, and [va, vb] is the link on which the frame is
transmitted. Figure 2 shows a Gantt chart, which is a visual
representation of a schedule table.

3 PROBLEM FORMULATION

The scheduling algorithm needs to find an assignment of
unassigned tasks to cores such that the tasks are schedulable
on each assigned core concerning their timing constraints
(offsets, deadlines, and jitter) as well as concerning the task
chain requirements. Moreover, since there is communication
either between individual tasks or between tasks in a task
chain, the scheduling algorithm also needs to find a schedule
for the deterministic communication backbone that respects the
required maximum latencies.

As an input to our problem we have 1) the ADAS platform A
and 2) the applications, denoted by the set of applications Γ,
including the task chains Lℵ and all the mapping and timing
constraints. We are interested in determining 1) a mappingM of
tasks to the cores of the platform and 2) a static schedule S of
tasks on each core, such that the task deadlines and their jitter, as
well as end-to-end constraints on task chains are satisfied. We
consider a constant delay for the PCIe communication backbone
as part of a task’s WCET. For the TSN backbone, we assume that
the flows and their routing are given (e.g., using the shortest
path), and the schedule S also contains the offsets of frames,
i.e., we also 3) determine the TSN GCLs.

4 MAPPING AND SCHEDULING STRATEGY

The presented in the previous section is a combination of the
problems in (Pop et al., 2016) and (McLean et al., 2020). Both
problems are complex scheduling problems, and the decision
problem associated with them have been thoroughly investigated
in the literature. (Sinnen, 2007) and (Garey and Johnson, 1979) prove
it to be in the NP-complete class by reducing it to the known 3-
PARTITION and PARTITION problems. With the assumption that

P ≠ NP, the scheduling problem cannot be solved efficiently by a
polynomial-time algorithm. In our initial investigation of the problem,
we have implemented a solution usingOptimizationModuloTheories
(OMT), which is an extension of Satisfiability Modulo Theories
(SMT), based on the work in (Craciunas and Serna Oliver, 2016).
However, theOMT/SMT approach has not been able to find solutions
due to the complexity of the problem. The increasing complexity of
ADAS platforms renders such mathematical programming
approaches, including Integer Linear Programming (ILP)
(Craciunas and Serna Oliver, 2016), infeasible in practice. It is
expected that ADAS platforms, which already have the complexity
of an entire in-vehicle electronics system (TTTech Computertechnik
AG, 2018), will grow to a scale of thousands of functions with
hundreds of complex event chain requirements. For such
intractable problems, researchers have proposed the use of
problem-specific heuristics and metaheuristics (Burke and Kendall,
2005), as an alternative to exact optimization methods which have
exponential running times. Several metaheuristic approaches have
been presented in the literature (Burke and Kendall, 2005), and the
challenge is to identify the right metaheuristic for our problem.
Metaheuristics aim to find a good quality solution in a reasonable
time but do not guarantee that an (optimal) solution will always be
found. Based on the review of the related work, we have decided to
implement a combination of heuristics for scheduling, based on List
Scheduling (Sinnen, 2007) and a simulation of the Earliest Deadline
First (EDF) (Craciunas and Serna Oliver, 2016) scheduling algorithm.
For the mapping, we have decided to compare the Simulated
Annealing (SA) and Genetic Algorithm (GA) metaheuristics,
which have been shown in the literature to be a promising
approach for task mapping problems.

4.1 Solution Overview and Cost Function
An overview of our optimization strategy is illustrated in
Figure 3. The metaheuristics (SA or GA) decide the mapping
M via an iterative search which generates neighboring solutions
from the current solution, see “SA or GA search procedure” box
in the figure, see the details in Section 4.2. The schedule S of
flows and messages is decided by a combination of scheduling
heuristics, i.e., List Scheduling (LS) and Earliest Deadline First
(EDF), see the box with LS and EDF in the figure, and the details
in Section 4.3 and Section 4.4, respectively. Finally, the quality of
a solution is evaluated using a cost function, see “Cost Function”
box in the figure and the discussion later in this section. We
present our proposed solution for TSN-based systems. The same
solution is used for PCIe-based systems, with the observation that
the flows are not considered, i.e., they are modeled as an overhead
added to the sending task’s WCET.

We use an LS-based heuristic to jointly schedule the flows and
the tasks involved in communication, presented in Section 4.3.
Once the communicating tasks and flows are scheduled, we use
an Earliest Deadline First (EDF)-based scheduling heuristic to
add the tasks not involved in communication across cores and
optimize the schedule, also by introducing design-time
“preemption”, i.e., task splitting, see Section 4.4. We then
check if the schedule adheres to the timing requirements
imposed by the jitter and task chain constraints. The EDF
scheduling heuristic introduces design-time task preemption

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 7622276

McLean et al. Configuring ADAS Platforms

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

by simulating at design time an EDF scheduling policy
parameterized by task offsets and local deadlines. The
heuristics receive as an input the mapping of tasks to cores.
The LS heuristic is controlled by the tasks and flow offsets (ϕi ≥
0), which are the earliest times a task can be started, or a flow can
be sent. The EDF heuristic is controlled by both the offsets and
local deadlines D, see the arrow in Figure 3 from the “SA or GA
search procedure” box and the LS and EDF box below.

The mapping and the controlling parameters (offsets, deadlines)
for the scheduling heuristics are determined by the metaheuristics, as
part of their search procedure.We have developed twometaheuristics,
one based on Simulated Annealing (SA), see Section 4.2.1 and one
based on a Genetic Algorithm (GA), see Section 4.2.2. Both
metaheuristics modify the mapping of tasks M, the task and
flow offsets (ϕi ≥ 0), and deadlines D, to find an optimal
solution with respect to the cost function. The novelty in our
approach is that our metaheuristics make use of the different
dimensions that influence task execution, i.e., task mapping,
task offsets, and task deadlines, to converge to a near-optimal
solution faster than traditional approaches.

The cost function (Cost), defined in Eq. 2, captures both a
minimization objective with respect to the end-to-end latency of
task chains and penalties representing constraint violations given
by the application. The function has two cases, 1) a value if the
solution configuration meets all the timing constraints and 2) a
combination of static and dynamic penalties if one or more
timing constraints are violated.

Cost(s) �
∑

ℵi∈Lℵ

li
Li

· pi

|Lℵ| · w1 ifχ(s) � true

w1 + ρℵ + ρD + ρJ ifχ(s) � false

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(2)

During the search, the metaheuristics do not reject the invalid
solutions. Instead, we “penalize” an invalid solution by increasing
its cost function value to be larger than the values for valid
solutions in the hope of driving the search towards valid
solutions. A solution is invalid if one of the three constraints

is violated: 1) There is a task or flow which does not meet its
deadline, i.e., the worst-case response time fi of a task τi is larger
than its deadline Di (or the worst-case delay of a flow is larger
than its deadline). 2) There is a chainℵi which has an end-to-end
latency li that is greater than its allowed latency Li. 3) There is a
task τi which has a jitter ji greater than maximum allowed jitter Ji,
see the notations in Section 2.4. We capture each of these
constraint violations using a separate penalty term, which is
zero if the constraint is not violated: 1) ρD for deadline
violations, 2) ρℵ for chain latency violations and 3) ρJ for jitter
violations. Hence, if the sum of these penalty terms is zero then
the solution is valid, i.e., all constraints are satisfied and thus all
penalty terms are zero. We capture this situation with a test
defined by χ(s) � ρℵ + ρD + ρJ >/ 0. χ(s) is true if the solution is
valid, i.e., case (1) in Eq. 2, and false if the solution is invalid,
corresponding to case (2).

Let us first discuss case (1) when the solution is valid. In this
case, the value of the cost function which has to be minimized is
defined as the average weighted distance of the measured end-to-
end latency li over the imposed constraint Li, of all task chains.
Basically, the smaller the chain latencies, the smaller the term.
When we sum up li

Li
we also multiply with the chain’s priority pi to

capture the relative importance of chains. The resulted
summation is divided with the number of chains |Lℵ|. Note
that when a solution is valid, li ≤ Li. The divisions of li by Li and of
the summation by |Lℵ| are intended to normalize the cost
function term. In addition, we multiply the thus resulted term
with a static penalty weight w1. We will discuss the use of weights
shortly when we cover case (2).

Let us consider the example in Figure 4 where we have three
tasks and one chain on a single core. The details are given next to
the figure, with the note that the allowed end-to-end latency of the
chain L1 is 20, and its priority pi is 1.0. Figure 4A shows a valid
solution, whereas Figure 4B an invalid one. For Figure 4A we
have l1 � 20, hence the cost function is 2020 · 1.0 · w1 � 1 · w1. Let us
now discuss the cost function for the case 2) when a solution is
invalid. In that case, ρℵ + ρD + ρJ will be greater than zero. To this
term, we add w1 to ensure that any invalid solution will be rated

FIGURE 3 | Solution overview.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 7622277

McLean et al. Configuring ADAS Platforms

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

worse relative to that of any valid solution. That is, it adjusts the
score such that the minimal penalty value is higher than that of
any feasible solution, thereby preventing the search process from
accepting any invalid candidate over a valid one. As discussed, we
use ρD to penalize deadline violations, ρℵ to penalize chain
violations and ρJ to penalize jitter violations.

