
Published in Journal of Real-Time Systems, Volume 52, Issue 2, pp. 161-200, Springer, 2016

Combined Task- and Network-level Scheduling for
Distributed Time-Triggered Systems∗

Silviu S. Craciunas Ramon Serna Oliver

TTTech Computertechnik AG
Schönbrunner Strasse 7
1040 Vienna, Austria
{scr, rse}@tttech.com

Abstract

Ethernet-based time-triggered networks (e.g. TTEthernet) enable the
cost-effective integration of safety-critical and real-time distributed applica-
tions in domains where determinism is a key requirement, like the aerospace,
automotive, and industrial domains. Time-Triggered communication typically
follows an offline and statically configured schedule (the synthesis of which is
an NP-complete problem) guaranteeing contention-free frame transmissions.
Extending the end-to-end determinism towards the application layers requires
that software tasks running on end nodes are scheduled in tight relation to
the underlying time-triggered network schedule. In this paper we discuss
the simultaneous co-generation of static network and task schedules for dis-
tributed systems consisting of preemptive time-triggered tasks which commu-
nicate over switched multi-speed time-triggered networks. We formulate the
schedule problem using first-order logical constraints and present alternative
methods to find a solution, with or without optimization objectives, based on
Satisfiability Modulo Theories (SMT) and Mixed Integer Programming (MIP)
solvers, respectively. Furthermore, we present an incremental scheduling ap-
proach, based on the demand bound test for asynchronous tasks, which signif-
icantly improves the scalability of the scheduling problem. We demonstrate
the performance of the approach with an extensive evaluation of industrial-
sized synthetic configurations using alternative state-of-the-art SMT and MIP
solvers and show that, even when using optimization, most of the problems
are solved within reasonable time using the incremental method.

∗This paper is an extended version of [13]. The research leading to these results has received
funding from the European Union Seventh Framework Programme (FP7/2007- 2013) under grant
agreement no 610640 (DREAMS). The final publication is available at Springer via http://dx.

doi.org/10.1007/s11241-015-9244-x.

1

http://dx.doi.org/10.1007/s11241-015-9244-x
http://dx.doi.org/10.1007/s11241-015-9244-x

1 Introduction

The design and development of distributed embedded systems driven by the Time-
Triggered paradigm [33] has proven effective in a diversity of domains with stringent
demands of determinism. Examples of time-triggered systems successfully deployed
in the real world include the TTP-based [34] communication systems for the flight
control computer of Embraer’s Legacy 450 and 500 jets and the distributed elec-
tric and environmental control of the Boeing 787 Dreamliner, whereas TTEthernet
(SAE AS6802, [55]) has been selected for the NASA Orion Multi-Purpose Crew Ve-
hicle [24], which successfully completed the Exploration Flight Test-1 (ETF-1) [41].

Ethernet-based time-triggered networks are key to enable the integration of
mixed-criticality communicating systems in a scalable and cost-effective manner.
Ongoing efforts within the IEEE 802.1 Time Sensitive Networking (TSN) task
group [27] include the addition of time-triggered capabilities as part of Ethernet in
the scope of the IEEE 802.1Qbv project [26]. TTEthernet is an extension to stan-
dard Ethernet currently used in mixed-criticality real-time applications. In TTEth-
ernet a global communication scheme, the tt-network-schedule, defines transmission
and reception time windows for each time-triggered frame being transmitted be-
tween nodes. The tt-network-schedule is typically built offline, accounting for the
maximum end-to-end latency, message length, as well as constraints derived from
resources and physical limitations, e.g., maximum frame buffer capacity. At run-
time, a network-wide fault-tolerant time synchronization protocol [56] guarantees the
cyclic execution of the schedule with sub-microsecond precision [31, p. 186]. The
combination of these two elements allows for safety-critical traffic with guaranteed
end-to-end latency and minimal jitter in co-existence with rate-constrained flows
bounded to deterministic quality of service (QoS) and non-critical traffic (i.e. best-
effort). In this paper we focus on TTEthernet as a key technology for safety-related
networks and dependable real-time applications within the aerospace, automotive
and industrial domains.

The work we present throughout this paper, which is based on the work of
Steiner [53], considers the typical case of multi-hop switched TTEthernet networks,
such as the one depicted in Figure 1, in which the end-systems execute software
tasks (i.e. tt-tasks1) following a similar time-triggered scheme (through static table-
driven CPU scheduling) communicating via the time-triggered message class of
TTEthernet2 (i.e. tt-messages). The end-to-end latency is then subject to both
scheduling domains: on the one hand the distributed network schedule, tt-network-
schedule; and on the other hand the multiple dependent end-system schedules, tt-
task-schedules. The composition of the two scheduling domains is crucial to extend
the end-to-end deterministic guarantees to include the application level, without
disrupting the high determinism achieved at the network level.

1The terms task and tt-task as well as message and tt-message will be used interchangeably in
this paper.

2Note that TTEthernet supports three traffic classes, namely time-triggered (TT), rate-
constrained (RC), and best-effort (BE). We explicitly base this work on the TT traffic class in
order to establish a time-triggered paradigm across the network and application domains. Extend-
ing the results presented in this paper to accommodate other traffic classes is a concern currently
being addressed in the context of mixed-criticality systems (e.g.[54], [57])

2

Separate sequential schedule synthesis, either by scheduling the network first
(e.g. [53]) and using the result as input for the task schedule synthesis [14], or the
complementary approach [23], does not cover the whole solution space. Consider-
ing tasks and communication as part of the same scheduling problem enables an
exhaustive search of the whole solution space guaranteeing that, if a feasible sched-
ule exists, it will be found. We address this issue by considering the simultaneous
co-synthesis of tt-network-schedules for TTEthernet as well as tt-task-schedules for
the respective end-system CPUs. This approach broadens the scope of the time-
triggered paradigm to include preemptable interdependent application tasks with
arbitrary communication periods over multi-speed TTEthernet networks.

We model the CPUs as self-links on the end-systems and schedule virtual frames
representing non-preemptable chunks of preemptable tt-tasks. With this abstraction
we formulate a general scheduling problem as a set of first-order logical constraints,
the solving of which is known to be an NP-complete problem. We show that sat-
isfying the end-to-end constraints and finding a solution for the whole problem set
(using a one-shot approach) is possible for small system configurations, but does not
scale well to large networks. Therefore, we present a novel incremental approach
based on the utilization demand bound analysis for asynchronous tasks [7] using the
earliest deadline first (EDF) algorithm [37], significantly improving the scalability
factor with respect to the one-shot method.

We introduce two alternative mechanisms for the resolution of the one-shot and
incremental scheduling problems, based on Satisfiability Modulo Theories (SMT)
and Mixed Integer Programming (MIP). In the first case, we transform the set of
logical constraints into an SMT problem and allow the solver to synthesize a feasible
schedule. We complement our evaluation using two state-of-the-art SMT solvers and
provide a rough performance comparison in the orders of magnitude. For the second
case, we introduce an optimization criteria as part of the scheduling constraints and
formulate the problem as an MIP problem3. The scalability of the two methods
when solved with either SMT or MIP formulation suggests different performance
trends, which we analyze with an open discussion summarizing the suitability of
each approach. We specifically show that, even when using optimization, most
of our problem sizes are solvable using the incremental demand method, which
provides significant better scalability than prior existing methods. Thus, we claim
to solve significantly harder problems of larger size, both when using SMT and when
optimizing certain global problem objectives.

This paper is an extended version of our previous work [13] which we broaden
as follows. We have enhanced the network model to allow end-to-end latencies
of periodic communication flows larger than the period. We also address in more
detail the inherent problems introduced by limited resource availability, like memory,
during the scheduling process. Moreover, we show how to transform the first-order
logical constraints into a Mixed Integer Programming (MIP) problem, thus enabling
optimization criteria to be specified as part of the scheduling formulation. This step
enables us to extend the evaluation and scalability analysis providing performance
figures for both approaches, which we complement using two alternative state-of-

3We have identified a clear performance disparity between available MIP solvers, which in
practice has limited our evaluation scope to a single one of the state-of-the-art MIP solver.

3

the-art SMT solvers and an additional MIP solver. Finally, we present an extended
scalability discussion based on the evaluation results for both approaches (SMT and
MIP) and show how the algorithm scales in each case.

In Section 2, we define the system model that we later use to formulate logical
constraints describing a combined network and task schedule in Section 3. In Sec-
tion 4 we introduce two scheduling algorithms based on SMT, which we evaluate
in Section 6 using industry-sized synthetic benchmarks. In Section 5 we show how
to transform the logical constraint formulation into an optimization problem and
discuss the feasibility using an MIP implementation of our method (Section 6). We
review related research in Section 7 and conclude the paper in Section 8.

2 System Model

A TTEthernet network is in essence a multi-hop layer 2 switched network with
full-duplex multi-speed Ethernet links (e.g. 100 Mbit/s, 1 Gbit/s, etc.). We for-
mally model the network, similar to [53], as a directed graph G(V ,L), where the
set of vertices (V) comprises the communication nodes (switches and end-systems)
and the edges (L ⊆ V × V) represent the directional communication links between
nodes. Since we consider bi-directional physical links (i.e. full-duplex), we have that
∀[va, vb] ∈ L ⇒ [vb, va] ∈ L, where [va, vb] is an ordered tuple representing a directed
logical link between vertices va ∈ V and vb ∈ V . In addition to the network links, we
also consider tasks running on the end-system nodes. We model the CPU of these
nodes as directional self-links, which we call CPU links, connecting an end-system
vertex with itself.

A network or CPU link [va, vb] between nodes va ∈ V and vb ∈ V is defined by
the tuple

〈[va, vb].s, [va, vb].d, [va, vb].mt〉,

where [va, vb].s is the speed coefficient, [va, vb].d is the link delay, and [va, vb].mt is
the macrotick. In the case of a CPU link, the macrotick represents the hardware-
dependent granularity of the time-line that the real-time operating system (RTOS)
of the respective end-system recognizes. Typical macroticks for time-triggered RTOS
ranges from a few hundreds of microseconds to several milliseconds [10, p. 266]. In
the case of a network link the macrotick is the time-line granularity of the physical
link, resulting from e.g. hardware properties or design constraints. Typically, the
TTEthernet time granularity is around 60ns [32] but larger values are commonly
used. The link delay refers to either the propagation and processing delay on the
medium in case of a network link or the queuing and software overhead for a CPU
link. The speed coefficient is used for calculating the transmission time of the frame
on a particular physical link based on its size and the link speed. For a network link
the speed coefficient represents the time it takes to transmit one byte. Considering
the minimum and maximum frame sizes in the Ethernet protocol of 84 and 1542
bytes (including the IEEE 802.1Q tag), respectively, the frame transmission time,
for example, on a 1Gbit/sec link would be 0.672µsec and 12.336µsec, respectively.
For a CPU link, the speed coefficient is used to allow heterogeneous CPUs with
different clock rates, resulting in different WCETs for the same task.

4

TTE B

TTE C

TTE A
TTE-Switch 1

TTE D

TTE-Switch 2

TTE E

physical link
communication path

Figure 1: A TTEthernet network with 5 end-systems and 2 switches.

We denote the set of all tt-tasks in the system by Γ. A tt-task τ vai ∈ Γ running
on the end-system va is defined, similar to the periodic task model from [37], by the
tuple

〈τ vai .φ, τ
va
i .C, τ

va
i .D, τ

va
i .T 〉,

where τ vai .φ is the offset, τ vai .C is the WCET, τ vai .D is the relative deadline, and
τ vai .T is the period of the task. Note that, a tt-task is pre-assigned to one end-system
CPU and does not migrate during run-time4. Hence, all task parameters are scaled
according to the macrotick and speed of the respective CPU link. We denote the
set of all tasks that run on end-system va by Γva .

We model time-triggered communication via the concept of virtual link (VL),
where a virtual link is a logical data-flow path in the network from one sender node
to one receiver node. This concept is similar to [5] extended to include the tt-tasks
associated with the generation and consumption of the message data running at the
end-systems5. We distinguish three types of tt-tasks, namely, producer, consumer,
and free tt-tasks. Producer tasks generate messages that are being sent on the
network, consumer tasks receive messages that arrive from the network, and free
tasks have no dependency towards the network. Note that we assume that the actual
instant of sending and receiving tt-messages occurs at the end and at the beginning
of producer and consumer tasks, respectively. Considering the exact moment in
the execution of a task where the communication occurs (cf. [17]) may improve
schedulability, but remains out of the scope of this work.

A typical virtual link vli ∈ VL from a producer task running on end-system va to
a consumer task running on end-system vb, routed through the nodes (i.e. switches)
v1, v2, . . . , vn−1, vn is expressed, similar to [53], as

vli = [[va, va], [va, v1], [v1, v2], . . . , [vn−1, vn], [vn, vb], [vb, vb]].

Note, however, that through this model it is also possible to exclude the tasks
from the represented system in order to obtain network-only schedules. This is of
particular interest for systems in which a synchronization between the CPU and

4The assignment of tasks to CPUs is completely done during design time and corresponds to
system requirements as well as other physical constraints (e.g. sensing tasks assigned to the node
where the sensors are physically connected).

5Note that in [5] virtual links are defined as multicast, e.g. with one sender and one or more
receivers whereas in this work we constrain VLs to being unicast, e.g. one sender and one receiver.
Our model can be extended to support multicast VLs without compromising the validity of the
methods. For the sake of simplicity we leave this trivial extension as future work.

5

network domains is not established and the time-triggered paradigm is applied at
the network level (e.g. [53]), or those in which the combined schedule is performed
iteratively (e.g. [14]). Additionally vli.max latency denotes the maximum allowed
end-to-end latency between the start and the end of the VL. Each task, regardless
if it is a consumer, producer or free task, is associated with a virtual link. For
communicating tasks, a virtual link is composed by the path through the network
and the two end-system CPU links [va, va] and [vb, vb]. For a free task τ vai ∈ Γ, a
virtual link vli is created offline with vli = [[va, va]]. Please note that, in TTEthernet,
the VLs are statically specified and modelled and are not dynamically added in the
system at runtime.

Our goal is to schedule virtual links considering the task- and network-levels
combined. Hence, we take both the tt-message that is sent over the network and the
computation time of both producer and consumer tt-tasks and unify these through
the concept of frames.

Let M denote the set of all tt-message in the system. We model a tt-message
mi ∈ M associated with the virtual link vli by the tuple 〈Ti, Li〉, where Ti is the
period and Li is the size in bytes. For the network links, a frame is understood
as the instance of a tt-message scheduled on a particular link. For CPU links, we
model tasks as a set of sequential virtual frames that are transmitted (or dispatched)
on the respective CPU link. Since we consider preemptive execution, we split the
WCET of each task into virtual frames units based on the CPU macrotick and
speed. Hence, we defined τ vai .C to be the WCET of the task scaled according to
the macrotick and speed of its CPU link. Therefore we have τ vai .C non-preemptable
chunks (i.e. virtual frames) of a task τ vai . The split in non-preemptable chunks
happens naturally through the macrotick of the underlying runtime system.

In order to generalize frames scheduled on physical links and virtual frames
scheduled on CPU links we say that a virtual link vli will generate sets of frames
on every link (CPU or network) along the communication path. In the case of a
network link the set will contain only one element, which is the (non-preemptable)
frame instance of tt-message mi, whereas in the case of a CPU link the cardinality
of the set will be given by the computation time of the task generating the virtual
frames. Let F be the set of all frames in the system. We denote the ordered set of
all frames f

[va,vb]
i,j of virtual link vli scheduled on a (CPU or network) link [va, vb] by

F [va,vb]
i ∈ F , the ordering being done by frame offset. Furthermore, we denote the

first and last frame of the set F [va,vb]
i with f

[va,vb]
i,1 and last(F [va,vb]

i), respectively.

We use a similar notation to [53] to model frames. A frame f
[va,vb]
i,j ∈ F [va,vb]

i is
defined by the tuple

〈f [va,vb]
i,j .φ, f

[va,vb]
i,j .π, f

[va,vb]
i,j .T, f

[va,vb]
i,j .L〉,

where f
[va,vb]
i,j .φ is the offset in macroticks of the frame on link [va, vb], f

[va,vb]
i,j .π is

the initial period instance, f
[va,vb]
i,j .T is the period of the frame in macroticks, and

f
[va,vb]
i,j .L is the duration of the frame in macroticks. For a network link we have

f
[va,vb]
i,1 .T =

⌈
Ti

[va, vb].mt

⌉
, f

[va,vb]
i,1 .L =

⌈
Li × [va, vb].s

[va, vb].mt

⌉
.

6

Note that in practical TTEthernet implementations, the scheduling entities are not
frames but frame windows. A frame window can be larger than the actual trans-
mission time of the frame, in order to account for the possible blocking time of
low-priority (e.g. BE- or RC-) frames whose transmission was initiated instants
before the TT-frame is scheduled. Since TTEthernet does not implement preemp-
tion of frames, methods like timely block or shuffling have been implemented in
practice [62, p. 42-5]. With shuffling the scheduling window of TT-frames includes
the maximum frame size of other frames that might interfere with the sending of
TT-frames, while the timely block method will prevent any low-priority frame to
be send if it would delay a scheduled TT-frame [62, p. 42-5], [55]. We consider the
second mechanism although our findings can be applied to both algorithms.

A tt-task τ vli ∈ Γ yields a set of frames f
[vl,vl]
i,j , j = 1, 2, . . . , τ vli .C, where each

frame has size 1 (macrotick) and a period equal to the scaled task period, i.e.,

f
[vl,vl]
i,j .T = d τ

vl
i .T

[vl,vl].mt
e. The division in chunks comes naturally from the system

macrotick, i.e., preemptive tasks can only be preempted with a granularity of 1
macrotick, allowing us to define sets of frames (chunks of task execution) for each
task, essentially transforming the preemptive task model into a non-preemptive one
with no loss of generality. Consequently, with this model, it is also possible to specify
non-preemptive tasks by means of generating a single frame with length equal to its
WCET. Our approach therefore implicitly supports non-preemptive task schedule
synthesis (cf. [30], [61]) as it is a subproblem of preemptive task schedule synthesis.

The initial period instance (denoted by f
[va,vb]
i,j .π) is introduced to allow end-to-

end communication exceeding the period boundary. We model the absolute moment
in time when a frame is scheduled by the combination of the offset –bounded within
the period interval– and the initial period instance, i.e., f

[va,vb]
i,j .φ+f

[va,vb]
i,j .π×f [va,vb]

i,j .T .
To better illustrate the concept of the initial period instance consider the two ex-
amples depicted in Figure 2. For communication with end-to-end latency (E2E)
smaller than or equal to the period length, the initial period instance is 0 for all
frames involved in the communication. In essence, the first and last frame instances
of a message are transmitted within the same period instance. However, if the
end-to-end latency is allowed to be greater than or equal to the period, the initial
period instance can be larger than one. In the example depicted in Figure 2 with
E2E ≥ T , the initial period instance for the frame on Linki+1 is 1, hence, the first
frame instance of the VL on the link is scheduled at time 1 relative to its period but
at time 6 relative to time 0.

3 Scheduling Constraints

Creating static time-triggered tt-schedules for networked systems, like the one de-
scribed in this paper, generally reduces to solving a set of timing constraints. In
this section we formulate, based on our system model, the mandatory constraints to
correctly schedule, in the time-triggered sense, both tt-tasks and tt-messages. Some
of our constraints (namely those in Sections 3.2, 3.3, 3.4, and 3.8) are similar to the
contention-free, path-dependent, end-to-end transmission, and memory constraints
from [53] but generalized according to our system definition to include virtual frames

7

E2E < T E2E > T

T (Period)

Link i

Link i+1

0 5 10 15

0 5 10 15

0 5 10 15

0 5 10 15

Start period instance (Link i+1) = 0 Start period instance (Link i+1) = 1

Figure 2: Communication over two links with different start period instances.

generated by tasks, arbitrary macrotick granularity, and multiple link speeds.

3.1 Frame constraints

For any frame scheduled on either a network or CPU link, the offset cannot take any
negative values or any value that would result in the scheduling window exceeding
the frame period. Therefore, we have

∀vli ∈ VL,∀[va, vb] ∈ vli,∀f [va,vb]
i,j ∈ F [va,vb]

i :(
f

[va,vb]
i,j .φ ≥ 0

)
∧
(
f

[va,vb]
i,j .φ ≤ f

[va,vb]
i,j .T − f [va,vb]

i,j .L
)
.

The constraint bounds the offset of each frame to the period length, ensuring
that the whole frame fits inside the said period. Note that if the end-to-end latency
is allowed to be larger than the period, this constraint restricts CPU frames of a
tt-task to remain within the same period instance, hence discarding placements in
which the task execution starts in one period instance and extends to a following
one. While this restriction reduces the search space and may potentially deem a
valid configuration unfeasible, it simplifies by a significant amount the complexity
involved in guaranteeing that no two tasks scheduled on the same CPU overlap.
Relaxing this restriction would imply extending the non overlapping constraint to
incorporate the subsequent period instances, which potentially leads to very complex
formulations when the overlap can occur across the boundaries of the hyperperiod.

If we consider end-to-end latencies less than or equal to the period, the initial
period for each frame is always initialized at 0 (i.e. ∀f ∈ F : f.π = 0). Otherwise,
we have to bound them such that the maximum end-to-end latency of the respective
VL is not exceeded. We therefore have

∀vli ∈ VL,∀[va, vb] ∈ vli,∀f [va,vb]
i,j ∈ F [va,vb]

i :(
f

[va,vb]
i,j .π ≥ 0

)
∧

(
f

[va,vb]
i,j .π ≤

⌈
vli.max latency

f
[va,vb]
i,j .T

⌉
− 1

)
.

3.2 Link constraints

The most essential constraint that needs to be fulfilled for time-triggered networks
is that no two frames that are transmitted on the same link are in contention, i.e.,

8

they do not overlap in the time domain. Similarly, for CPU links, no tasks running
on the same CPU may overlap in the time domain, i.e., no two chunks from any
task may be scheduled at the same time. Given two frames, f

[va,vb]
i,j and f

[va,vb]
k,l , that

are scheduled on the same link [va, vb] we need to specify constraints such that the
frames cannot overlap in any period instance.

∀[va, vb] ∈ L,∀F [va,vb]
i ,F [va,vb]

k ⊂ F ,∀f [va,vb]
i,j ∈ F [va,vb]

i ,∀f [va,vb]
k,l ∈ F [va,vb]

k ,

∀α ∈

[
0,

HP k,l
i,j

f
[va,vb]
i,j .T

− 1

]
, ∀β ∈

[
0,

HP k,l
i,j

f
[va,vb]
k,l .T

− 1

]
:(

f
[va,vb]
i,j .φ+ α× f [va,vb]

i,j .T ≥ f
[va,vb]
k,l .φ+ β × f [va,vb]

k,l .T + f
[va,vb]
k,l .L

)
∨(

f
[va,vb]
k,l .φ+ β × f [va,vb]

k,l .T ≥ f
[va,vb]
i,j .φ+ α× f [va,vb]

i,j .T + f
[va,vb]
i,j .L

)
,

where HP k,l
i,j

def
= lcm(f

[va,vb]
i,j .T, f

[va,vb]
k,l .T) is the hyperperiod of the two frames being

compared. Please note that the contention-free constraints from [53] compare two
frames over the cluster cycle (the hyperperiod of all frames in the system) whereas
our approach only considers the hyperperiod of the two compared frames.

The macrotick is typically set to the granularity of the physical medium. How-
ever, we can use this parameter to reduce the search space simulating what in [53] is
called a scheduling “raster”. Hence, increasing the macrotick length –for a network
or CPU link– reduces the search space for that link, making the algorithm faster,
but also reduces the solution space. Additionally, a large macrotick for network
links will waste bandwidth since the actual message size will be much smaller than
the scaled one. A method employed by some applications, but not considered in
our approach, is to aggregate similar VLs (similar in terms of sender/receiver nodes
and period) into one message consuming one macrotick slot in order to reduce the
amount of wasted bandwidth.

Note, however, that the typical macrotick lengths of network and CPU links
are several orders of magnitude apart, and that taking advantage of the schedul-
ing raster for network links may be more beneficial than for CPU links. On one
hand, the transmission of frames on a network link is non-preemptable and, there-
fore, using a scheduling raster smaller than the size of a frame transmission may
increase significantly the required time to find a valid schedule with only a marginal
increase on the number of feasible solutions. Moreover, for low utilized network
links, which are not uncommon, larger rasters may still lead to valid solutions with
a much reduced search space. The utilization on CPU links, on the other hand, is
typically higher and requires tighter scheduling bounds, which are not possible with
large rasters. Moreover, tasks are preemptable, and therefore, using a larger raster
size than the operating system macrotick reduces the possible preemption points
significantly decreasing the chances of success.

3.3 Virtual link constraints

We introduce virtual link constraints which describe the sequential nature of a com-
munication from a producer task to a consumer task. The generic condition that

9

applies for network as well as for CPU links is that frames on sequential links in
the communication path have to be scheduled sequentially on the time-line. Virtual
frames of producer or consumer tasks are special cases of the above condition. All
virtual frames of a producer task must be scheduled before the scheduled window
on the first link in the communication path. Conversely, all virtual frames of the
consumer task must be scheduled after the scheduled window on the last network
link in the communication path.