The values of these penalty functions are dynamic, i.e., a larger
value is used bigger constraint violations. We first define the ρℵ
from Eq. 3 in detail and then discuss the other two penalties,
which are similarly constructed. The relative importance of these
penalties are determined by the weights w2, w3 and w3. ρℵ in Eq.
3, measures the weighted average of end-to-end violation. The
violation of a chain ℵi is defined as the difference between its
highest observed chain latency li and its end-to-end constraint Li.

ρℵ �
∑

ℵi∈Lℵ

min(Li,max(0,li−Li))
Li

|Lℵ| · w2 (3)

If li is smaller or equal to Li then the chain constraint is
satisfied and the term is zero. We discuss here the case when the
constraint is not satisfied, i.e., li > Li. When li > Li the max
operator will return li − Li. To normalize the penalty value, we
clamp any observed violation li − Li to the interval [0, Li] using the
min operator and divide by Li, hence the term in the summation
will be in the interval [0, 1]. We divide the sum with the
number of chains |Lℵ| and then multiply with the static
weight w2. Let us illustrate this with the example in
Figure 4B, where the latency Li � 20 for chain ℵ1 is violated,

i.e., li � 23. Hence, ρℵ � min(20,max(0,23−20))
20
1 · w2 � 3

20 · w2.
Likewise, the additional deadline and jitter costs (ρD and ρJ) is

listed by Eqs. 4, 5, respectively. Here ρD measures the weighted

average of deadline violations with a violation range clamped in
the interval [0, Di]. The deadline violation of a task or flow i is
denoted as the difference between the maximal relative finishing
time of all of i’s instances fi and the relative deadline Di.

ρD �
∑
i∈Γ

min(Di,max(0,fi−Di))
Di

|Γ| · w3. (4)

Finally, ρJ measures the weighted average of jitter violations.
We define the jitter violation of a task τi as the difference between
the maximal observed jitter ji and the threshold Ji. The violation
range is then clamped in the interval [0, Ji].

ρJ �
∑
τi∈Γ

min(Ji,max(0,ji−Ji))
Ji

|Γ| · w4, (5)

In Eqs. 2–5, we listw1,w2,w3 andw4 as static weights designed to
capture the importance of the respective violation with the following
constraints:w2≥w1,w3≥w1,w4≥w1. The constantswere determined
based on manual experimentation and observations, with w1 through
w4 set to 10,000, 40,000, 10,000, and 60,000, respectively. Please note
that there are no optimal values for the weights, since they have to be
adapted to the application domain, criticality definitions and design
goals of the respective use-case.

4.2 Metaheuristics
The SA and GA metaheuristics aim to iteratively optimize
solutions by randomly changing existing solutions s to create
new solutions s′ and evaluate them by using the cost function.
They take as input the platform model A and the applications Γ
and return the best solution s* found according to the cost
function. Both start from an initial solution s0. Metaheuristics

FIGURE 4 | Schedule optimization. (A) End-to-end task chain latencies not satisfied. (B) End-to-end task chains latencies satisfied.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 7622278

McLean et al. Configuring ADAS Platforms

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

can start from any initial solution, even a random one. However,
in our case, we have developed a Greedy algorithm to generate the
initial solution. With SA and GA the mapping is optimized
during the search. With Greedy, the mapping is decided
constructively as follows. For each task, considering the
processor affinity constraints (that restrict the mapping to
specific processors), we iterate through all cores and identify
the core with the lowest utilization. The utilization of a task is its
WCET divided by its period. The utilization of core is the sum of
all task utilizations on that core. We then map the task to the
respective core. This ensures a balanced utilization of cores in the
initial solution. Once the mapping is decided, we use the same LS
and EDF scheduling heuristics to schedule the tasks and flows, see
Section 4.3 and Section 4.4, respectively. However, with Greedy,
the input parameters to the scheduling heuristics, such as offsets
for both LS and EDF and local deadlines for EDF, are not
optimized. Thus, we consider that the offsets are all set to zero
and the local deadlines are set to the absolute deadlines.

4.2.1 Simulated Annealing
We first describe a Simulated Annealing (SA)-based
metaheuristic approach, which uses an EDF-based heuristic to
solve the task scheduling problem. Simulated Annealing is a
heuristic method that aims to optimize solutions by randomly
selecting a candidate solution in the neighborhood of the current
one (Burke and Kendall, 2005). The SA algorithm accepts a new
neighbor solution if it is better than the current one. Moreover, a
worse solution can be accepted with a certain probability given by
the cost function Cost and the cooling scheme defined by an initial
temperature, ts and a cooling rate cr, specifying the rate at which
the temperature drops with each iteration.

A new candidate solution s′ (also called neighbor) is generated
starting from the current solution s by performing design
transformations (also called moves) on s. We use three moves,
described in the following. AdjustDeadline adjusts the deadline of
a single randomly selected task. Only tasks that failed at
complying with the jitter constraints are potential candidates
for this move. Note that the deadlines inD are used to control the
resulting EDF schedule.We do not change the relative deadlineDi

of the task, which is one of its timing constraints. For a task τi,
AdjustDeadline will modify the deadline used by EDF to schedule
τi, such that it is lower or equal to Di. We check for each resulted
schedule that all timing constraints are satisfied. SwapTasks swaps
the core mapping of two randomly selected tasks, considering the
imposed mapping constraints. For example, if the task has a
processor affinity, the swapping is done within the cores of the
particular processor. Only tasks that are allowed to swap are
considered, meaning only tasks without a predefined core
assignment. Offset and Deadline adjustments are reset to zero
for both tasks when performing this action. Finally, the
utilization/core load is not considered, and as such, this action
might overload one of the cores. AdjustOffset changes the offset of
a randomly selected task or flow.

The function that generates neighbor solutions is
implemented as a simple state machine, allowing moves
mentioned earlier to be chosen randomly. Various probability
assignments for these moves were tried, and, based on

observations from performed experiments, a uniform
distribution has been chosen for all actions.

4.2.2 Genetic Algorithm
GA is a multi-objective optimization heuristic inspired by
evolutionary biology (Deb et al., 2000). We 1) encode each
solution (chromosome) as an array where each entry (gene)
contains information on the mapping, offset and deadline of a
task/flow and 2) randomly initialize N individuals. We then 3)
evolve some selected candidates by using 4) recombination and 5)
mutation. Finally, 6) the evolved candidates with better fitnesswill
replace the parent population. As mentioned, GA is a multi-
objective metaheuristic. This means that the fitness is captured
with several cost function values, i.e., ρℵ for chains, ρD for
deadlines and ρJ for jitter constraints, see the discussion in
Section 4.1. This is in contrast to SA, which collapses all these
terms into a single cost function value, as defined in Eq. (2). Steps
3) to 6) are repeated until the allotted time is exhausted.

Several crossover operators have been proposed in the
literature, and we have implemented: uniform order-based
crossover (OX), (OX) using 2-point and using 1-point
approaches (Syswerda, 1991), Partially-Mapped Crossover
(Goldberg and Lingle, 1985), Cycle-Based Crossover (Goldberg
and Lingle, 1987) and Alternating-Position Crossover (Larranaga
et al., 1997). Based on our experiments, we have decided to
employ a standard uniform crossover. Regarding mutation, for
each gene in the chromosome, we compare a randomly generated
number with a “probability of mutation”, and if this number is
smaller, then this position is mutated. The probability of
mutation has been determined using ParamILS (Hutter et al.,
2009) as discussed in Section 5. To select parents, we sort the
“population” using the “non-dominated” sorting method from
(Deb et al., 2000). Half the population is kept as parents, and to
create new individuals, two random parents are picked until all
individuals have been created.

4.3 Joint Flow and Task Scheduling
One approach to the task and flow scheduling problem is to solve
the problems separately and then fit them together. This is a
reasonable approach when the two sub-problems do not form a
circular dependency. In our case, however, the two scheduling
problems are closely linked together. Let us consider the example
in Figure 5, where we have a topology of three end systems (ES1
to ES3) and one switch (SW1). We have four tasks τA, τB, τC, and
τD with precedence constraints [τA ≺ τB ≺ τC ≺ τD] that form a
chain. τA needs to be executed on ES1, τB on ES2 and τC and τD on
ES3. Task τA sends a message to τB, and τB sends a message to τC.
For illustration purposes, the task WCETs and the transmission
times of message frames on links are a single time unit, and
network precision and macrotick are ignored. The period of all
tasks is 8 time units, and the chain latency is also 8 time units.

If themessages are scheduled first, then the solution of the flow
would look as shown in Figure 5A. This schedule minimizes the
flow latencies, but since task τB must receive message 1 and send
message 2, the schedule contains a lot of idle time; hence, the
chain latency becomes 13 time units. Note that messages 1 and 2
scheduled at the beginning of the schedule are sent by tasks τA

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 7622279

McLean et al. Configuring ADAS Platforms

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

and τB from the previous period. The same issue exists if the tasks
are scheduled without any knowledge of the network. However, if
both task scheduling and message scheduling are optimized
concurrently, then an optimized solution, shown in Figure 5B,
can be produced. This reduces the chain latency substantially to
8 time units from 13 in Figure 5A, meeting thus the task chain
latency constraint.