End-to-end communication with low latency and bounded jitter is only possi-
ble if all network nodes (which have independent clock sources) are synchronized
with each-other in the time domain. TTEthernet provides a fault-tolerant clock
synchronization method [56] encompassing the whole network which ensures clock
synchronization. On a real network, the precision achieved by the synchronization
protocol is subject to jitter in the microsecond domain. Hence, we also consider,
similar to [61], the synchronization jitter which is a global constant and describes
the maximum difference between the local clocks of any two nodes in the network.
We denote the synchronization jitter (also called network precision) with δ, where
typically δ ≈ 1µsec [31, p. 186].

∀vli ∈ VL,∀[va, vx], [vx, vb] ∈ vli :

[vx, vb].mt× f [vx,vb]
i,1 .φ− [va, vx].d− δ ≥

[va, vx].mt× (last(F [va,vx]
i).φ+ last(F [va,vx]

i).L).

We remind the reader that last(F [va,vx]
i) represents the last frame in the ordered set

F [va,vx]
i .

The constraint expresses that, for a frame, the difference between the start of
the transmission window on one link and the end of the transmission window on the
precedent link has to be greater than the hop delay for that link plus the precision
for the entire network.

For end-to-end latencies larger than the period (i.e. non-zero initial period in-
stance) we extend the previous condition as follows:

∀vli ∈ VL,∀[va, vx], [vx, vb] ∈ vli :

([vx, vb].mt× f [vx,vb]
i,1 .φ− [va, vx].d− δ ≥

[va, vx].mt× (last(F [va,vx]
i).φ+ last(F [va,vx]

i).L))∨
(f

[vx,vb]
i,1 .π > last(F [va,vx]

i).π).

As mentioned briefly in Section 2, the virtual link constraints are pessimistic
for the CPU links in the sense that it is assumed that the sending and receiving of
messages happens at the end and at the beginning of a producer and a consumer task,
respectively. Schedulability may improve if the assumption is relaxed by considering
the exact moment in the execution of a task where the message is sent or received.
An example of such an approach can be found in [17] where schedulability in LET-
based fixed-priority systems is improved at the expense of portability. This requires
analysis and annotation of the project-specific source code and is outside the scope
of this paper. However, the extension to allow such methods is trivial since it only

10

implies a change in constraints that would allow overlapping frames between task
virtual frames and the transmission window of the associated communication frames.

3.4 End-to-End Latency constraints

Let src(vli) and dest(vli) denote the CPU links on which the producer task and,
respectively, the consumer task of virtual link vli are scheduled on. We introduce
latency constraints that describe the maximum latency of a communication from a
producer task to a consumer task, namely

∀vli ∈ VL :

dest(vli).mt× (last(Fdest(vli)i).φ+ last(Fdest(vli)i).L) ≤
src(vli).mt× f src(vli)i,1 .φ+ vli.max latency.

In essence, the condition states that the difference between the end of the last
chunk of the consumer task and the start of the first chunk of the producer task
has to be smaller than or equal to the maximum end-to-end latency allowed. For
the experiments in this paper we consider the maximum end-to-end latency to be
smaller than or equal to the message period (which is the same as the period of the
associated tasks).

For non-zero start period instances we extend the previous constraint as follows:

∀vli ∈ VL :

dest(vli).mt× (last(Fdest(vli)i).φ× last(Fdest(vli)i).π + last(Fdest(vli)i).L) ≤
src(vli).mt× (f

src(vli)
i,1 .φ× f src(vli)i,1 .π) + vli.max latency.

3.5 Task constraints

For any sequence of virtual frames scheduled on a CPU link, the first virtual frame
has to start after the offset defined for the task and the last virtual frame has
to be scheduled before the deadline specified for the task. In order to finish the
computation before the deadline, the offset has to be at most the deadline minus
the computation time. Hence, we have

∀va ∈ V ,∀τ vai ∈ Γva :
(
f

[va,va]
i,1 .φ ≥ τ vai .φ

)
∧
(
last(F [va,va]

i).φ ≤ τ vai .D − τ
va
i .C

)
.

3.6 Virtual frame sequence constraints

For a CPU link, we check in the condition in Section 3.2 that the scheduling windows
of virtual frames generated by different tasks do not overlap. Additionally, we have
to check that virtual frames generated by the same task do not overlap in the time
domain. This condition can be expressed similar to the condition in Section 3.2,
however, we express it, without losing generality, in terms of the ordering of the
virtual frame set.

∀va ∈ V ,∀τ vai ∈ Γva ,∀j ∈
[
1,
(∣∣∣F [va,va]

i

∣∣∣− 1
)]

: f
[va,va]
i,j+1 .φ ≥ f

[va,va]
i,j .φ+ f

[va,va]
i,j .L.

11

3.7 Task precedence constraints

Task dependencies are usually expressed as precedence constraints [11], e.g., if task
τ vai and τ vbj have precedence constraints (τ vai ≺ τ vbj) then τ vai has to finish executing
before τ vbj starts. Even though these dependencies arise typically between tasks
co-existing on the same CPU, we generalize dependencies between tasks executing
on any end-system. Task dependencies are partially expressed in [53] as frame
dependencies in the sense that one frame is scheduled before another frame, which
can be used to specify aspects of the existing task schedule. We introduce constraints
for simple task precedences in our model as follows

τ vai ≺ τ vbj ⇒ [vb, vb].mt× f [vb,vb]
j,1 .φ ≥

[va, va].mt× (last(F [va,va]
i).φ+ last(F [va,va]

i).L).

Note that, in our model, both tasks have the same period or “rate”. Including
multi-rate precedence constraints (extended precedences as they are called in [19])
for periodic tasks is a restriction of our implementation and model rather than a
restriction of our method. Extending the model to handle extended precedences for
periodic tasks, even if the periods differ from one another, implies that tasks are not
represented by a sequence of frames that repeats with the period but by multiple
instances of the frames that repeat with the hyperperiod of the two dependent tasks.
The dependency is then expressed as constraints between individual frames from the
multiple instances of the tasks where the pattern of dependency is selected by the
system designer. We elaborate on one example. If a “slow” task τi with period
Ti = n · Tj must consume the output of a “fast” task τj with period Tj, the system
designer may choose, for example, that n outputs of τj are selected as inputs for one
instance of τi or that only the last output of τj is considered as input for τi. In both
cases, the implementation of task τi is responsible for representing this dependency.
In terms of logical constraints, these are easily added since they imply adding logical
constraints between frames, i.e., each nth frame of task τj has to be scheduled before
the corresponding frame of τi. Note, however, that this only applies to periodic
tasks since aperiodic tasks cannot be represented by a finite set of frame instances.

3.8 Memory constraints

Resource constraints come into play when the generated schedule is deployed on a
particular hardware component. One such constraint is derived from the availability
of physical memory necessary to buffer frames at each network switch. Taking as
an example a message forwarded through a switch, the incoming frame needs to be
buffered from the moment when it arrives in the ingress port (i.e. scheduled arrival
time6) until the following frame is transmitted via the egress port (i.e. end of the
scheduled transmission window). During runtime, at any instant each device shall
satisfy that the memory demand for all buffered frames fits within their available
physical memory.

6Note that despite we do not implicitly synthesize a schedule for the incoming frames the arrival
schedule is a trivial transformation of the related schedules of the predecessor frames.

12

fin

fout

H

Network cycle

Figure 3: Simplified example of a memory demand histogram.

3.8.1 Offline buffer demand calculation

As a property of the time-triggered paradigm, the arrival and departure times of
tt-frames are known from the schedule. Therefore, a buffer demand histogram,
similar to [51], for each network device can be constructed offline. The range of the
histogram shall cover the entire network cycle and the interval size be equal to the
raster size. Let H(hp) be an array, where hp is the network cycle length defining
the number of bins, the following post-analysis performed on a given switch x upon
generation of a valid schedule populates the histogram Hx with the buffer demand
at each macrotick along the network cycle (i.e. histogram bin):

∀x ∈ V ,∀vli ∈ VL,∀k, 0 ≤ k ≤ hp :

Hx(k) =
∑

∀[va,vx],[vx,vb]∈vli

hit(f
[va,vx]
i,1 .φ, last(F [vx,vb]

i).φ+ last(F [vx,vb]
i).L, k)

where

hit(tin, tout, k) =

{
1 if tin ≤ k ≤ tout

0 else

Figure 3 depicts the memory demand histogram for a simplified example. Note
that fin represents the set of scheduled windows for incoming frames in the analyzed
device with independence of their VL and incoming port, respectively, fout shows the
scheduled windows for the outgoing frames. Arrows indicate the sequence relation
between incoming and outgoing frames. The memory histogram, below, increases
for each scheduled incoming frames and decreases for each outgoing frame.

Note that the model of the memory management system assumes the ability of
allocating and releasing memory buffers at, respectively, the beginning and end of
every macrotick. We also assume the size of buffers constant and fixed (e.g. maxi-
mum frame size). Note, however, that since the analysis is done offline accounting
for variable buffer sizes as well as discrete instants of time (e.g. at the beginning or
end of a period) are trivial extensions.

Once the histogram is built, the following condition must hold to guarantee that

13

the buffer demand will be satisfied at runtime,

∀vx ∈ V ,∀k, 0 ≤ k ≤ hp : Hvx(k) ≤ vx.ω,

where vx.ω is the maximum number of buffers that the device vx can simultaneously
allocate.

3.8.2 Online time-based buffer demand constraint

Unfortunately, including the above condition as part of the SMT constraint formu-
lation and force the scheduling process to maintain the buffer demand below a given
bound is non-trivial. The derived constraints require the use of quantifiers, which
degrade significantly the solver performance and are not widely supported by all
SMT engines. To circumvent this limitations, we introduce an alternative online
memory constraint, similar to [53], based on the same principle used for the con-
struction of the buffer demand histogram. In essence, we introduce vx.b, a parameter
defining an upper bound on the time that node vx ∈ V is allowed to buffer any given
ingress frame before scheduling the corresponding egress frame. Limiting the time a
frame can be buffered essentially reduces the maximum number of frames that may
simultaneously coexist within the device memory, hence lowering the buffer demand
bound.

The time-based memory constraint for any given device remains as follows:

∀vli ∈ VL,∀[va, vx], [vx, vb] ∈ vli :

[vx, vb].mt× f [vx,vb]
i,1 .φ− [va, vx].mt× f [va,vx]

i,1 .φ ≤ vx.b

While this condition does not directly reflect the maximum buffer demand it al-
lows a straight forward formulation as SMT constraint. An offline analysis based on
the memory demand histogram as described in 3.8.1 allows to adjust b for those nodes
exceeding the resource capacity in an iterative process. However, it is also possible to
pre-calculate a pessimistic upper bound for the memory demand based on the worst
case scenario. Starting from an initial state without any buffer being allocated at
instant t0 and assuming the set Lvx ⊂ L, and ∀va ∈ V , vx ∈ V ⇒ [va, vx] ∈ Lvx . We
define a maximum flow schedule in which for every link [va, vx] ∈ Lvx a frame f [va,vx]

is scheduled at every following macrotick [va, vx].mt with f [va,vx].L = 1 and buffered
for the maximum allowed time. In essence, this is equivalent of assuming that for
each ingress port of a device (i.e. physical link towards the device7), there will be
a continuous burst of incoming frames, which remain buffered for the maximum
allowed time. Note that the relation of frames and virtual links is irrelevant since
we only care about the flow of incoming frames. Figure 4 illustrate an example of a
device vx ∈ V with 4 ingress ports and the respective maximum flows characterized
by the respective frames f [vα,vx],f [vβ ,vx], f [vγ ,vx], f [vδ,vx].

Since the time-based memory constraint ensures that frames remain buffered at
most b units of time, at time t0+b the accumulated buffer demand will be maximum.

7Note that physical links and by extension also ports are full-duplex, and therefore, each ingress
port has an egress port as counterpart. For this analysis we only need to consider incoming traffic.

14

f
[vα ,vx] f

[vβ ,vx]

Vx

f
[vγ ,vx] f

[vδ ,vx]

Figure 4: Example of a device (vx) with four ingress ports.

From that moment on, for every additional incoming frame there will be one frame
leaving the device. In essence, the memory bound m̃ for device vx results from

m̃(vx) =
∑

∀[va,vx]∈Lvx

⌈
vx.b

[va, vx].mt

⌉

Note, however, the pessimism in this estimation as not only it assumes the maximum
concurrent communication flow (e.g. full link utilization), but also the frame length
equal to one macrotick. In practice, the utilization of physical links will remain at
a lower capacity and frame length may exceed the macrotick length, hence lowering
the total number of incoming frames during the burst interval.

3.9 Schedule and constraints example

We present a simplified example of a schedule in Figure 5 to better illustrate our
model and the various constraints described above. We consider a simple network
with two end-systems va and vb (and the CPU links on the end-systems [va, va] and
[vb, vb]) connected through a network link ([va, vb]). For the CPUs and the link we
assume that all are defined by the tuple 〈1, 1, 1〉, i.e., speed, delay and macrotick are
1. There are 4 tasks (2 consumers and 2 producers) in the system. τ1 and τ3 run in
va (scheduled on the CPU link [va, va]), and τ2 and τ4 run in vb (scheduled on the
CPU link [vb, vb]). τ1 with computation time 3 macroticks communicates to τ2 with
2 macroticks computation time through message m1 (vl1). τ3 with 2 macroticks
computation time communicates to τ4 which has a WCET of 2 macroticks through
message m2 (vl2). All tasks and the associated messages have period 20 macroticks.
Both messages have a message length which translates to 1 macrotick on the link.
Additionally, there is a precedence constraint specifying that τ4 has to run before
τ2.

The tasks generate virtual frames (chunks) on the respective links proportional

to their computation time, e.g. τ1 generates 3 virtual frames f
[va,va]
1,1 , f

[va,va]
1,2 , f

[va,va]
1,3

(pictured). Messages m1 and m2 generate one frame each, i.e., f
[va,vb]
1,1 and f

[va,vb]
2,1 ,

respectively.

15

0 10 15 205

0 10 15 205

0 10 15 205

[va,va]

[vb,vb]

[va,vb]

τ1(0,3,7,20) τ2(3,2,20,20) τ3(1,2,6,20) τ4(2,2,14,20)m1 m2

End-to-end latency constraint

Virtual link constraints Precedence constraint

vl1 vl2

],[

1,2
ba vv

f

],[

1,1
aa vv

f],[

2,1
aa vv

f

],[

1,1
ba vv

f

],[

3,1
aa vv

f

Figure 5: Example of a schedule with 2 CPUs, 1 link, 2 VLs, and 4 tasks.

The end-to-end latency constraint specifies that the time between the start of the
producer task (e.g. τ1) and the end of the consumer task (e.g. tau2) of a VL has to
be smaller than or equal to a certain value. In our example, the end-to-end latency
constraint of vl2 is 12 macroticks. Hence, the schedule of the first frame (chunk) of
τ3 and the last frame (chunk) of task τ4 are scheduled at most 12 macroticks apart.
The virtual link constraint ensures that the gap between the last frame of τ3 and the
frame of the message m2 on the link are at least δ (network precision) apart and in
the correct order. The CPU and network delays (set to 1 in the example) result in
the scheduled frames of the same virtual link on sequential (CPU or network) links

(e.g. f
[va,va]
1,3 and f

[va,vb]
1,1) to be at least 1 macrotick apart.

4 SMT-based co-synthesis

Satisfiability Modulo Theories (SMT) checks the satisfiability of logic formulas in
first-order formulation with regard to certain background theories like linear integer
arithmetic (LA(Z)) or bit-vectors (BV) [6], [50]. A first-order formula uses variables
as well as quantifiers, functional and predicate symbols, and logical operators [40].
Scheduling problems are easily expressed in terms of constraint-satisfaction in lin-
ear arithmetic and are thus suitable application domains for SMT solvers; a good
use-case presentation of using SMT for job-shop-scheduling can be found in [16].
Naturally, time-triggered scheduling fits well in the SMT problem space since in-
finite sequences of frames (and task jobs) can be represented through finite sets

16

Algorithm 1: One-shot SMT schedule synthesis

Data: G(V ,L),VL,M,Γ
Result: S (tt-schedule)
begin
S ← ∅;
if Check(V ,Γ) ∧ Check(VL,M) then
C ← Assert(G(V ,L),VL,M,Γ);
S ← SMTSolve (C);

return S;

that repeat infinitely with a given period. However, event-based and non-periodic
systems (which are out of scope of this paper) cannot be scheduled through SMT
directly since their arrival patterns cannot be represented through a finite set.

At its core, our scheduling algorithm generates assertions (boolean formulas) for
the logical context of an SMT solver based on the constraints defined in Section 3
where the offsets of frames are the variables of the formula. For a satisfiable context,
the SMT solver returns a so-called model which is a solution (i.e. a set of variable
values for which all assertions hold) to the defined problem.

4.1 One-shot scheduling

The one-shot method (Algorithm 1) considers the whole problem set including all
tt-tasks on all end-systems as well as all tt-messages. The inputs of the algorithm
are the network topology G(V ,L), the set of virtual links VL, the set of tt-messages
M, and the set of tt-tasks Γ. The output is the set S of frame offsets or the empty
set if no solution exists.

First, the utilization on each end-system is verified (through the Check function)
to be lower than 100% using the simple polynomial utilization-based test (cf. [37])

∀va ∈ V :
∑

τvai ∈Γva

τ vai .C

τ vai .T
≤ 1.

This test is necessary but not sufficient, i.e., if the test fails, the system is definitely
not schedulable since the demand of the task set exceeds the CPU bandwidth on
at least one end-system, however, if the test passes, the system may or may not be
schedulable. A similar check is employed for all network links and the corresponding
frames since, in general, the density of feasible systems is less than or equal to 1 [36].

If the check is successful, the algorithm adds the constraints defined in Section 3
to the solver context C (Assert) and invokes the SMT solver (SMTSolve) with the
constructed context as described above. The solution S (the solver model), if it
exists, contains the values for the offset variables of all frames and is used to build
the tt-schedule.

The producer, consumer, and free tt-tasks as well as the tt-messages may gener-
ate, depending on the system configuration, a very large number of frames that need
to be scheduled. It is known that such scheduling problems (which reduce to the

17

bin-packing problem) are NP-complete [53]. Hence, the scalability of the one-shot
approach may not be suitable for applications with hundreds of tt-messages and
large network topologies.

In order to improve the performance and scalability of network-only schedule
synthesis, Steiner [53] proposes an incremental backtracking approach which takes
only a subset of the frames at a time and adds them to the SMT context. If a
partial solution is found, additional frames and constraints are added until either
the complete tt-network-schedule is found or a partial problem is unfeasible. In the
case of un-feasibility, the problem is backtracked and the size of the increment is
increased. In the worst case the algorithm backtracks to the root, scheduling the
complete set of frames in one step.

The performance improvement due to the incremental backtracking method may
be sufficient when only scheduling network messages. However, when co-scheduling
messages and tasks in large systems, the number of virtual frames due to tasks run-
ning on end-systems renders the problem impracticable. Moreover, our experiments
with an incremental version of our one-shot algorithm have shown that it performs
best when the utilization is low (which is often true for network links) since there is
enough space on the links to incrementally add new frames without having to move
the already scheduled ones. However, on CPU links, the utilization due to tasks
is usually high, resulting in the incremental backtracking method performing worse
than in the average case. Hence, the incremental backtracking approach proposed
by Steiner is not suitable for our purpose.

We present in the next section a novel incremental algorithm specifically tailored
for task scheduling that reduces the runtime of combined task/network scheduling
for the average case by taking into account the different types of tasks executing on
end-systems.

4.2 Demand-based scheduling

Free tasks account for a significant amount of the total frames that need to be
scheduled. However, these tasks do not present any dependency towards the network
nor other end-system tasks. Hence, they do not need to be considered from the
network perspective, but only from the end-system perspective.

The main idea behind the demand-based method (Algorithm 2) is to schedule
only communicating tasks via the SMT solver and check, afterward, if the resulting
schedule on all end-systems is feasible when adding the corresponding free tasks.
In [14] we have introduced a method to generate optimal static schedules using dy-
namic priority scheduling algorithms. We considered tasks as being asynchronous
with deadlines less than or equal to periods (i.e., constrained-deadline task systems)
and generated static schedule by simulating the EDF algorithm until the hyperpe-
riod. We employ a similar method here for scheduling free tasks. In this way, free
tasks do not add to the complexity of the SMT context but are scheduled separately,
resulting in improved performance for the average case. This improvement does not
come at the expense of schedulability. We guarantee this by doing an incremental
approach that in a first step schedules communicating tasks and checks if, for any
end-system, the resulting schedule after adding the free tasks would be schedula-

18

Algorithm 2: Demand-based SMT schedule synthesis

Data: G(V ,L),VL,M,Γ
Result: S (tt-schedule)
begin
S ← ∅;
if Check(V ,Γ) ∧ Check(VL,M) then

f ← false;
Γedf ← Γfree;
Γsmt ← Γ \ Γfree;
while f 6= true do
C ← Assert(G(V ,L),VL,M,Γsmt);
S ← SMTSolve (C);
if S 6= ∅ then

Γd ← DemandCheck(V ,S,Γedf);
if Γd 6= ∅ then

Γedf ← Γedf \ Γd;
Γsmt ← Γsmt ∪ Γd;

else
f ← true;
if Γedf 6= ∅ then
S ← S ∪ EDFSim(V ,S,Γedf);

else
f ← true;

return S;

ble. If this is the case, the free tasks are scheduled by simulating EDF until the
hyperperiod. If the resulting system is not schedulable the algorithm increases the
SMT formulation by adding only those free tasks that make the solution unfeasible
and runs the solver over the increased set. This is done incrementally until either a
solution is found or the whole set of free tasks has been added to the SMT problem
without finding a solution.

The inputs of the algorithm are, as before, the network topology G(V ,L), the set
of virtual links VL, the set of messagesM, and the set of tasks Γ (cf. Algorithm 2).
Like in the one-shot method, the utilization on all end-systems and all network links
is verified (Check function) first.

We define the following helper sets. The set of free tasks Γfree is the set containing
all tasks that are neither producer nor consumer tasks and which are not dependent
on other tasks. We also introduce the set of tasks scheduled with SMT (Γsmt) and
the set of tasks scheduled with EDF (Γedf).

Initially, Γedf is equal to the set of free tasks Γfree and Γsmt = Γ \ Γfree is the
set of remaining tasks from Γ. We repeat the following steps until either a solution
is found or the set Γedf is empty. First, we add the constraints defined in Section 3
based on the tasks in Γsmt to the solver context C (Assert) and then invoke the

19

SMT solver (SMTSolve) with the constructed context. If no solution exists we exit
from the loop and return the empty set. If there exists a partial solution S 6= ∅, we
check (via the function DemandCheck) the demand of the resulting system together
with the tasks which have not yet been scheduled (the tasks in Γedf).

The demand check is based on the necessary and sufficient feasibility condition for
constrained-deadline asynchronous tasks with periodic execution under EDF (cf. [7]).
The test constructs a set of intervals between any release and any deadline over a
certain time-window. In each of these intervals the demand of the executing tasks
is checked to be smaller than or equal to the supply (the length of the interval). In
our case, for every end-system, the set of tasks is derived from the already scheduled
tasks in Γsmt and the tasks in Γedf . The already scheduled tasks in Γsmt have fixed
scheduled intervals according to their virtual frames whereas the tasks in Γedf will
be treated as EDF tasks.

For every end-system va ∈ V the function DemandCheck generates a set Γ̃va

of virtual periodic tasks, where every virtual task τ̃k
va is defined by the tuple

〈τ̃kva .φ, τ̃kva .C, τ̃kva .D, τ̃kva .T 〉, consisting, as before, of the offset, the WCET, the
relative deadline, and the period of the virtual task, respectively. For every task
τ vai ∈ Γedf we generate a virtual task τ̃k

va with a one to one translation of the task

parameters. Additionally, for every frame offset8 f
[va,va]
i,j .φ ∈ S we generate a virtual

task τ̃k
va with τ̃k

va .φ = f
[va,va]
i,j .φ, τ̃k

va .C = 1, τ̃k
va .D = 1, and τ̃k

va .T = f
[va,va]
i,j .T .

We use the necessary and sufficient feasibility condition from [7], [45] for every

generated virtual task set Γ̃va , namely

∀va ∈ V ,∀t1 ∈ Φva ,∀t2 ∈ ∆va , t1 < t2 :∑
τ̃i
va∈Γ̃va

τ̃i
va .C ×

(⌊
t2 − τ̃iva .φ− τ̃iva .D

τ̃i
va .T

⌋
−
⌈
t1 − τ̃iva .φ
τ̃i
va .T

⌉
+ 1

)
0

≤ t2 − t1,

where

Φva def
= {avai,j = τ̃i

va .φ+ j × τ̃iva .T |τ̃iva ∈ Γ̃va , j ≥ 0, avai,j ≤ λva},

∆va def
= {dvai,j = avai,j + τ̃i

va .D|τ̃iva ∈ Γ̃va , j ≥ 0, dvai,j ≤ λva},

λva = max({τ̃iva .φ|τ̃iva ∈ Γ̃va}) + 2× lcm({τ̃iva .T |τ̃iva ∈ Γ̃va}).