In this section, we propose a joint flow and task scheduling
heuristic based on List Scheduling (LS) (Sinnen, 2007). LS is a
widely used task scheduling heuristic that is known to obtain
good quality solutions when determining static schedules for
tasks on multiprocessors. We have re-purposed LS for jointly
scheduling flows and tasks. Our LS is inspired by the individual
flow scheduling heuristic from (Raagaard and Pop, 2017), which
uses variants of ASAP (As Soon As Possible) and ALAP (As Late
As Possible) scheduling. Both of these are a special case of the List
Scheduling heuristic (Sinnen, 2007). Our LS is more general,
scheduling both flows and tasks. This LS can use offset and
ordering parameters to control the placement of frames, which is
not considered in (Raagaard and Pop, 2017).

LS receives as input the architecture A, applications Γ and the
solution s generated by the outer metaheuristic, containing the
mapping M, offsets ϕ and deadlines D. LS returns a partial
schedule table S′ covering the hyperperiod of Γ and including
all flows and those communicating tasks involved in sending and
receiving the flows. The joint scheduling is achieved by adding
those tasks involved in communication as “virtual flows” and the
cores where they are mapped for execution as “virtual links”.
Then, precedence constraints are added to ensure that a frame
cannot be sent before its sending task has finished executing, and
a receiving task cannot start before its input frames have arrived.
Hence, in the following, flows and links also denote tasks and

cores, respectively. Note that not all tasks are involved in the
communication over TSN. Tasks that are not sending/receiving
flows are added to the schedule in a subsequent step using the
EDF-based heuristic from Section 4.4.

Algorithm 1. ScheduleFlow (θ, ϕ). Schedules a flow θ as soon as
possible (ASAP), considering its offset ϕ given by the
metaheuristic. All frames in the flow have initialized lower and
upper bounds to − ∞, ∞, respectively.

Similar to (Raagaard and Pop, 2017), LS starts with an empty
timeline and iteratively schedules one flow at a time. The
metaheuristic specifies the order in which flows are chosen.
Similar to (Raagaard and Pop, 2017), the flows are chosen
according to their deadlines since flows with tight
deadlines are the hardest to schedule and therefore should
be picked first. The tie-breaker for the ordering is given by the
flow period. Each flow is scheduled using the ScheduleFlow
procedure in Algorithm 1 such that the end-to-end latency is
minimized. The termination condition for the LS is that
either a schedule has been found for all flows or the
current iteration does not produce a feasible schedule with
respect to the flow deadline.

We now examine the steps of Algorithm 1 in more detail. In
step 1 frames are retrieved in the order given by Eq. 7, see Section

FIGURE 5 | Scheduling approaches, (A) is a schedule where flows 1 and 2 are scheduled before taking tasks into account, (B) is the optimized scenario where task
and flows are scheduled concurrently.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 76222710

McLean et al. Configuring ADAS Platforms

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

4.3.3 for an explanation of how the next frame is determined. In
step 3, the frame offset ϕ is set to the earliest time in a feasible
region, greater than the lower bound, determined in step 2.
Section 4.3.2 and Section 4.3.1 present how we define and
determine the feasible regions and the lower bound,
respectively. If the algorithm reaches a state where a frame
cannot be scheduled, e.g., there is not enough space, then it
needs to find another solution. This search is done by
backtracking: In step 4 backtracking is done by increasing the
lower bound to the latest available time which is less than the
frame offset found in step 3, then rescheduling the previous
frame, see Section 4.3.4.

4.3.1 Lower Bound
The lower bound for the LS algorithm, inspired by (Raagaard and
Pop, 2017), is calculated using Eq. 6. θ[vx,va]i,m .(ϕ + L) is used as
shorthand for θ[vx,va]i,m .ϕ + θ[vx,va]i,m .L, and where ϕ is the frame offset
and L is the frame transmission duration. This equation ensures
that the assigned offset fulfills the link congestion and flow
transmission constraints, i.e., that frames must be fully
received before being transmitted. The link congestion
constraint does not allow two or more frames to be sent on
the same link at the same time. The flow transmission constraint
restricts the sending of a frame to be after the reception and
buffering of that frame in the switch. The link congestion and
flow transmission constraints result in a minimum possible end-
to-end latency for flows. This lower bound is influenced by the
route of the flow as well as the flow characteristics. The following
equation, introduced in (Raagaard and Pop, 2017), captures the
lower bound on θ[va,vb]i,m , when considering the previous frame on
the same link, θ[va,vb]i,m−1 , and the same frame on the previous
link, θ[vx,va]i,m .

ϕ θ[va,vb]i,m() �
θ[va,vb]i,m .ϕ ifm � 1 ∧ [va, vb] � Φi,s

θ[va,vb]i,m−1 .(ϕ + L) ifm> 1 ∧ [va, vb] � Φi,s

θ[vx,va]i,m .(ϕ + L) + δ ifm � 1 ∧ [va, vb] ≠ Φi,s

max θ[va,vb]i,m−1 .(ϕ + L),(
θ[vx,va]i,m .(ϕ + L) + δ) Otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(6)

4.3.2 Feasible Regions
When a flow is scheduled, each frame will block those queues and
the network links where it is scheduled. The feasible region for a
frame, similar to (Raagaard and Pop, 2017), is a set of intervals
where the frame can be scheduled without violating the feasibility
of the existing partial schedule. The algorithm relies on feasible
regions to find out where the frames can be scheduled without
interfering with other frames. Since frames can have different
periods, this complicates the search for space where the frame can
be scheduled.

We introduce two operations that the feasible region
implement, i.e., queue blocking, and searching for the feasible
region of a frame. Blocking is used when a frame is scheduled in a
known feasible region, and searching is used when the algorithm
is searching for an appropriate place for a frame. Blocking
happens at most once for every flow scheduled, while

searching can happen several times, depending on how hard it
is to schedule a frame. In order to minimize the time in search, the
following method of constructing the feasible regions is used.

If a frame θ[va,vb]i,m is scheduled on the network, then it will block
the egress queue Φ[va,vb]

i .ρ from θ[va,vb]i,m .ϕ to θ[va,vb]i,m .ϕ + θ[va,vb]i,m .L.
When we need to determine if a frame of another period interferes
with the other frame, we have to check that it does not interfere
in the whole hyperperiod. Instead of determining this each time
we have to check for a new frame, we create a feasible region for
each different period in the network. The feasible regions of
other periods are then blocked using the BlockQueues
procedure from Algorithm 2.

Algorithm 2. BlockQueues(θ[va,vb]i,m). Procedure for blocking time
slots inside the feasible regions for a frame instance θi,m on a link
[va, vb]

Step 4 of Alg. 2 does the queue blocking. It takes a start, end,
and a frame, and blocks the frame’s queue and link in that
interval, where mod is the modulo operator. If start > end, then
the queue is blocked in the intervals [0, end[and [start, QT],
where QT is the period of the queue. An example of the
blocking is illustrated in Figure 6, where we show on a link
[va, vb] how the feasible region of a frame instance θi,m is
blocked. Let us assume that an earlier frame in the same queue
and link had a period of 10ms and our frame’s period is
θi,m.T � 15ms. Both frames have an offset of 2 ms and their
transmission times are 1 ms. Frame instance θi,m cannot use
the time slots where the earlier frame has been scheduled, at
every 10ms, the first row in Figure 6. In addition, we also need
to block those times where, if θi,m is scheduled periodically
with a period of 15, runs the risk of conflicting with the other
frame with a period of 10. For example, θi,m cannot be
scheduled at time 7, because its next occurrence at 7 + 15 �
22 would conflict with the other frame that periodically is
scheduled every 10ms with an offset of 2, i.e., 2 + 10 + 10 � 22.
The second row in Figure 6 shows the times blocked by
Algorithm 2 for our example with two frames.

4.3.3 Getting the Next Frame
The LS heuristic schedules the frames in the order specified by
Eq. 7:

NextFrame θ[va,vb]i,m() � θLCLi,1 if bLNL ∧ bLS
θFNLi,m+1 if bLNL
θNLi,m otherwise,

⎧⎪⎪⎨⎪⎪⎩ (7)

where LCL is the last “virtual link” (core), FNL is the first network
link, NL is the next link, bLNL is true when frame is on the last
network link, and bLS is true if the frame is the last frame in the
flow. The NextFrame function is valid for all frames except the
last “virtual frame”, where NextLink is not defined.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 76222711

McLean et al. Configuring ADAS Platforms

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

LS starts from the first “virtual frame” (sender task), and goes
through each frame and ends with the last “virtual frame”
(receiving task). The idea is to allow backtracking only to
change the last scheduled frame. We illustrate an ordering in
Figure 7, where the order is indicated in parenthesis inside the
rectangles representing tasks and frames. In Figure 7 we have a
setup where a task τ1 on ES1 modeled as a “virtual frame” on the
“virtual link” [ES1, ES1] sends a flow Φ1 of size 3xMTU, which
hence has to be split in three frames θ1.1, θ1.2 and θ1.3, to a task τ2
on ES2.