The sets Φva and ∆va of arrivals and absolute deadlines, respectively, define intervals
in which the demanded execution time of running tasks has to be less than or equal
to the processor capacity [7], [45]. If the test is fulfilled on every end-system, we
know that applying EDF to the task sets will result in a feasible schedule. In this
case, the function DemandCheck returns an empty set. We schedule the remainder
of the tasks by running an EDF simulation (EDFSim) on each end-system of the
entire virtual task set (composed of both scheduled and unscheduled tasks) until
the hyperperiod. The EDF simulation will return the static schedule for the tasks
in Γedf which will complete the partial solution S. If the schedulability condition
is not fulfilled on some end-system, the function DemandCheck returns the set (Γd)

8Frames of the same task scheduled sequentially on the time-line can be joined into a bigger
virtual task to increase the performance of the feasibility test.

20

of tasks that have contributed to the intervals where the demand was greater than
the supply. These tasks are removed from the set Γedf and added to the set Γsmt
and the procedure is repeated. The loop terminates (f ← true) when either a full
solution is found or the SMT solver could not synthesize a partial schedule for Γsmt.

In our current implementation, the decision of which tasks to move from Γedf
to Γsmt in the case that the schedulability test is not fulfilled is taken based on the
intervals in which the demand exceeds the available CPU bandwidth. More precisely,
we select all tasks that run in the overloaded intervals. This decision criteria is an
intuitive but not an optimal one since it may be that other tasks, which are not
scheduled in the overloaded intervals, are actually causing the overload. However,
an optimal criteria cannot be determined due to the domino effect (cf. [10, p. 37]
or [52, p. 87]) in overload conditions. Nevertheless, since the DemandCheck function
can be replaced with another method, heuristics can be employed to find decision
criteria which better suit particular scheduling scenarios.

Note that in the worst case, the algorithm may perform worse than the one-shot
method due to the intermediary steps in which partial solutions were unfeasible.
If none of the partial solutions were feasible, in the last step, the demand-based
algorithm has to solve the same input set as the one-shot method.

The feasibility test9 is known to be co-NP-hard [35, p. 615]. Therefore, the
underlying scheduling problem still remains exponential in the worst case. How-
ever, the run-time of the test is highly dependent on the properties of the tasks
(periods, harmonicity of periods, hyperperiod, etc.) which, in practice, are not that
pessimistic. Moreover, with the one-shot method, all free tasks were considered in
the same problem space even if they are running on separate end-systems and are
thus independent of each-other. With the demand-bound method, we can evaluate
the demand bound function for the free tasks on each end-system separately thus
reducing the size of the problem even further. Hence, in the average case, the de-
mand method may be more practicable than solving the entire problem using SMT,
since splitting the problem and solving it using an incremental approach reduces the
runtime for the average case in which only a few incremental steps are needed.

Naturally, we do not improve the scalability of the underlying SMT solver, rather,
we reduce, regardless of the algorithm complexity and without sacrificing schedula-
bility, the size of the SMT problem and hence the number of assertions and frames
that place a burden on the solver. Through this we can tackle medium to large
problems even in the extended scenario of co-scheduling preemptive tasks together
with messages in a multi-hop switched network. Moreover, finding a schedule with
the SMT solver becomes harder the more utilized the links become. By eliminat-
ing subsets of tasks from the input of the SMT solver we make it easier for the
SMT solver to place the (virtual) frames of the remaining tasks, thus shifting the
complexity from the SMT solver to the schedulability test.

We show in the experiments section that the demand method outperforms the
one-shot and results in significant performance improvements leading to better scal-
ability for medium to large input configurations.

9Note that other tests with pseudo-polynomial complexity [44], [7] could be used instead, but
these are only sufficient or deal with restricted task sets.

21

5 Optimized co-synthesis

The algorithms presented in the previous section, which are based on SMT, will
retrieve a solution, if one exists, for the given scheduling problem. However, the
solution is an “arbitrary” one10 out of a set of (potentially) multiple valid solutions.
Each of these valid solutions might have a different impact with regard to several
key schedulability and system properties. Examples of such key properties are end-
to-end latencies (which influence system performance and correctness) and memory
consumption in switches (which enables efficient design of switch-hardware). For
some systems the user might want to optimize one or several of these key properties.
Generally, problems that have constraints on variables, like our scheduling problem,
but also optimize some property of the system are known as constrained optimization
problems.

The basic constraint formulation as well as the scheduling model are not specific
to SMT solvers but can be re-formulated to be compatible with different problem
types. We can transform the task- and network-level schedule co-synthesis into a
Mixed Integer Programming (MIP) problem with different objectives to minimize,
such as end-to-end latency or memory buffer utilization.

Virtual link, latency, precedence and frame constraints can be readily trans-
formed into a MIP formulation since they do not contain any logical clauses. Logical
either-or constraints, like the ones used in the link constraints (Section 3.2), express
that at least one of the constraints must hold but not both. To transform this con-
dition to a single inequality in MIP formulation we use the alternative constraints
method (cf. [9, p. 278] or [8, p. 79]). The same method is used in [61]. Consider,

as before, two frames, f
[va,vb]
i,j and f

[va,vb]
k,l , that are scheduled on the same link [va, vb]

and cannot overlap in any period instance. For every contention-free assertion, as
introduced in Section 3.2, we introduce a binary variable z ∈ {0, 1}, and formulate
the either-or constraint as follows

∀[va, vb] ∈ L,∀F [va,vb]
i ,F [va,vb]

k ⊂ F ,∀f [va,vb]
i,j ∈ F [va,vb]

i ,∀f [va,vb]
k,l ∈ F [va,vb]

k ,

∀α ∈

[
0,

HP k,l
i,j

f
[va,vb]
i,j .T

− 1

]
,∀β ∈

[
0,

HP k,l
i,j

f
[va,vb]
k,l .T

− 1

]
:(

f
[va,vb]
k,l .φ− f [va,vb]

i,j .φ− z × Ω ≤ α× f [va,vb]
i,j .T − β × f [va,vb]

k,l .T − f [va,vb]
k,l .L

)
∧(

f
[va,vb]
i,j .φ− f [va,vb]

k,l .φ+ z × Ω ≤ β × f [va,vb]
k,l .T − α× f [va,vb]

i,j .T − f [va,vb]
i,j .L+ Ω

)
,

where HP k,l
i,j

def
= lcm(f

[va,vb]
i,j .T, f

[va,vb]
k,l .T), is, as before, the hyperperiod of the two

frames and Ω is a constant that is large enough (in our case we choose the hyper-
period HP k,l

i,j) such that the first condition is always true for z = 1 and the second
condition is always true for z = 0. The downside of this approach is that a lot of
binary variables are introduced into the problem since link constraints represent a
significant subset of all needed constraints.

10By “arbitrary” we mean that the SMT solver will return the first valid solution that it finds
which, depending on the implementation, is not chosen according to schedulability criteria but
rather depends on the specific generic search mechanism of the solver.

22

Most industrial applications require the end-to-end latency of communication
to be minimized (e.g. [20, p. 143], [42, p. 411], [43]). A minimal end-to-end la-
tency may also reduce buffer utilization in switches since the duration of how long
messages are stored for forwarding in switch buffers is minimized (cf. Section 3.8).
We implemented this transformation on top of our previously presented algorithms
and set as an objective to minimize the accrued end-to-end (E2E) communication
latency, i.e., the sum of the E2E latencies of all virtual links in the network. We
denote Λi to be the end-to-end communication latency of virtual link vli,

Λi = dest(vli).mt×
(
last(Fdest(vli)i).φ+ last(Fdest(vli)i).L

)
− src(vli).mt× f src(vli)i,1 .φ.

Hence, the optimization problem can be specified as

minimize
vli∈VL

,
∑
vli∈VL

Λi, subject to the constraints presented in Section 3.

We are not interested in minimizing any property of the free tasks, hence they are
not present in the aforementioned objective. However, there may be properties of
free tasks that are of interest for an optimization objective, like number of context
switches which would reduce cache misses and system overhead, but these are beyond
the scope of this paper.

Since the transformation is built on top of the existing algorithms, both one-shot
and demand-based algorithms can be employed with the difference that the SMT-
engine is replaced by an optimization engine. However, if the optimization objective
includes properties of free tasks, the demand-based approach might not be suitable
anymore or might require a more complex feedback loop to be implemented. In such
cases a sequential schedule synthesis providing a solution with local optimization for
the free tasks (cf. [14]) may be more practicable.

6 Evaluation

We implemented a prototype tool, called TT-NTSS, for task- and network-level
static schedule co-generation based on the system model, constraint formulation,
and scheduling algorithms described above. We introduced a generic solver inter-
face enabling the abstraction of logical constraint formulation from the underlying
SMT (or optimization) solver engine. In this way, we are able to reproduce the
experiment with alternative SMT solvers and with different optimization engines
without modifying core functionalities.

6.1 Configuration Set-Up

For the experimental evaluation with SMT solvers (see Section 6.2) in this paper, we
have selected Yices v2.3.1 (64bit) [12] and Z3 v4.4.0 (64bit) [15] using linear integer
arithmetic (LA(Z)) without quantifiers as the background theory. We show the
results using both solver libraries running on a 64bit 8-core 3.40GHz Intel Core-i7
PC with 16GB memory. Note, however, that using alternate back-end solvers is not

23

Figure 6: Example network topologies: (a) Ring–size 6, (b) Mesh–size 6, (c) Tree–
depth 2. All examples with 3 end systems per switch (leaf nodes only).

Name Periods (ms) Hyperperiod (ms)
P1 {10, 20, 25, 50, 100} 100
P2 {10, 30, 100} 300
P3 {50, 75} 150

Table 1: Sets of periods and their respective hyperperiod.

intended as a performance comparison between the solvers but rather a reinforce-
ment of the feasibility claims to use SMT for scheduling problems. We aim, in this
way, at confirming a similar trend with independence of the selected library and
avoid, to some extent, unnoticed effects due to bugs or limitations inherent to one
particular solver.

The optimization results (see Section 6.3) were obtained using the 64bit version
of the Gurobi11 Optimizer [22] v6.0 running on the same platform. For the sake
of completeness, we intended to use the open-source GNU Linear Programming
Kit [21] (GLPK) package on its version 4.54. However, during our evaluation we
found out that the performance of GLPK is several orders of magnitude below that
of Gurobi12 and the SMT approach, hence rendering the comparison uninteresting.
Therefore, we reduce the comparison of the two to a minimum, and center our
evaluation between the remaining three engines.

We analyze the performance of TT-NTSS over a number of industrial-sized syn-
thetic scenarios following the network topologies depicted in Figure 6. For each case
we evaluate four network sizes which range from small (i.e. a couple of switches) to
huge (i.e. several tens of switches). We scale proportionally the number of connected
end systems and therefore the number of tasks to be scheduled. Table 2 summarizes
the configuration for each scenario.

For the experiments we use 3 different sets of communication periods, as listed in
Table 1. Each end-system runs a total of 16 tasks without precedence constraints,
of which 8 are communicating and 8 free. We choose this ratio as a representa-
tive proportion of free and communicating tasks based on our experience. Note,
however, that the performance of the methods evaluated in this section is subject
to the ratio between the accumulated utilization of free and communicating tasks,
rather than the particular number of tasks. Therefore, the WCET of tasks is set

11We thank Gurobi Optimization, Inc for their generous licensing support.
12This finding is reaffirmed in [38], in which the authors present a detailed performance compar-

ison of several commercial and open-source MIP solvers for a particular problem domain.

24

Num Num
Size Topology

Switches End-Systems

Small (S)
Mesh, Ring 2 4

Tree, depth = 1 4 6

Medium (M)
Mesh, Ring 4 16

Tree, depth = 2 13 36

Large (L)
Mesh, Ring 8 48

Tree, depth = 3 15 48

Huge (H)
Mesh, Ring 16 192

Tree, depth = 2 43 432

Table 2: Configuration parameters for network configurations of each size.

proportionally to the period and the desired CPU utilization bound, rounded to
the nearest macrotick multiple. It is a common pattern in industrial applications
that communicating tasks (e.g. sensing and actuating) are sensibly smaller than
non-communicating ones (e.g. background computation and core functionality).
Therefore, we choose to model free tasks to account for approximately 75% of the
utilization and communicating tasks for 25%13. We define virtual links between
pairs of communicating tasks executing on distinct randomly-selected end systems.

Among the communicating tasks, the producer or consumer role is decided ran-
domly upon generation of the end-to-end communication. Message sizes are chosen
randomly between the maximum and minimum Ethernet packet sizes, while the pe-
riods of tasks as well as their respective VLs are randomly distributed among the
selected predefined set (see Table 1). For convenience, the end-to-end latency for
all VLs is bounded to the period, i.e., the initial period instance is 0 for all frames.
Allowing the initial period instance to be different from 0 for frames implies that
an additionally variable for each instance of a message on a link is introduced into
the SMT context which increases the runtime of the SMT solver. The memory con-
straint is set implicitly to one period for each link and can be discarded from the
solver assertions. Naturally, for each consumer task, there will be a producer task,
as well as a VL providing a logical communication path between the two. Both
tasks, and VL will be configured with the same period and message length.

The time-out for each experiment was set to 10 hours after which the unfinished
problems were deemed unfeasible. We have fixed a 1µsec granularity for the network
links, and defined two different network speeds (100Mbit/s for links towards end
systems and 1Gbit/s for links between switches).

6.2 SMT Results

Figures 7, 8 and 9 depict the runtime of the demand-based algorithm compared to
the one-shot for all period configurations and, respectively, the mesh, ring, and tree

13This ratio is chosen as a representative figure based on the author’s experience. Note, however,
that the evaluation and validity of the presented method is not bound to these values and can be
generalized to any proportion between free and communicating tasks.

25

10 ms

1 sec

1 min

1 h

10 h

S (2, 4, 64, 16) M (4, 16, 256, 64) L (8, 48, 768, 192) H (16, 192, 3072, 768)

ti
m

e
-o

u
t

ti
m

e

Yices demand
Yices one-shot

Z3 demand
Z3 one-shot

(a) P1

10 ms

1 sec

1 min

1 h

10 h

S (2, 4, 64, 16) M (4, 16, 256, 64) L (8, 48, 768, 192) H (16, 192, 3072, 768)

ti
m

e
-o

u
t

ti
m

e

Yices demand
Yices one-shot

Z3 demand
Z3 one-shot

(b) P2

10 ms

1 sec

1 min

1 h

10 h

S (2, 4, 64, 16) M (4, 16, 256, 64) L (8, 48, 768, 192) H (16, 192, 3072, 768)

ti
m

e
-o

u
t

ti
m

e

Yices demand
Yices one-shot

Z3 demand
Z3 one-shot

(c) P3

Figure 7: Runtime for the mesh topology with MT = 250µsec, U = 50%.

10 ms

1 sec

1 min

1 h

10 h

S (2, 4, 64, 16) M (4, 16, 256, 64) L (8, 48, 768, 192) H (16, 192, 3072, 768)

ti
m

e
-o

u
t

ti
m

e

Yices demand
Yices one-shot

Z3 demand
Z3 one-shot

(a) P1

10 ms

1 sec

1 min

1 h

10 h

S (2, 4, 64, 16) M (4, 16, 256, 64) L (8, 48, 768, 192) H (16, 192, 3072, 768)

ti
m

e
-o

u
t

ti
m

e
Yices demand

Yices one-shot
Z3 demand

Z3 one-shot

(b) P2

10 ms

1 sec

1 min

1 h

10 h

S (2, 4, 64, 16) M (4, 16, 256, 64) L (8, 48, 768, 192) H (16, 192, 3072, 768)

ti
m

e
-o

u
t

ti
m

e

Yices demand
Yices one-shot

Z3 demand
Z3 one-shot

(c) P3

Figure 8: Runtime for the ring topology with MT = 250µsec, U = 50%.

26

10 ms

1 sec

1 min

1 h

10 h

S (4, 6, 96, 24) M (13, 36, 576, 144) L (15, 48, 768, 192) H (43, 432, 6912, 1728)

ti
m

e
-o

u
t

ti
m

e

Yices demand
Yices one-shot

Z3 demand
Z3 one-shot

(a) P1

10 ms

1 sec

1 min

1 h

10 h

S (4, 6, 96, 24) M (13, 36, 576, 144) L (15, 48, 768, 192) H (43, 432, 6912, 1728)

ti
m

e
-o

u
t

ti
m

e

Yices demand
Yices one-shot

Z3 demand
Z3 one-shot

(b) P2

10 ms

1 sec

1 min

1 h

10 h

S (4, 6, 96, 24) M (13, 36, 576, 144) L (15, 48, 768, 192) H (43, 432, 6912, 1728)

ti
m

e
-o

u
t

ti
m

e

Yices demand
Yices one-shot

Z3 demand
Z3 one-shot

(c) P3

Figure 9: Runtime for the tree topology with MT = 250µsec, U = 50%.

topologies. For these experiments we fixed the macrotick on each end-system to
250µs with an average task utilization of 50%. The y-axis showing the runtime has
a logarithmic scale and the x-axis shows the 4 different sizes for each topology (see
Table 2). For convenience, each size is labeled with the tuple (number of switches,
total number of end-systems, total number of tasks, number of VLs).

Observe that, with independence of the solver engine, often the one-shot algo-
rithm reaches the 10 hour time-out, even in some cases (e.g. Figure 9(c)) for the
small sized networks (S). The demand-based algorithm outperforms significantly the
one-shot, and in most cases provides a schedule within 1 hour. We also appreciate
a similar trend for both SMT solvers, with a noticeable better performance of Yices
over Z3. Nevertheless, note that a comparison of the two is not intended in this
paper and certainly out of the scope of this work.

We explicitly introduced the huge sized network as a means to explore the scal-
ability limits. To this respect, we observe that with exception of the mesh topology
(P1 and P3 configurations), all results involving huge sized networks either time-out
(in the case of tree topology or P2 configurations) or take over 1 hour to solve (ring
topologies with P1 and P3 configurations). We explain the significant better per-
formance for the mesh topology due to being a fully connected mesh (i.e. each VL
needs to cross at most two switches) and hence deeming a significantly lower link
utilization than other topologies. Nevertheless, the trend suggests that even this
topology would soon reach the limits of scalability for slightly bigger networks or
more complex period configurations (like the P2 configuration).

In Figure 10 we compare the runtime of the one-shot and demand-based al-

27

10 ms

1 sec

1 min

1 h

10 h

50 100 250 500

ti
m

e
-o

u
t

ti
m

e

macrotick [µsec]

P={10, 20, 25, 50, 100}[ms], HP=100ms, Size=S, U=50%, T=MESH

Yices demand
Yices one-shot

Z3 demand
Z3 one-shot

Figure 10: Runtime as a function of the macrotick.

10 ms

1 sec

1 min

1 h

10 h

25 50 75

ti
m

e-
o

u
t

ti
m

e

average end-system utilization [%]

P={10, 20, 25, 50, 100}[ms], HP=100ms, MT=250µsec, Size=S, T=MESH

Yices demand
Yices one-shot

Z3 demand
Z3 one-shot

Figure 11: Runtime as a function of the average end-system utilization.

gorithm (logarithmic y-axis) as a function of the macrotick length (x-axis). The
RTOS developed internally at TTTech (see [14] for a short description) running on
a TMS570 MCU [58] with a 180 MHz ARM Cortex-R4F processor has a configurable
macrotick in the range of 50µs to 1ms. Smaller macroticks increase the responsive-
ness of the system but introduce more overhead due to more frequent timer interrupt
invocations and context switches. The macrotick also has an impact on the runtime
of our method, a bigger macrotick leads to tasks generating less virtual frames (i.e.
tasks can only be preempted at the beginning of a macrotick instant) but decreases
the solution space (similar to the raster method for network links).

All plotted values were obtained using the small mesh topology with 50% task
utilization, period set P1, and macrotick values between 50µs and 500µs. As can
be seen, the smaller the macrotick is, the longer it takes to find a schedule due to
the increasing number of virtual frames generated by the tasks on the end-system
CPUs.

In Figure 11 we compare the runtime of the demand and one-shot methods
(logarithmic y-axis) as a function of the average end-system utilization (x-axis) for a

28

 1000

 10000

 100000

 1x10
6

 1x10
7

100 ms 1 sec 1 min 1 h 5 h
 1

 10

 100

 1000

 10000

as
se

rt
io

n
s

fr
am

es

runtime

MT=250µsec, ALG=DEMAND

assertions (left y-axis)
frames (right y-axis)

Figure 12: Assertions and frames as a function of the runtime.

small mesh topology where each end-system has a macrotick of 250µs and period set
P1. With this experiment we show that the more utilized the end-systems becomes
the harder it is for the SMT solver to find a solution. We remind the reader that free
tasks account for approximately 75% of the utilization and communicating tasks for
around 25%. The demand-based algorithm eliminates, in the best case, up to 75%
of virtual frames and therefore, even for a highly utilized end-system, the size of the
SMT problem becomes significantly smaller.

The runtime of the scheduling method is dependent on a number of factors,
the most important of them being the number of frames that need to be sched-
uled. However, as can be seen from the previous figures, there is a non-monotonic
relationship between the various variables and the runtime of the algorithm. The
number of frames has a complex dependency on the macrotick, the hyperperiod, the
relation and length of the periods, the topology, etc. It is therefore hard to find a
monotonic relationship between these variables and the complexity of the problem.
However, the two best indicators of the complexity of the runtime are the number
of assertions and the number of frames to be scheduled. In Figure 12 we plot the
number of logical assertions (logarithmic left y-axis) and frames (logarithmic right
y-axis) as functions of the runtime (logarithmic x-axis). The values were obtained
from all previous experiments with the 3 topologies and period sets, scheduled with
the demand-based algorithm with a macrotick of 250µs. We omitted from the figure
the one-shot method since most of the experiments reached the time-out, as well
as the experiments where the demand-based algorithm needed more than one incre-
mental step due to failed demand checks. For this figure we plot only the runtime
for Yices, although a similar trend with slightly higher scale would result from Z3.

Please note that the runtime performance of the different solvers is also impacted,
among other parameters, by the order in which the constraints are introduced to the
context of the solver. A more detailed analysis on how scheduling problems like the
one presented in this paper impact the performance of SMT solvers may improve

29

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

0

20

40

60

80

100

S
M

T
-s

ch
ed

u
le

d
 f

ra
m

es

re
d
u

ct
io

n
 [

%
]

one-shot (left y-axis)
demand (left y-axis)

reduction (right y-axis)

0

1

M
E

S
H

 sm
all P

1

M
E

S
H

 sm
all P

2

M
E

S
H

 sm
all P

3

M
E

S
H

 m
edium

 P
1

M
E

S
H

 m
edium

 P
2

M
E

S
H

 m
edium

 P
3

M
E

S
H

 large P
1

M
E

S
H

 large P
2

M
E

S
H

 large P
3

R
IN

G
 sm

all P
1

R
IN

G
 sm

all P
2

R
IN

G
 sm

all P
3

R
IN

G
 m

edium
 P

1

R
IN

G
 m

edium
 P

2

R
IN

G
 m

edium
 P

3

R
IN

G
 large P

1

R
IN

G
 large P

2

R
IN

G
 large P

3

T
R

E
E

 sm
all P

1

T
R

E
E

 sm
all P

2

T
R

E
E

 sm
all P

3

T
R

E
E

 m
edium

 P
1

T
R

E
E

 m
edium

 P
2

T
R

E
E

 m
edium

 P
3

T
R

E
E

 large P
1

T
R

E
E

 large P
2

T
R

E
E

 large P
3

retries

Figure 13: SMT-scheduled frames with the one-shot and demand methods.

the average runtime beyond what was presented in this paper.
The reduction of virtual frames on the demand-based algorithm, and therefore

in the number of logical assertions, accounts for a significant average increase in
performance with respect to the one-shot algorithm. In Figure 13 we show the
total number of frames (virtual frames corresponding to tt-tasks as well as frame
instances of tt-messages) scheduled with the two methods. In parallel, we show how
many incremental steps were needed (i.e. retries sub-plot) with the demand method
for each network configurations of sizes small, medium and large presented before.
Note that we omitted the huge network size since it leads to time-out for most cases.
The significant performance improvements result directly from the reduction on the
number of frames (on average 65% less) that need to be scheduled with the SMT
solver in each case. For the sake of simplicity we only plot, as before, the results
based on Yices.

6.3 Optimization results

Figures 14, 15 and 16 show the runtime of the demand and one-shot methods using
the MIP and SMT solvers Gurobi and Yices, respectively, where the Gurobi solver
is set to retrieve the optimal solution. Since the MIP formulation also optimizes
the end-to-end latency the figures are not meant to show a comparison between the
respective solvers but rather to show that, even with optimization, the demand-
based algorithm scales for small to medium networks and even for some of the large
and huge configurations.

As in the previous experiments (cf. Section 6.2), we fixed the macrotick on each
end-system to 250µs, while the average task utilization was 50%. The y-axis shows
the runtime and has a logarithmic scale while the x-axis shows, as before, the 4
different sizes for each of the three topologies used (see Table 2).