Figure 7 shows the order in which Eq. 7 will visit the frames.
Note that by using this order and converting tasks to “virtual
frames” on “virtual links” we can treat the tasks and frames
together and schedule them jointly. Thus, the frames τ1 and τ2 on
“virtual links” [ES1, ES1] and [ES2, ES2], respectively, are “virtual
frames” (tasks), hence they are scheduled as tasks without
concern for MTU-size limits. However, the flow Φ1 has to be
split into frames θ1.1 to θ1.3, which are then scheduled as frames
on the physical links. The idle times in the schedule in Figure 7
between each frame are due to the link granularity and
synchronization, which have been considered for this example.

4.3.4 Backtracking
When the LS heuristic schedules a frame instance θi,m, it sets the
upper bound of the frame instance θNL

i .�ϕ on the next link NL to
the latest time available in the queue of the next linkNL. When we
schedule the frame instance θNL

i,m there can be two situations,
visualized in Figures 8A,B. In Figure 8 we show the previous link
where the frame instance θi,m was transmitted, and the next link
NL where the frame instance θNL

i,m has to be transmitted next. On
the link NL we show with hatched rectangles the times where θNL

i,m

cannot be transmitted, e.g., because other frames are being
transmitted.

Case (1) is when we have enough space to send θNL
i,m on NL,

depicted in Figure 8A. The frame can then be placed into the
queue as early as the constraints allow. Conversely, case (2), is
when there is not enough space for the frame on NL, as shown
in Figure 8B. In this case, we use backtracking. We first need
to check later times on NL when there is space to transmit
θNL
i,m . This is achieved by increasing the lower bound of θi,m on
the previous link such that θNL

i,m will have to be delayed,
i.e., scheduled at a later time. If we are unsuccessful in
pushing θNL

i,m later, we need to push also θi,m later, which is
achieved by going back on the links where θi,m was
transmitted, and delaying the frames. This is the
backtracking process, which continues going back on the
previous links and delaying the frames until we are able to
find space for all of them. If such a space cannot be found, it
means that the frame cannot be scheduled, hence this
solution is infeasible. The metaheuristics will hopefully
then guide the search in their outer loop to other solutions
where the frame can be scheduled.

4.4 EDF Simulation for Schedule Synthesis
The List Scheduling heuristic from Section 4.3 has scheduled all
the flows and the corresponding communicating tasks, resulting
in a partial schedule S′. We propose the EDF-based heuristic in
Algorithm 3 for scheduling the rest of the non-communicating
tasks and optimizing the schedule. EDFScheduleSynthesis receives
as input the architecture A, applications Γ the partial solution s
containing the mapping M, offsets ϕ, deadlines D and partial
schedule S′. The schedule synthesis heuristic fromAlgorithm 3 is

FIGURE 6 | Blocking times of a frame with a period of 15 ms considering another frame with a period of 10 ms over their hyperperiod.

FIGURE 7 | How tasks and flow frames are scheduled together. The order is indicated by the number in parenthesis.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 76222712

McLean et al. Configuring ADAS Platforms

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

based on simulating Earliest Deadline First (EDF) scheduling,
similar to (Craciunas et al., 2014; Barzegaran et al., 2020). EDF
is a scheduling algorithm (Buttazzo, 2011) that prioritizes tasks
at each time instant depending on their deadlines, i.e., the one
with the earliest deadline will get control of the CPU. Given the
task WCETs, offsets, and deadlines, the partial schedule S′, the
complete schedule table S is generated by simulating how EDF
would execute tasks until the hyperperiod. For a given mapping,
offsets, and deadlines, EDF will always produce the same
schedule. We optimize the schedule produced by the EDF
simulation by allowing the metaheuristics in an outer loop to
change the mapping M, offsets ϕi of each task τi and deadlines
D, and by allowing preemption for the tasks. The EDF
simulation is implemented using the discrete-event
simulation (DES) paradigm, where the operation of a system
is seen as a discrete sequence of events in time, and an event
captures the change of state in the system at a particular
moment in time.

Algorithm 3. EDFScheduleSynthesis(A, Γ, s). Schedules the tasks
that are not involved in the communication on top of the partial
schedule S′ produced by Algorithm 1, creating the final schedule
S

We start by assigning all tasks to their respective cores (step 1
inAlgorithm 3). All tasks without a task mapping will be mapped
according to a best-fit strategy with respect to utilization,
i.e., balancing the processor and core utilization. We run the
simulation for a length l (set in step 2), after which the schedule
will repeat itself. l is defined by 2 ·hyperperiod +MaxOffset, where
hyperperiod is determined as the Least Common Multiple of all

tasks in Γ and the MaxOffset is the maximum over all offsets ϕi
(Leung and Merrill, 1980). The iteration over the simulation
length l is done in the steps 6–12. The current time is captured by
cycle, and we advance the time to the next event that needs to be
simulated.

The EDF simulation is performed per core σ (step 10), and we
use a queue Qσ containing all cores from all processors, ordered
by the earliest event that needs to be simulated. To start the
simulation, steps 3–5 add cores to the queueQσ, by visiting all the
cores in the architecture A.

The next event to be simulated is determined by taking the
head of the queue Qσ (Dequeue) and calling NextCycle.
NextCycle is called for a core σ and returns the time cycle
when the next event of interest for scheduling occurs on that
core. Our NextCycle implementation skips unnecessary cycles,
i.e. when no events of interest to the scheduling occur. It does so
by progressing towards the nearest event defined by either
releasing a task from the waiting queue, choosing the task
with the earliest deadline first from the ready queue,
completing a task, or allowing preemption to occur on a
certain break point defined by a parameter called macrotick
for each core. The macrotick defines the preemption
granularity. The macrotick is set such that it allows
preemption, under the constraint that the overhead due to
context switches on each processor should be low, see
(Aichouch et al., 2013; Craciunas et al., 2014; Zuepke et al.,
2015) for a discussion.

We add cores to be simulated in Qσ only if we are still within
the simulation length l. The algorithm stops when there are no
cores to be simulated (Qσ is empty). The EDF simulation logic is
taking place in the EDFSimulation function, called at line 10,
which simulates up to the next event, which is returned. The
product of EDFScheduleSythesis is then a recording of all
occurred events, from which we can derive the schedule table
S of the current solution s. As mentioned, LS schedules jointly the
flows and those tasks involved in the communication. EDF
schedules the tasks not scheduled so far, i.e., those which are
not involved in inter-core communication. The EDF algorithm
allows task preemption, which in our case means that tasks in the
schedule can be split at design-time. This optimizes the schedule
table, as the scheduling search space becomes larger and latencies
and jitters can be further optimized compared to the case such

FIGURE 8 | Visualization of lower bound and upper bounds. The hatched areas are already filled by other frames, such that the non-hatched areas form the feasible
region. (A) Case where the next frame can be scheduled in the feasible region. (B) Case where there is not enough space is available to schedule the frame and
backtracking will be used to move the frame forward.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 76222713

McLean et al. Configuring ADAS Platforms

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

task splitting is not allowed. In addition, EDF will be allowed to
split the communicating tasks already added to the partial
schedule S′ by the LS heuristic if such task splitting will not
result in constraint violations.

We illustrate the EDF approach via the example in Figure 4,
consisting of an architecture with a single processor with two
cores, σ1 and σ2, both of which having a macro tick of 1ms. The
depicted application is modelled by the task set Γ � {τ1, τ2, τ3}.
In this example all tasks have a jitter constraint of 0, meaning
that they have to start in each period instance at the same time
in relation to the start of the period. The tasks are defined as τ1 �
(σ0, 0, ϕ1, 4, 10, 10), τ2 � (σ0, 0, ϕ2, 1, 4, 4) and τ3 � (σ1, 0, ϕ3, 4,
20, 20). Furthermore, the set of task chains is defined by
Lℵ � {ℵ1}, with ℵ1 � ({τ1 ≺ τ2 ≺ τ3}, 20, 1.0). Please note,
that given Eq. 1, only two chain instances are necessary to
validate as the hyperperiod of ℵ1 is 20ms, and the period of τ1
is 10ms.

Figure 4A depicts a solution, where the jitter and the task
chain end-to-end constraints are violated, whereas Figure 4B
shows a valid solution. As seen from Figure 4A, τ1 violates its
jitter constraints, as the start (and end) of execution within its
periods varies. This is detected when the events for the
respective tasks instances are raised. For example, the
event triggering the start of execution with respect to τ1,1
and τ1,2 differs by 1 ms. While the initial offset ϕi for all tasks
is 0, resulting in τ2,1 and τ3,1 starting their execution first,
neither are source tasks with respect to ℵ1. Moving forward,
τ1,1 is started at cycle 1, causing the event to trigger the
registration of a task chain instance ℵ1,1. At cycle 4, τ1,1 is
preempted by τ2,2 while τ3,1 completes is execution. Although
τ3,1 is a sink task, and a chain instance has been registered, the
instance has yet to receive the completion of τ1,1 and τ2,k
before it is accepted. That is, the presence of an event from τ2,k
that happens after τ1,1 must be registered. Subsequently, τ1,1
completes at cycle 5, allowing the ℵ1,1 to advance its state,
waiting for τ2,3. Lastly, τ3,2 finalizes its execution at cycle 23,
thus completing ℵ1,1 with a resulting latency of 23, which
incidentally violates the given constraints. The chain instance
ℵ1,2 is registered at cycle 10, and finalizes at cycle 23, yielding
a latency of 14. Given that both latency and jitter constraints
have been violated, the product of the EDFScheduleSynthesis
is not feasible.