For the demand-based method the experiments show that even the much harder
problem of finding the optimal feasible solution can be solved for most small to

30

10 ms

1 sec

1 min

1 h

10 h

S (2, 4, 64, 16) M (4, 16, 256, 64) L (8, 48, 768, 192) H (16, 192, 3072, 768)

ti
m

e
-o

u
t

ti
m

e

Yices demand
Yices one-shot

Gurobi demand

(a) P1

10 ms

1 sec

1 min

1 h

10 h

S (2, 4, 64, 16) M (4, 16, 256, 64) L (8, 48, 768, 192) H (16, 192, 3072, 768)

ti
m

e
-o

u
t

ti
m

e

Yices demand
Yices one-shot

Gurobi demand

(b) P2

10 ms

1 sec

1 min

1 h

10 h

S (2, 4, 64, 16) M (4, 16, 256, 64) L (8, 48, 768, 192) H (16, 192, 3072, 768)

ti
m

e
-o

u
t

ti
m

e

Yices demand
Yices one-shot

Gurobi demand

(c) P3

Figure 14: Comparison between MIP and SMT for the mesh topology with MT =
250µsec, U = 50%.

medium networks, and, in some cases, even for large and huge configurations. Please
note that, for the huge ring and tree topologies, we had to decrease the performance
of Gurobi by changing certain parameters (we set the NodeFileStart14 to 0.1 and
reduced the thread count from 4 to 1) in order to avoid an out-of-memory error. As
before, the huge sized network shows the scalability limits since all configurations,
except the mesh topology with P1 period configuration (Figure 14(a)), time out. As
with the SMT experiments, the link utilization plays a significant role in scalability.

We chose not to show the Gurobi experiments with the one-shot method since
they reach the 10-hour time-out for small-sized topologies when searching for the
optimal solution. This result was expected since finding the optimal solution is a
much harder problem than finding the first feasible solution as is the case with SMT
solvers. Since, even with SMT, the time-out was reached for most small topologies
and period configurations, we expected that all small problems are too hard for the
MIP formulation.

The Gurobi optimizer offers information on the difference between the objective
value of the best current feasible solution and the global lower objective bound [22,
p. 512]. Through this parameter we can tell the optimizer at which threshold we
consider a solution to be optimal. This feature may improve the runtime of certain
inputs for which a close-to-optimal solution is acceptable.

In Figure 17 we compare the time it took to solve the mesh topology with

14The parameter specifies that after a certain threshold, nodes are to be compressed and written
to disk instead of stored in memory [22, p. 497].

31

10 ms

1 sec

1 min

1 h

10 h

S (2, 4, 64, 16) M (4, 16, 256, 64) L (8, 48, 768, 192) H (16, 192, 3072, 768)

ti
m

e
-o

u
t

ti
m

e

Yices demand
Yices one-shot

Gurobi demand

(a) P1

10 ms

1 sec

1 min

1 h

10 h

S (2, 4, 64, 16) M (4, 16, 256, 64) L (8, 48, 768, 192) H (16, 192, 3072, 768)

ti
m

e
-o

u
t

ti
m

e

Yices demand
Yices one-shot

Gurobi demand

(b) P2

10 ms

1 sec

1 min

1 h

10 h

S (2, 4, 64, 16) M (4, 16, 256, 64) L (8, 48, 768, 192) H (16, 192, 3072, 768)

ti
m

e
-o

u
t

ti
m

e

Yices demand
Yices one-shot

Gurobi demand

(c) P3

Figure 15: Comparison between MIP and SMT for the ring topology with MT =
250µsec, U = 50%.

the P2 period configuration using different gaps for the MIP solver, namely, within
10%, 5%, 1%, and 0% of the global lower objective bound. Please note that, as in the
previous figures, the y-axis is logarithmic and the x-axis shows the different network
sizes from small to huge. We can see that at < 10% the runtime is relatively close to
the Yices runtime while at < 1% the runtime converges to the runtime of the optimal
run. We can also see that for the huge configuration, finding the optimal result, or
a result that is within 1% of the optimal one, times out at 10 hours. However, an
optimal solution within 5% or 10% of the optimal one is well within the acceptable
time limit.

6.4 Scalability

As part of the evaluation, we want to remark that despite achieving reasonable
performance for small to medium or even large systems, our evaluation shows clear
signs that scheduling very large networks still remains an impracticable problem
(unless P = NP). For inputs that generate an amount of frames and assertions be-
yond the ranges presented above, the problem quickly becomes intractable, making
the proposed methods unfeasible.

This comes from the fact that SMT solvers, which generalize SAT solvers, have
exponential complexity, and even though there is an active community constantly
improving their performance, for very large systems, heuristic methods or a com-
bination of them with SMT-based methods remain the most promising approach.

32

10 ms

1 sec

1 min

1 h

10 h

S (4, 6, 96, 24) M (13, 36, 576, 144) L (15, 48, 768, 192) H (43, 432, 6912, 1728)

ti
m

e
-o

u
t

ti
m

e

Yices demand
Yices one-shot

Gurobi demand

(a) P1

10 ms

1 sec

1 min

1 h

10 h

S (4, 6, 96, 24) M (13, 36, 576, 144) L (15, 48, 768, 192) H (43, 432, 6912, 1728)

ti
m

e
-o

u
t

ti
m

e

Yices demand
Yices one-shot

Gurobi demand

(b) P2

10 ms

1 sec

1 min

1 h

10 h

S (4, 6, 96, 24) M (13, 36, 576, 144) L (15, 48, 768, 192) H (43, 432, 6912, 1728)

ti
m

e
-o

u
t

ti
m

e

Yices demand
Yices one-shot

Gurobi demand

(c) P3

Figure 16: Comparison between MIP and SMT for the tree topology with MT =
250µsec, U = 50%.

1 sec

1 min

1 h

10 h

S (2, 4, 64, 16) M (4, 16, 256, 64) L (8, 48, 768, 192) H (16, 192, 3072, 768)

ti
m

e-
o
u
t

ti
m

e

MESH P={100, 200, 600}[ms], HP=600ms, MT=250µsec, U=50%

Yices
Gurobi (Gap < 10%)
Gurobi (Gap < 5%)
Gurobi (Gap < 1%)
Gurobi (Gap = 0%)

Figure 17: Runtime with different Gurobi gap parameters compared to Yices.

Decreasing the solution space with the use of heuristic methods able to scale to
very large systems (like e.g. the prominent system scale of the Internet of Things)
remains as a trade-off which may be worth exploring.

When following an optimization approach, which is less scalable than the SMT
method but still achieves a reasonable performance, searching for near-optimal so-
lutions may be an acceptable trade-off. In particular, increasing the acceptable

33

threshold after which a solution is deemed close-enough to the optimal one may suf-
fice to boost scalability to comparable levels as those obtained with SMT solvers. In
any case, we have to stress the contrast with respect to the choice of solver engines.
While in the case of SMT we observed comparable performance trends for both SMT
solvers, we encounter a drastic impact in the case of optimization solvers. We refer
to the analysis in [38] for a performance comparison of commercial and open source
solvers.

7 Related work

The starting point for our work was [53] in which the author formulates SMT mes-
sage scheduling constraints for multi-hop time-triggered networks and solves them
using Yices [12]. We extend the work done by Steiner as follows. First, we extend
the problem definition, among other (smaller) extensions, to include preemptive
tasks that run in a table-driven schedule on end-system nodes and formulate the
scheduling constraints based on this model. Furthermore, we add support for dif-
ferent link speeds and time-line granularity for both network and CPU links. Based
on this extended model, we show how to efficiently create combined task and net-
work schedules with deterministic end-to-end latency that push the time-triggered
properties of TTEthernet to the software layers. Finally, we transform the logical
constraints into an MIP problem and show that, even with global optimization, our
demand-based approach scales for small- to medium-sized networks.

Other approaches besides [53] also discuss the generation of message schedules
for time-triggered networks without factoring in the producing and consuming tasks.
The problem of generating a time-triggered message schedule is extended with rate-
constrained traffic considerations by either scheduling reserved slots that correspond
to the rate-constrained requirements [54] or by formulating an optimization prob-
lem that minimizes the end-to-end delay of rate-constrained frames [57]. The work
in [23] addresses the synthesis of time-triggered message schedules for PROFINET
IO where messages depend on pre-scheduled producer and consumer tasks. Schedul-
ing for time-triggered network-on-chip, where both scheduling points and communi-
cation routes of messages are assigned, is studied in [25]. In [46] a branch-and-bound
technique is presented that handles both task allocation to computing nodes and
scheduling of those tasks that have dependencies (e.g. from communication similar
to our producer - consumer relations) in distributed real-time system. The algorithm
is optimal with respect to task response times (called system hazard).

There have been several approaches dealing with task and message scheduling
in tandem for time-triggered communication. A recent paper [61] studies task and
messages schedule co-synthesis in switched time-triggered networks using a MIP
multi-objective optimization formulation. Similar to our work, the authors differ-
entiate between communicating and free tasks, however, their task model is non-
preemptive whereas ours allows preemption which increases the solution space on
the application level. Moreover, our approach (more specifically the demand-based
method) can schedule larger networks even when using preemptive tasks and opti-
mizing for end-to-end latency. Another MIP-based approach can be found in [60]
where FlexRay bus scheduling is considered. Scheduling preemptive tasks together

34

with time-triggered messages has been analyzed in [48], [47] for fixed-priority sched-
uled tasks communicating through a TTP bus. Similarly, [39] studies a SAT-based
solution for task and message scheduling on bus systems where tasks are sched-
uled using a fixed-priority assignment. In [2], [1] tasks are scheduled together with
their communication messages on links in a distributed system, assuming bounds
on the latency of message transmission (e.g. using the real time channel concept).
A branch-and-bound method is employed to minimize maximum lateness and, addi-
tionally, the authors also present a method that can yield a feasible, but non-optimal,
heuristic solution for larger networked systems. Task precedences in distributed
systems, with or without multi-rate dependencies, have been studied extensively for
example in [18], [19], [29], and [30].

In [49], a system consisting of communicating event- and time-triggered tasks
running on distributed nodes is scheduled in conjunction with the associated bus
messages from the dynamic and static domains respectively. A similarity to our
work consists in the separate schedulability test (in this case fixed-priority) for event-
triggered tasks based on the static schedule of the time-triggered tasks.

Hitherto, all presented methods for task and message schedule co-synthesis deal
either with non-preemptive tasks on multi-hop networks, or with preemptive tasks
on simple bus network topologies. We consider a more complex problem by in-
cluding preemptive tasks that communicate in a switched multi-hop multi-speed
time-triggered network.

The time-triggered schedule generated for TTEthernet is strictly periodic, similar
to the Syndex model (cf. [30], [28], [59]), i.e., the offset of a frame within the frame
period remains the same across different period instances. The one-shot method
produces combined task and network schedules that also follow this model. On the
other hand, when the demand-based method is used, the generated schedule is a
combination of the strictly periodic and the standard EDF periodic model, i.e., all
frames (task and network frames) scheduled with SMT (or MIP) are strictly periodic
whereas frames (originating from free tasks) that are scheduled by simulating EDF
can have different offsets in different period instances.

The application domain of our work includes avionic and industrial use-cases
where TTEthernet but also other, related, technologies like AFDX are used. Schedul-
ing problems for such domains and technologies have been also studied using opti-
mization approaches. In [3], the authors minimize the bandwidth consumption in
AFDX networks with dynamic communication using an ILP and heuristic methods.
Task scheduling for periodic tasks in Integrated Modular Avionics (IMA) systems
is addressed in [4] via methods derived from both ILP and Game Theory.

8 Conclusions and Future Work

We have introduced algorithms for the simultaneous co-generation of static time-
triggered schedules for both network messages and preemptive tasks in switched
multi-speed time-triggered distributed systems. We have defined the schedulability
constraints as logical formulæ and solved them using two state-of-the-art Satisfia-
bility Modulo Theories (SMT) solvers, namely Yices and Z3. Moreover, we have
shown how to increase, in the average case, the performance of our method through

35

a novel incremental scheduling approach based on the utilization demand bound
analysis for asynchronous periodic tasks from classical scheduling theory. Addition-
ally, we transformed the logical constraints into an MIP problem optimizing accrued
end-to-end latency and solved it using the Gurobi Optimizer. Our evaluation, using
a variety of synthetic network topologies and system configurations, shows that our
approach can tackle medium to large problems efficiently and scales for industrial-
sized systems, even when optimizing global system properties.

The new trend for deterministic networks goes into the direction of Time-Sensitive
Networks (TSN) [27] for Industrial and Audio/Video application domains. Here,
the scheduling problem becomes more challenging since the size of networks may
go beyond what was investigated in this paper. Dynamic incremental scheduling
approaches that are designed for the size of such networks typically rely on heuristic
approaches [51]. We envision support for the scale of this new application domains
by combining heuristic approaches with the SMT-based solutions described in this
paper. Complementary, end-systems are increasingly moving towards multi-core
architectures and therefore require task scheduling for multi-core CPUs and virtu-
alized platforms. Not only the scheduling problem but also the allocation problem
needs to be taken into consideration. In order to support this, the approach pre-
sented in this paper needs to be extended by introducing into the task and system
model additional constraints and variables that represent multi-core systems and
partitioned environments. We also envision other extensions like the consideration
of requirements for other supported traffic classes during the scheduling process
(e.g. best-effort and rate-constraint traffic) as well as adding support for multicast
communication.

References

[1] Abdelzaher, T.F., Shin, K.G.: Optimal combined task and message scheduling
in distributed real-time systems. In: Proc. RTSS. IEEE Computer Society
(1995)

[2] Abdelzaher, T.F., Shin, K.G.: Combined task and message scheduling in dis-
tributed real-time systems. IEEE Trans. Parallel Distrib. Syst. 10(11), 1179–
1191 (1999)

[3] Al Sheikh, A., Brun, O., Chéramy, M., Hladik, P.E.: Optimal design of virtual
links in afdx networks. Real-Time Syst. 49(3), 308–336 (2013)

[4] Al Sheikh, A., Brun, O., Hladik, P.E., Prabhu, B.J.: Strictly periodic scheduling
in ima-based architectures. Real-Time Syst. 48(4), 359–386 (2012)

[5] ARINC Report 664P7-1: Aircraft Data Network, Part 7: Avionics Full Duplex
Switched Ethernet (AFDX) Network (2009)

[6] Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories.
In: Handbook of Satisfiability, vol. 185. IOS Press (2009)

36

[7] Baruah, S.K., Rosier, L.E., Howell, R.R.: Algorithms and complexity concern-
ing the preemptive scheduling of periodic, real-time tasks on one processor.
Real-Time Syst. 2(4) (1990)

[8] Bisschop, J.: Aimms Optimization Modeling. Paragon Decision Technology
(2006)

[9] Bradley, S., Hax, A., Magnanti, T.: Applied mathematical programming.
Addison-Wesley (1977)

[10] Buttazzo, G.C.: Hard Real-time Computing Systems: Predictable Schedul-
ing Algorithms And Applications (Real-Time Systems Series). Springer-Verlag
(2004)

[11] Chetto, H., Silly, M., Bouchentouf, T.: Dynamic scheduling of real-time tasks
under precedence constraints. Real-Time Syst. 2(3) (1990)

[12] Computer Science Laboratory – SRI International: The Yices SMT Solver.
http://yices.csl.sri.com/. Retrieved 15-Apr-2015

[13] Craciunas, S.S., Serna Oliver, R.: SMT-based task- and network-level static
schedule generation for time-triggered networked systems. In: Proc. RTNS.
ACM (2014)

[14] Craciunas, S.S., Serna Oliver, R., Ecker, V.: Optimal static scheduling of real-
time tasks on distributed time-triggered networked systems. In: Proc. ETFA.
IEEE Computer Society (2014)

[15] De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Proc. TACAS.
Springer-Verlag (2008)

[16] De Moura, L., Bjørner, N.: Satisfiability modulo theories: Introduction and
applications. Commun. ACM 54(9), 69–77 (2011)

[17] Derler, P., Resmerita, S.: Flexible static scheduling of software with logical
execution time constraints. In: Proc. CIT. IEEE (2010)

[18] Forget, J., Boniol, F., Grolleau, E., Lesens, D., Pagetti, C.: Scheduling de-
pendent periodic tasks without synchronization mechanisms. In: Proc. RTAS.
IEEE Computer Society (2010)

[19] Forget, J., Grolleau, E., Pagetti, C., Richard, P.: Dynamic priority scheduling
of periodic tasks with extended precedences. In: Proc. ETFA. IEEE Computer
Society (2011)

[20] Gaglio, S., Re, G.: Advances onto the Internet of Things: How Ontologies
Make the Internet of Things Meaningful. Advances in Intelligent Systems and
Computing. Springer (2013)

[21] GLPK: GNU Linear Programming Kit. URL http://www.gnu.org/software/

glpk/. Retrieved 10-Jan-2015

37

http://yices.csl.sri.com/
http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/

[22] Gurobi Optimization, I.: Gurobi optimizer reference manual, version 6.0 (2014).
URL http://www.gurobi.com. Retrieved 12-Jan-2015

[23] Hanzalek, Z., Burget, P., Šucha, P.: Profinet IO IRT message scheduling. In:
Proc. ECRTS. IEEE Computer Society (2009)

[24] Honeywell Aerospace: Application specific integrated circuits based on TTEth-
ernet ready for first Orion test flight. http://aerospace.honeywell.com/

about/media-resources/newsroom (2014). Retrieved 22-May-2014

[25] Huang, J., Blech, J.O., Raabe, A., Buckl, C., Knoll, A.: Static scheduling of a
time-triggered network-on-chip based on SMT solving. In: Proc. DATE. IEEE
Computer Society (2012)

[26] Institute of Electrical and Electronics Engineers, Inc: 802.1Qbv - Enhance-
ments for Scheduled Traffic. http://www.ieee802.org/1/pages/802.1bv.

html (2015). Retrieved 20-Jan-2015

[27] Institute of Electrical and Electronics Engineers, Inc: Time-Sensitive Network-
ing Task Group. http://www.ieee802.org/1/pages/tsn.html (2015). Re-
trieved 20-Jan-2015

[28] Kermia, O., Cucu, L., Sorel, Y.: Non-preemptive multiprocessor static schedul-
ing for systems with precedence and strict periodicity constraints. In: Proc.
PMS (2006)

[29] Kermia, O., Sorel, Y.: Load balancing and efficient memory usage for homo-
geneous distributed real-time embedded systems. In: Proc. ICPP-W. IEEE
(2008)

[30] Kermia, O., Sorel, Y.: Schedulability analysis for non-preemptive tasks under
strict periodicity constraints. In: Proc. RTCSA. IEEE Computer Society (2008)

[31] Kopetz, H.: Real-Time Systems: Design Principles for Distributed Embedded
Applications. Kluwer Academic Publishers (1997)

[32] Kopetz, H., Ademaj, A., Grillinger, P., Steinhammer, K.: The time-triggered
Ethernet (TTE) design. In: Proc. ISORC. IEEE (2005)

[33] Kopetz, H., Bauer, G.: The time-triggered architecture. Proceedings of the
IEEE 91(1), 112–126 (2003)

[34] Kopetz, H., Grunsteidl, G.: Ttp - a time-triggered protocol for fault-tolerant
real-time systems. In: Fault-Tolerant Computing, 1993. FTCS-23. Digest of
Papers., The Twenty-Third International Symposium on, pp. 524–533 (1993)

[35] Leung, J., Kelly, L., Anderson, J.H.: Handbook of Scheduling: Algorithms,
Models, and Performance Analysis. CRC Press, Inc. (2004)

[36] Leung, J.Y.T., Merrill, M.: A note on preemptive scheduling of periodic, real-
time tasks. Information Processing Letters 11(3), 115–118 (1980)

38

http://www.gurobi.com
http://aerospace.honeywell.com/about/media-resources/newsroom
http://aerospace.honeywell.com/about/media-resources/newsroom
http://www.ieee802.org/1/pages/802.1bv.html
http://www.ieee802.org/1/pages/802.1bv.html
http://www.ieee802.org/1/pages/tsn.html

[37] Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a
hard-real-time environment. Journal of the ACM 20, 46–61 (1973)

[38] Meindl, B., Templ, M.: Analysis of commercial and free and open source solvers
for the cell suppression problem. Transactions on Data Privacy 6(2), 147–159
(2013)

[39] Metzner, A., Franzle, M., Herde, C., Stierand, I.: Scheduling distributed real-
time systems by satisfiability checking. In: Proc. RTCSA. IEEE Computer
Society (2005)

[40] Moura, L., Bjørner, N.: Satisfiability modulo theories: An appetizer. In: For-
mal Methods: Foundations and Applications, vol. 5902, pp. 23–36. Springer
Berlin Heidelberg (2009)

[41] NASA: Orion Exploration Flight Test-1. https://www.nasa.gov/pdf/

663703main_flighttest1_fs_051812.pdf (2014). Retrieved 24-Jun-2015

[42] Nikoletseas, S., Rolim, J.: Theoretical Aspects of Distributed Computing in
Sensor Networks. Monographs in Theoretical Computer Science. An EATCS
Series. Springer Berlin Heidelberg (2011)

[43] Ousterhout, K., Wendell, P., Zaharia, M., Stoica, I.: Sparrow: Distributed, low
latency scheduling. In: Proc SOSP. ACM (2013)

[44] Pellizzoni, R., Lipari, G.: A new sufficient feasibility test for asynchronous
real-time periodic task sets. In: Proc. ECRTS. IEEE Computer Society (2004)

[45] Pellizzoni, R., Lipari, G.: Feasibility analysis of real-time periodic tasks with
offsets. Real-Time Syst. 30(1-2), 105–128 (2005)

[46] Peng, D.T., Shin, K., Abdelzaher, T.: Assignment and scheduling communi-
cating periodic tasks in distributed real-time systems. IEEE Trans. Softw. Eng.
23(12), 745–758 (1997)

[47] Pop, P., Eles, P., Peng, Z.: An improved scheduling technique for time-triggered
embedded systems. In: Proc. EUROMICRO. IEEE Computer Society (1999)

[48] Pop, P., Eles, P., Peng, Z.: Schedulability-driven communication synthesis for
time triggered embedded systems. Real-Time Syst. 26(3), 297–325 (2004)

[49] Pop, T., Eles, P., Peng, Z.: Holistic scheduling and analysis of mixed
time/event-triggered distributed embedded systems. In: Proc. CODES. ACM
(2002)

[50] Sebastiani, R.: Lazy satisfiability modulo theories. JSAT 3(3-4), 141–224
(2007)

[51] Serna Oliver, R., Craciunas, S.S., Stöger, G.: Analysis of Deterministic Ether-
net Scheduling for the Industrial Internet of Things. In: Proc. CAMAD. IEEE
(2014)

39

https://www.nasa.gov/pdf/663703main_flighttest1_fs_051812.pdf
https://www.nasa.gov/pdf/663703main_flighttest1_fs_051812.pdf

[52] Stankovic, J.: Deadline Scheduling for Real-Time Systems: Edf and Related
Algorithms. Real-time systems series. Springer US (1998)

[53] Steiner, W.: An evaluation of SMT-based schedule synthesis for time-triggered
multi-hop networks. In: Proc. RTSS. IEEE Computer Society (2010)

[54] Steiner, W.: Synthesis of static communication schedules for mixed-criticality
systems. In: Proc. ISORCW. IEEE Computer Society (2011)

[55] Steiner, W., Bauer, G., Hall, B., Paulitsch, M.: TTEthernet: Time-Triggered
Ethernet. In: R. Obermaisser (ed.) Time-Triggered Communication. CRC
Press (2011)

[56] Steiner, W., Dutertre, B.: Automated formal verification of the TTEthernet
synchronization quality. In: NASA Formal Methods, Lecture Notes in Com-
puter Science, vol. 6617. Springer (2011)

[57] Tamas-Selicean, D., Pop, P., Steiner, W.: Synthesis of communication sched-
ules for TTEthernet-based mixed-criticality systems. In: Proc. CODES+ISSS.
ACM (2012)

[58] Texas Instruments: TMS570LS Series 16/32-BIT RISC Flash Microcontroller.
http://www.ti.com/lit/ds/symlink/tms570ls3137.pdf. Retrieved 12-Jun-
2014

[59] Yomsi, P.M., Sorel, Y.: Schedulability analysis for non necessarily harmonic
real-time systems with precedence and strict periodicity constraints using the
exact number of preemptions and no idle time. In: Proc. MISTA (2009)

[60] Zeng, H., Zheng, W., Di Natale, M., Ghosal, A., Giusto, P., Sangiovanni-
Vincentelli, A.: Scheduling the flexray bus using optimization techniques. In:
Proc. DAC. ACM (2009)

[61] Zhang, L., Goswami, D., Schneider, R., Chakraborty, S.: Task- and network-
level schedule co-synthesis of Ethernet-based time-triggered systems. In: Proc.
ASP-DAC. IEEE Computer Society (2014)

[62] Zurawski, R.: Industrial Communication Technology Handbook, Second Edi-
tion. Industrial Information Technology. Taylor & Francis (2014)

40

http://www.ti.com/lit/ds/symlink/tms570ls3137.pdf

	Introduction
	System Model
	Scheduling Constraints
	Frame constraints
	Link constraints
	Virtual link constraints
	End-to-End Latency constraints
	Task constraints
	Virtual frame sequence constraints
	Task precedence constraints
	Memory constraints
	Offline buffer demand calculation
	Online time-based buffer demand constraint

	Schedule and constraints example

	SMT-based co-synthesis
	One-shot scheduling
	Demand-based scheduling

	Optimized co-synthesis
	Evaluation
	Configuration Set-Up
	SMT Results
	Optimization results
	Scalability

	Related work
	Conclusions and Future Work