However, in an optimized solution, solving the associated
violations can be achieved by manipulating the initial offsets
ϕi for the tasks, as depicted in Figure 4B. Here, the schedule has
been altered such that all executions of τ1 and τ3 have been
deferred by ϕ1 and ϕ3. For τ1, the displacement ϕ1 solves the
jitter constraint violation, because all jobs τ1,i now start (and
end) at the same cycle relative to its period. Finally, τ3 has
been displaced by 9 cycles, such that its initial execution
allows τ3,1 to catch the events from τ2,3 (and by extension
τ1,1), thus reducing the latency of ℵ1,1. Likewise, by
introducing ϕ1 for τ1 the latency of ℵ1,1 was reduced even
further. The combined effect of ϕ1 and ϕ3 is full compliance of
all constraints with the resulting latencies of 10 and 20 ms for
ℵ1,1 and ℵ1,2, respectively.

5 EXPERIMENTAL RESULTS

We have evaluated the proposed solutions in for both network
setups, PCIe in Section 5.1 and TSN in Section 5.2. We have used
both realistic test cases and synthetic test cases. The synthetic test
cases were generated using a tool developed for this purpose
(McLean et al., 2019), which derives the desired task properties
from the realistic test cases. The test case generation tool was
extended to add TSN flows based on the work from (Craciunas
and Serna Oliver, 2016). All experiments were conducted on a
High Performance Computing (HPC) cluster, with each node
configured with 2xIntel Xeon Processor 2660v3 (10 cores,
2.60 GHz) and 128 GB memory. Both SA and GA run on one
node at a time.

The choice of parameters for the metaheuristics has been done
using ParamILS (Hutter et al., 2009), which performs a stochastic
search in the parameter space. ParamILS works by giving it a list
of possible values for each parameter to be tuned. The list of
values was initially chosen on a broad scale, and then if runs
seemed to converge, the range was narrowed. Because the
different test case sizes have varying difficulty, parameter
tuning was done separately for the different test case sizes. For
each type of test case, 10 parallel runs were launched with
differing seeds so that more solutions could be discovered
(Hutter et al., 2012).

5.1 Experimental Results for PCIe-Based
Systems
As a first experiment, we were interested in determining our
proposed SA’s ability to find near-optimal solutions. We have
implemented an exhaustive search that finds the optimal solution;
however, we could only do that for small task sets of less than 10
tasks considering an architecture with two cores. Our SA was able
to find the same optimal solution in less than 10 s. In the
following sets of experiments, determining the efficacy of SA
was achieved through a combination of synthetic and realistic test
scenarios, benchmarked against two other heuristics: Greedy,
presented as the initial solution for the metaheuristics in
Section 4.2 and Genetic Algorithm (GA).

5.1.1 Synthetic Test Cases
We were then interested in determining if using an SA meta-
heuristic combined with EDF-simulation is a viable solution for
finding feasible schedules when confronted with very large task
sets. Thus, we have used five test cases, ranging from 100 to 500%
in scale, i.e., for ADAS1x100% the application contains 151 tasks
and 31 chains using a model of the architecture discussed in
section 2, whereas with ADAS1x200% the architecture would
double the number of processors, tasks and task chains. The
results are presented in Table 1, with each row representing the
results of a task case. A test case is a scenario consisting of 30
synthetically generated task sets, with each undergoing 30 trials
(runs of SA and GA on the same test case). Thus a single test case,
e.g., ADAS1x100%, would conduct 900 trials for each algorithm.
As the experiment progresses through each case, the algorithms

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 76222714

McLean et al. Configuring ADAS Platforms

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

were given additional time due to an inherent increased
complexity of the problem (see the Time column).

For each algorithm (Greedy, SA, and GA), we show in the
table, under the Sched. columns, the percentage of cases (out of
the 30 trials) for which the algorithms determine schedulable
solutions (all deadline constraints are satisfied; 1 means 100%).
The columns labeled Chains have the percentage of chains out of
the total chains, for which the respective algorithm was able to
satisfy the end-to-end constraints. Similarly, Jitter denotes the
percentage of jitter constraints satisfied. These values are
presented in terms of minimum, average and maximum
considering the 30 runs. Note that the Greedy algorithm is not
stochastic and always outputs the same result.

As we can see from Table 1, the Greedy approach has
comparatively the worst performance in terms of complying
with the constraints. We also see that SA can find schedulable
solutions (in terms of deadlines, chains, and jitter constraints)
within the allotted time, even when the problem size increases.
We see that SA has a drop in finding feasible schedules (from
100% in column Chains. for ADAS1x100%, to 63% for
ADAS1x500%, and cannot meet the jitter constraints for some
of the two largest test cases). We estimate that this is caused by a
combination of increased difficulty of the task sets and their
constraints, as well the crude method for estimating the time
allotted. We observed that both SA and GA obtain similar quality
results, with SA being slightly better for smaller test cases and GA
doing slightly better for larger test cases. Both metaheuristics (SA
and GA) are clearly superior to the mapping heuristic, such as
Greedy, when presented with very large task sets.

5.1.2 Realistic Test Cases
For the following evaluation, we were interested in the ability of
SA to handle realistic test cases. Thus, we have used three test
cases, ADAS1 to ADAS3, which are variants of an anonymized
realistic task set currently in use in a series-production vehicle. All
test cases have 151 tasks and 31 task chains, but with varying
jitter, earliest activation, and macrotick constraints. The
experiment was set up such that 30 trials were conducted with
SA for each test case; the time limit used is in minutes. As we can
see from Table 2, SA can find feasible solutions for all test cases.
As the test cases get progressively more difficult from ADAS1 to
ADAS3, in terms of timing constraints that need to be satisfied,
SA retains its ability to find solutions within the allotted time,
albeit at a slightly lower rate. By comparison, we see that the
percentage of resolved constraints for the Greedy algorithm
decreases similarly and fails on all accounts to find feasible
schedules that meet all the constraints. We have also
implemented an approach from the related work (Verucchi
et al., 2020), called DAG, which constructs a Directed Acyclic
Graph (DAG) from the input task set. The constructed DAG can
handle the multiple periods of tasks in the task set and encodes
the chain constraints. Such a DAG is built on the fly by our
approach when constructing a solution. The DAG approach does
not consider “preemption”, i.e., the tasks will not be split when
scheduled, and uses List Scheduling instead of EDF for scheduling
the DAG. As we can see, the DAG approach from related work is
similar to our Greedy approach and significantly under-performsT

A
B
LE

1
|E

va
lu
at
io
n
re
su

lts
on

sy
nt
he

tic
te
st

ca
se
s.

T
es

t
ca

se
T
im

e
G
re
ed

y
S
A

G
A

C
ha

in
s

Ji
tt
er

S
ch

ed
.

C
ha

in
s

Ji
tt
er

S
ch

ed
.

C
ha

in
s

Ji
tt
er

S
ch

ed
.

M
in

A
vg

M
ax

M
in

A
vg

M
ax

M
in

A
vg

M
ax

M
in

A
vg

M
ax

M
in

A
vg

M
ax

M
in

A
vg

M
ax

A
D
A
S
1x

10
0%

1
h

0.
97

0.
98

1.
00

0.
58

0.
61

0.
68

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

A
D
A
S
1x

20
0%

2
h

0.
97

0.
99

1.
00

0.
55

0.
67

0.
75

1.
00

0.
98

1.
00

1.
00

0.
94

1.
00

1.
00

1.
00

0.
98

1.
00

1.
00

0.
71

0.
95

1.
00

1.
00

A
D
A
S
1x

30
0%

3
h

0.
97

0.
99

1.
00

0.
52

0.
64

0.
72

1.
00

0.
97

0.
99

1.
00

0.
70

0.
87

1.
00

1.
00

0.
97

0.
99

1.
00

0.
70

0.
88

1.
00

1.
00

A
D
A
S
1x

40
0%

4
h

0.
97

0.
97

0.
98

0.
52

0.
64

0.
73

1.
00

0.
97

0.
99

1.
00

0.
69

0.
80

0.
88

1.
00

0.
94

0.
99

1.
00

0.
70

0.
81

0.
92

1.
00

A
D
A
S
1x

50
0%

5
h

0.
97

0.
98

0.
98

0.
51

0.
62

0.
70

1.
00

0.
95

0.
98

0.
99

0.
63

0.
78

0.
86

1.
00

0.
95

0.
98

1.
00

0.
64

0.
79

0.
87

1.
00

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 76222715

McLean et al. Configuring ADAS Platforms

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

compared to our SA metaheuristic. In addition, it results in fewer
jitter constraints satisfied, compared to our Greedy.

5.2 Experimental Results for TSN-Based
Systems
In this section, we considered that the communication is done via
a TSN backbone. We have used synthetic test cases, for which we
generated various TSN networks. We have used three different
types of graphs with varying degrees of connectivity. The
topologies (mesh, ring, and tree) are shown in Figure 9.

The number of end systems, switches, and chains are given in
Table 3, similar to the setup used in (Craciunas and Serna Oliver,
2016), except for the number of chains. For each end system, 16
tasks are created, 8 which communicate and 8 which do not. Each
communicating task sends a message to another communicating
task. Thus, there will be |ES|· 4 flows in the network. The
utilization is set to be 50% for each end system, 25% of which
corresponds to communicating tasks and 75% to the rest. Task
WCETs are chosen such that they are divisible with the macrotick
and fit within the assigned utilization. Message lengths are chosen
at random between 84 and 1,542 Bytes. The macrotick of the end
systems is set to 250 μs, and the granularity of the links are set to
1 μs. The speed of links from end systems to switches is set to
100 Mbps and to 1 Gbps between switches.

We have used three sets of randomly chosen periods, all in
milliseconds, P1 � {10, 20, 25, 50, 100}, P2 � {10, 30, 100}, and P3
� {50, 75}. We use the shortest paths for routes. The chains are
generated with a maximum task length of 15, and a minimum of
2, and lengths are chosen from a uniform random distribution.

Two consecutive tasks in a chain must either be on the same end
system or be communicating via the TSN network. In order to
compare the performance between the two metaheuristics, 10
runs were performed on each of the test cases for a total of 360
runs for each of the metaheuristics. The time given for each size is
as follows. 300 s for small test cases, 1,200 s for medium, 4,800 s
for large, and 19,200 s for the largest test cases, called “huge”.

Figure 10 shows on the y-axis the percentage of test cases
solved for each size and topology. The results are grouped per
topology, mesh, ring, and tree, and for each topology, we use
different sets of periods, P1 to P3. A test case is “solved” if all the
requirements are satisfied. On the y-axis, 1 means that 100% of
the requirements were satisfied, whereas 0 means that no
requirements could be satisfied. On the x-axis, we show the
type of test case, small, medium, large, and huge. As we can
see, our GA and SA solutions can successfully solve all the test
cases, except for some of the “huge” test cases, especially in the
tree topologies, where a few requirements could not be satisfied.
In those situations, GA performs better than SA. When
considering the cost of the solutions (the value of Eq. 2), we
noticed that SA is better than GA in terms of the cost function for
small, medium, and large test cases. However, in the huge test
cases, GA not only is able to find feasible solutions more
consistently but is also able to find solutions of lower cost.

Finally, we were also interested in our approaches’ ability to
find a feasible solution as fast as possible. That is, we wanted to
determine what is the earliest time when all the requirements are
satisfied. Once such a solution is found, the metaheuristics
continue the optimization until the time limit is reached.
Hence, we modified SA and GA to return once a feasible

TABLE 2 | Evaluation results on realistic test cases.

Test case Time DAG Greedy SA

Chains Jitter Sched. Chains Jitter Sched. Chains Jitter Sched.

Min Avg Max Min Avg Max
ADAS1 3.20 0.90 0.31 1.00 0.81 0.37 1.00 0.97 0.99 1.00 0.95 0.99 1.00 1.00
ADAS2 6.40 0.55 0.10 1.00 0.65 0.21 1.00 0.94 0.99 1.00 0.84 0.99 1.00 1.00
ADAS3 13.20 0.74 0.10 1.00 0.48 0.21 1.00 0.84 0.99 1.00 0.74 0.97 1.00 1.00

FIGURE 9 | Topologies used for experiments. In each topology, a switch has 3 end systems attached (for tree: Leaf nodes only). (A) Mesh topology. (B) Ring
topology. (C) Tree topology with depth � 2.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 76222716

McLean et al. Configuring ADAS Platforms

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

TABLE 3 | Number of switches, end systems and chains for each topology and size of test case.

Size Topology Switches End systems Tasks Chains Flows

Small Mesh, Ring 2 4 64 16 16
Tree, depth � 1 4 6 96 16 24

Medium Mesh, Ring 4 16 256 32 64
Tree, depth � 2 13 36 576 32 144

Large Mesh, Ring 8 48 768 64 192
Tree, depth � 3 15 48 768 64 192

Huge Mesh, Ring 16 192 3,072 128 768
Tree, depth � 2 43 432 6,912 128 1,728

FIGURE 10 |Comparison of SA and GA in terms of percentage of solved solutions, i.e., all the tasks and flows are successfully scheduled and the constraints, e.g.,
chain latencies, are satisfied.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 76222717

McLean et al. Configuring ADAS Platforms

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

solution was found. The runtime results are shown in Figure 11.
The figure shows that when SA can find a feasible solution for a
test case, it generally finds it faster than GA. However, there are
situations where GA outperforms SA.

6 CONCLUSION AND FUTURE WORK

In this paper, we have considered safety-critical ADAS applications
mapped on modern multi-processor platforms. The applications are
modeled as a set of communicating software tasks with complex
timing requirements, e.g., jitter, deadlines, and end-to-end latency

bounds on task chains. We have proposed an optimization strategy
that, given the application and platform models, determines a
mapping of tasks to the cores of the platform and a static schedule
of tasks on each core, such that the timing constraints are satisfied.We
have also considered a realistic communication backbone
implemented using the IEEE 802.1 Time-Sensitive Networking
standard, and our optimization derives the schedule tables for the
TSN messages.

Our optimization strategy uses metaheuristics (Simulated
Annealing and Genetic Algorithm) to explore the solution
space, combined with a scheduling heuristic to jointly solve
the task and message scheduling problem. The experimental

FIGURE 11 | Comparison of SA and GA runtimes when searching for the first feasible solution.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 76222718

McLean et al. Configuring ADAS Platforms

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

evaluation on several realistic and synthetic test cases has
demonstrated that our proposed strategy is able to find
solutions that meet the timing constraints at a higher rate
than traditional approaches and scales with the growing trend
of ADAS platforms.

Our evaluation has shown that SA is superior in finding
feasible solutions fast and with a lower cost function value
compared to GA, whereas GA outperforms SA for very large
TSN-based test cases where. As future work, we want to
implement a hybrid multi-objective metaheuristic (Blum
and Roli, 2008) that combines SA and GA and considers
several optimization objectives, such as reducing the number
of task preemptions in order to reduce context switch
overhead and reducing the number of switch queues used
by the TSN messages.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual
contribution to the work and approved it for publication.

FUNDING

The research presented throughout this paper has partially
received funding from the European Community’s Horizon
2020 programme under the UP2DATE project (grant
agreement 871465).

ACKNOWLEDGMENTS

This paper is an extended version of (McLean et al., 2020) based
on original technical material contained in a thesis of the first
author (McLean, 2019) which is archived as a technical report
(McLean et al., 2019) and extended with material included in a
thesis of the second author (Hansen, 2020).

REFERENCES

Abdelzaher, T. F., and Shin, K. G. (1999). Combined Task and Message Scheduling
in Distributed Real-Time Systems. IEEE Trans. Parallel Distrib. Syst. 10,
1179–1191. doi:10.1109/71.809575

Aichouch, M., Prévotet, J.-C., and Nouvel, F. (2013). “Evaluation of the Overheads
and Latencies of a Virtualized RTOS,” in 2013 8th IEEE International
Symposium on Industrial Embedded Systems (IEEE), 81–84. doi:10.1109/
sies.2013.6601475

Barzegaran, M., Cervin, A., and Pop, P. (2020). Performance Optimization of
Control Applications on Fog Computing Platforms Using Scheduling and
Isolation. IEEE Access 8, 104085–104098. doi:10.1109/access.2020.2999322

Becker, M., Dasari, D., Mubeen, S., Behnam, M., and Nolte, T. (2017). End-to-end
Timing Analysis of Cause-Effect Chains in Automotive Embedded Systems.
J. Syst. Architecture 80, 1. doi:10.1016/j.sysarc.2017.09.004

Becker, M., Dasari, D., Mubeen, S., Behnam, M., and Nolte, T. (2016a).
“Synthesizing Job-Level Dependencies for Automotive Multi-Rate Effect
Chains,” in 2016 IEEE 22nd International Conference on Embedded and
Real-Time Computing Systems and Applications (IEEE), 159–169.
doi:10.1109/rtcsa.2016.41

Becker, M., Dasari, D., Nicolic, B., Akesson, B., Nelis, V., and Nolte, T. (2016b).
“Contention-free Execution of Automotive Applications on a Clustered many-
core Platform,” in 2016 28th Euromicro Conference on Real-Time Systems
(IEEE), 14–24. doi:10.1109/ecrts.2016.14

Biondi, A., and Di Natale, M. (2018). “Achieving Predictable Multicore Execution
of Automotive Applications Using the LET Paradigm,” in 2018 IEEE Real-Time
and Embedded Technology and Applications Symposium (IEEE), 240–250.
doi:10.1109/rtas.2018.00032

Blum, C., and Roli, A. (2008). “Hybrid Metaheuristics: an Introduction,” in Hybrid
Metaheuristics (Springer), 1–30. doi:10.1007/978-3-540-78295-7_1

Bunzel, S. (2011). AUTOSAR - the Standardized Software Architecture. Informatik
Spektrum 34, 79–83. doi:10.1007/s00287-010-0506-7

Burke, E. K., and Kendall, G. (2005). Search Methodologies. Springer.
Buttazzo, G. C. (2011). Hard Real-Time Computing Systems: Predictable

Scheduling Algorithms and Applications (Real-Time Systems Series).
Springer-Verlag.

Chetto, H., Silly, M., and Bouchentouf, T. (1990). Dynamic Scheduling of Real-
Time Tasks under Precedence Constraints. J. Real-Time Syst. 2, 181–194.
doi:10.1007/bf00365326

Choi, S., and Agrawala, A. K. (2000). “Scheduling of Real-Time Tasks with
Complex Constraints,” in Performance Evaluation: Origins and Directions
(IEEE), 253–282. doi:10.1007/3-540-46506-5_11

Craciunas, S. S., and Oliver, R. S. (2016). Combined Task- and Network-Level
Scheduling for Distributed Time-Triggered Systems. Real-time Syst. 52,
161–200. doi:10.1007/s11241-015-9244-x

Craciunas, S. S., Serna Oliver, R., Chmelik, M., and Steiner, W. (2016). “Scheduling
Real-Time Communication in IEEE 802.1Qbv Time Sensitive Networks,” in
Proc. 24th International Conference on Real-Time Networks and Systems
(IEEE), 183–192. doi:10.1145/2997465.2997470

Craciunas, S. S., Serna Oliver, R., and Ecker, V. (2014). “Optimal Static Scheduling
of Real-Time Tasks on Distributed Time-Triggered Networked Systems,” in
Proceedings of the 2014 IEEE Emerging Technology and Factory Automation
(IEEE), 1–8. doi:10.1109/etfa.2014.7005128

Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T. (2000). “A Fast Elitist Non-
dominated Sorting Genetic Algorithm for Multi-Objective Optimization:
NSGA-II,” in Proceedings of the International Conference on Parallel
Problem Solving from Nature (IEEE), 849–858. doi:10.1007/3-540-45356-3_83

Di Natale, M., and Stankovic, J. A. (2000). Scheduling Distributed Real-Time
Tasks with Minimum Jitter. IEEE Trans. Comput. 49, 303–316. doi:10.1109/
12.844344

Dürr, F., and Nayak, N. G. (2016). “No-wait Packet Scheduling for IEEE Time-
Sensitive Networks (TSN),” in Proceedings of the 24th International
Conference on Real-Time Networks and Systems (IEEE), 203–212.

Ernst, R., Kuntz, S., Quinton, S., and Simons, M. (2018). The Logical Execution
Time Paradigm: New Perspectives for Multicore Systems (Dagstuhl Seminar
18092). Dagstuhl Rep. 8, 122–149.

Fohler, G. (1994). Flexibility in Statically Scheduled Real-Time Systems. Ph.D.
Thesis, Technisch- Naturwissenschaftliche Fakultät. Vienna, Austria:
Technische Universität Wien.

Forget, J., Boniol, F., and Pagetti, C. (2017). “Verifying End-To-End Real-Time
Constraints on Multi-Periodic Models,” in Proceedings IEEE Emerging
Technology and Factory Automation (IEEE), 1–8. doi:10.1109/
etfa.2017.8247612

Forget, J., Grolleau, E., Pagetti, C., and Richard, P. (2011). “Dynamic Priority
Scheduling of Periodic Tasks with Extended Precedences,” in Proceedings IEEE
Emerging Technology and Factory Automation (IEEE), 1–8. doi:10.1109/
etfa.2011.6059015

Garey, M. R., and Johnson, D. S. (1979). Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 76222719

McLean et al. Configuring ADAS Platforms

https://doi.org/10.1109/71.809575
https://doi.org/10.1109/sies.2013.6601475
https://doi.org/10.1109/sies.2013.6601475
https://doi.org/10.1109/access.2020.2999322
https://doi.org/10.1016/j.sysarc.2017.09.004
https://doi.org/10.1109/rtcsa.2016.41
https://doi.org/10.1109/ecrts.2016.14
https://doi.org/10.1109/rtas.2018.00032
https://doi.org/10.1007/978-3-540-78295-7_1
https://doi.org/10.1007/s00287-010-0506-7
https://doi.org/10.1007/bf00365326
https://doi.org/10.1007/3-540-46506-5_11
https://doi.org/10.1007/s11241-015-9244-x
https://doi.org/10.1145/2997465.2997470
https://doi.org/10.1109/etfa.2014.7005128
https://doi.org/10.1007/3-540-45356-3_83
https://doi.org/10.1109/12.844344
https://doi.org/10.1109/12.844344
https://doi.org/10.1109/etfa.2017.8247612
https://doi.org/10.1109/etfa.2017.8247612
https://doi.org/10.1109/etfa.2011.6059015
https://doi.org/10.1109/etfa.2011.6059015
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

Gietelink, O., Ploeg, J., Schutter, B. D., and Verhaegen, M. (2006).
Development of Advanced Driver Assistance Systems with Vehicle
Hardware-In-The-Loop Simulations. Vehicle Syst. Dyn. 44, 1.
doi:10.1080/00423110600563338

Goldberg, D. E., and Lingle, R., Jr (1987). “A Study of Permutation Crossover
Operators on the TSP,” in Proceeding of the Second International Conference
on Genetic Algorithms and Their Applications. Editor J. J. Grefenstette
(Hillsdale, New Jersey: Lawrence Erlbaum), 224–230.

Goldberg, D. E., and Lingle, R., Jr (1985). “Alleles, Loci and the TSP,” in Proceeding
of the First International Conference on Genetic Algorithms and Their
Applications. Editor J. J. Grefenstette (Hillsdale, New Jersey: Lawrence
Erlbaum), 154–159.

Hammond, M., Qu, G., and Rawashdeh, O. A. (2015). “Deploying and Scheduling
Vision Based Advanced Driver Assistance Systems (ADAS) on Heterogeneous
Multicore Embedded Platform,” in 2015 9th International Conference on
Frontier of Computer Science and Technology (IEEE), 172–177.
doi:10.1109/fcst.2015.69

Hansen, E. A. J. (2020). Configuration of Computer-Platforms for
Autonomous Driving ApplicationsMaster’s Thesis. Kongens Lyngby,
Denmark: Technical University of Denmark.

Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2012). “Parallel
Algorithm Configuration,” in International Conference on Learning
and Intelligent Optimization (IEEE), 55–70. doi:10.1007/978-3-642-
34413-8_5

Hutter, F., Hoos, H. H., Leyton-Brown, K., and Stützle, T. (2009). ParamILS: An
Automatic Algorithm Configuration Framework. J. Artif. Intell. Res. 36,
267–306.

IEEE (2016a). 802.1AS-Rev - Timing and Synchronization for Time-Sensitive
Applications. IEEE. Available at: https://www.ieee802.org/1/pages/802.1as.
html (Accessed 08 19, 2021).

IEEE (2015). 802.1Qbv-2015 - IEEE Standard for Local and Metropolitan Area
Networks – Bridges and Bridged Networks - Amendment 25: Enhancements for
Scheduled Traffic. IEEE. Available at: https://ieeexplore.ieee.org/servlet/opac?
punumber�8613093 (Accessed 08 19, 2021).

IEEE (2016b). Official Website of the 802.1 Time-Sensitive Networking Task
Group. IEEE. Available at: https://1.ieee802.org/tsn/(Accessed 06 11,
2019).

Isović, D., and Fohler, G. (2000). “Efficient Scheduling of Sporadic, Aperiodic, and
Periodic Tasks with Complex Constraints,” in Proceedings IEEE Real-Time
Systems Symposium (IEEE), 207–216.

Larranaga, P., Kuijpers, C., Poza, M., andMurga, R. (1997). Decomposing Bayesian
Networks. Triangulation of the Moral Graph with Genetic Algorithms. Stat.
Comput. 7, 19–34.

Leung, J. Y.-T., and Merrill, M. L. (1980). A Note on Preemptive Scheduling of
Periodic, Real-Time Tasks. Inf. Process. Lett. 11, 115–118. doi:10.1016/0020-
0190(80)90123-4

Liu, C. L., and Layland, J. W. (1973). Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment. J. Acm 20, 46–61.
doi:10.1145/321738.321743

Lukasiewycz, M., Schneider, R., Goswami, D., and Chakraborty, S. (2012).
“Modular Scheduling of Distributed Heterogeneous Time-Triggered
Automotive Systems,” in 17th Asia and South Pacific Design
Automation Conference (IEEE), 665–670. doi:10.1109/
aspdac.2012.6165039

Dataset Marija Sokcevic (2020). Partitioned Complexity. Available at: https://www.
tttech-auto.com/expert_insight/expert-insights-partitioned-complexity/
(Accessed 06 15, 2021).

McLean, S. D., Craciunas, S. S., Hansen, E. A. J., and Pop, P. (2020). “Mapping and
Scheduling Automotive Applications on ADAS Platforms Using Metaheuristics,”
in 2020 25th IEEE International Conference on Emerging Technologies and
Factory Automation (IEEE), 329–336. doi:10.1109/etfa46521.2020.9212029

McLean, S. D. (2019). Mapping and Scheduling of Real-Time Tasks on Multi-Core
Autonomous Driving platformsMaster’s Thesis. Kongens Lyngby, Denmark:
Technical University of Denmark.

McLean, S. D., Pop, P., and Craciunas, S. S. (2019). Mapping and Scheduling of
Real-Time Tasks on Multi-Core Autonomous Driving Platforms. Kongens
Lyngby, Denmark: Tech. rep., Technical University of Denmark.

Mehmed, A., Steiner, W., and Rosenblattl, M. (2017). “A Time-Triggered
Middleware for Safety-Critical Automotive Applications,” in Presented at
the 22nd International Conference on Reliable Software Technologies—Ada-
Europe (IEEE).

Mubeen, S., and Nolte, T. (2015). “Applying End-To-End Path Delay Analysis to
Multi-Rate Automotive Systems Developed Using Legacy Tools,” in 2015 IEEE
World Conference on Factory Communication Systems (IEEE), 1–4.
doi:10.1109/wfcs.2015.7160585

Niedrist, G. (2018). “Deterministic Architecture and Middleware for Domain
Control Units and Simplified Integration Process Applied to ADAS,” in
Fahrerassistenzsysteme 2016 (Wiesbaden: Springer Fachmedien Wiesbaden),
235–250. doi:10.1007/978-3-658-21444-9_15

Peng, D.-T., Shin, K. G., and Abdelzaher, T. F. (1997). Assignment
and Scheduling Communicating Periodic Tasks in Distributed Real-
Time Systems. IIEEE Trans. Softw. Eng. 23, 745–758. doi:10.1109/
32.637388

Pop, P., Raagaard, M. L., Craciunas, S. S., and Steiner, W. (2016). Design
Optimisation of Cyber-physical Distributed Systems Using IEEE Time-
sensitive Networks. IET Cyber-phys. Syst. 1, 86–94. doi:10.1049/iet-
cps.2016.0021

Pop, T., Eles, P., and Peng, Z. (2003). “Schedulability Analysis for
Distributed Heterogeneous Time/event Triggered Real-Time
Systems,” in 15th Euromicro Conference on Real-Time Systems
(IEEE), 257–266.

Raagaard, M. L., and Pop, P. (2017). Optimization Algorithms for the Scheduling of
IEEE 802.1 Time-Sensitive Networking (TSN). Kongens Lyngby, Denmark:
Tech. rep., Technical University of Denmark.

Rajeev, A. C., Mohalik, S., Dixit, M. G., Chokshi, D. B., and Ramesh, S.
(2010). “Schedulability and End-To-End Latency in Distributed ECU
Networks: Formal Modeling and Precise Estimation,” in Proceedings of
the Tenth ACM International Conference on Embedded Software (IEEE),
129–138.

Sagstetter, F., Andalam, S., Waszecki, P., Lukasiewycz, M., Stähle, H.,
Chakraborty, S., et al. (2014). “Schedule Integration Framework for
Time-Triggered Automotive Architectures,” in Proceedings of the 51st
Annual Design Automation Conference (IEEE), 1–6. doi:10.1145/
2593069.2593211

Serna Oliver, R., Craciunas, S. S., and Steiner, W. (2018). “IEEE 802.1Qbv Gate
Control List Synthesis Using Array Theory Encoding,” in 2018 IEEE Real-Time
and Embedded Technology and Applications Symposium (IEEE), 13–24.
doi:10.1109/rtas.2018.00008

Sinnen, O. (2007). Task Scheduling for Parallel Systems. Wiley & Sons.
Sommer, S., Camek, A., Becker, K., Buckl, C., Zirkler, A., Fiege, L., et al.

(2013). “RACE: A Centralized Platform Computer Based Architecture
for Automotive Applications,” in 2013 IEEE International Electric
Vehicle Conference (IEVC) (IEEE), 1–6. doi:10.1109/
ievc.2013.6681152

Steiner, W., Bauer, G., Hall, B., and Paulitsch, M. (2011). “TTEthernet: Time-
Triggered Ethernet,” in Time-Triggered Communication (Boca Raton, United
States: CRC).

Syswerda, G. (1991). “Schedule Optimization Using Genetic Algorithms,” in
Handbook of Genetic Algorithms (New York: Van Nostrand Reinhold),
332–349.

Tindell, K., and Clark, J. (1994). Holistic Schedulability Analysis for Distributed
Hard Real-Time Systems.Microprocess. Microprogram 40, 1. doi:10.1016/0165-
6074(94)90080-9

Dataset TTTech Computertechnik AG (2018). Automated Driving Offering.
Available at: https://www.tttech-auto.com/products/automated-
driving/.

Verucchi, M., Theile, M., Caccamo, M., and Bertogna, M. (2020). “Latency-aware
Generation of Single-Rate Dags from Multi-Rate Task Sets,” in 2020 IEEE
Real-Time and Embedded Technology and Applications Symposium (IEEE),
226–238. doi:10.1109/rtas48715.2020.000-4

Zuepke, A., Bommert, M., and Lohmann, D. (2015). “AUTOBEST: a United
AUTOSAR-OS and ARINC 653 Kernel,” in 21st IEEE Real-Time and
Embedded Technology and Applications Symposium (IEEE), 133–144.
doi:10.1109/rtas.2015.7108435

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 76222720

McLean et al. Configuring ADAS Platforms

https://doi.org/10.1080/00423110600563338
https://doi.org/10.1109/fcst.2015.69
https://doi.org/10.1007/978-3-642-34413-8_5
https://doi.org/10.1007/978-3-642-34413-8_5
https://www.ieee802.org/1/pages/802.1as.html
https://www.ieee802.org/1/pages/802.1as.html
https://ieeexplore.ieee.org/servlet/opac?punumber=8613093
https://ieeexplore.ieee.org/servlet/opac?punumber=8613093
https://ieeexplore.ieee.org/servlet/opac?punumber=8613093
https://1.ieee802.org/tsn/
https://doi.org/10.1016/0020-0190(80)90123-4
https://doi.org/10.1016/0020-0190(80)90123-4
https://doi.org/10.1145/321738.321743
https://doi.org/10.1109/aspdac.2012.6165039
https://doi.org/10.1109/aspdac.2012.6165039
https://www.tttech-auto.com/expert_insight/expert-insights-partitioned-complexity/
https://www.tttech-auto.com/expert_insight/expert-insights-partitioned-complexity/
https://doi.org/10.1109/etfa46521.2020.9212029
https://doi.org/10.1109/wfcs.2015.7160585
https://doi.org/10.1007/978-3-658-21444-9_15
https://doi.org/10.1109/32.637388
https://doi.org/10.1109/32.637388
https://doi.org/10.1049/iet-cps.2016.0021
https://doi.org/10.1049/iet-cps.2016.0021
https://doi.org/10.1145/2593069.2593211
https://doi.org/10.1145/2593069.2593211
https://doi.org/10.1109/rtas.2018.00008
https://doi.org/10.1109/ievc.2013.6681152
https://doi.org/10.1109/ievc.2013.6681152
https://doi.org/10.1016/0165-6074(94)90080-9
https://doi.org/10.1016/0165-6074(94)90080-9
https://www.tttech-auto.com/products/automated-driving/
https://www.tttech-auto.com/products/automated-driving/
https://doi.org/10.1109/rtas48715.2020.000-4
https://doi.org/10.1109/rtas.2015.7108435
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

Conflict of Interest: Author SC was employed by the company TTTech
Computertechnik AG.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 McLean, Juul Hansen, Pop and Craciunas. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 76222721

McLean et al. Configuring ADAS Platforms

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

	Configuring ADAS Platforms for Automotive Applications Using Metaheuristics
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Platform and Application Models
	2.1 System Model
	2.2 TSN
	2.3 Application Model
	2.4 Timing Constraints

	3 Problem Formulation
	4 Mapping and Scheduling Strategy
	4.1 Solution Overview and Cost Function
	4.2 Metaheuristics
	4.2.1 Simulated Annealing
	4.2.2 Genetic Algorithm

	4.3 Joint Flow and Task Scheduling
	4.3.1 Lower Bound
	4.3.2 Feasible Regions
	4.3.3 Getting the Next Frame
	4.3.4 Backtracking

	4.4 EDF Simulation for Schedule Synthesis

	5 Experimental Results
	5.1 Experimental Results for PCIe-Based Systems
	5.1.1 Synthetic Test Cases
	5.1.2 Realistic Test Cases

	5.2 Experimental Results for TSN-Based Systems

	6 Conclusion and Future Work
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

