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Abstract—Fog and edge computing offer the flexibility and

decentralized architecture benefits of cloud computing without

suffering from the latency issues inherent in the cloud. This

makes fog computing very attractive in real-time and safety-

critical applications, especially if combined with container-based

technologies. Whereas different orchestration systems are avail-

able to manage the container placement based on their resource

demand, no orchestration system is considering real-time require-

ments for containerized applications. In this paper, we present

the architecture and design of a real-time container orchestrator

based on Kubernetes. Moreover, this paper defines metrics for

the performance evaluation of real-time containers, and describes

an initial model for allocating a mixture of real-time and non-

real-time containers. We present an initial implementation of

our real-time container extension and evaluate its feasibility on

Linux-based systems.

Index Terms—container-to-host mapping, real-time orchestra-

tion, real-time container-based virtualization

I. INTRODUCTION

Fog and Edge Computing (FEC) are conceived to overcome
some of the main limitations of cloud computing, e.g., tackling
the limitations of unbounded communication latency and vari-
ance in bandwidth availability [1]. FEC enables the benefits
of offloading data collection and decision-making even in
application domains that require Real-time (RT) guarantees,
e.g., in industrial automation [2], [3]. FEC systems decrease
the communication latency for critical data, which can then
be processed on the decentralized computational devices on
the network’s edge. While guaranteeing deterministic commu-
nication behavior between nodes can be achieved through the
use of, e.g., TTEthernet or Time-Sensitive Networks (TSN),
guaranteeing the RT behavior of computation functions can be
challenging. The RT execution of functions on nodes cannot
always be maintained in the same way due to the complexity
and non-determinism of hardware artifacts (e.g., caches), and
software layers within the compute nodes (e.g., OS layers,
network stack, interrupts). Hence, to maintain the RT behavior
of functions, isolation and adaptation/re-allocation of functions
at run-time is necessary. Typically, the re-allocation and the
isolation of functions have been facilitated through the use of
virtualization technologies.

Container-based virtualization is gaining importance in in-
dustrial domains as a lightweight alternative to full-blown vir-
tualization [4], [5]. Containers are standalone self-containing
software packages, comprising applications and their software
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dependencies, that simplify the deployment of software [6].
The technology enables sharing of computation resources
among several containers while preserving isolation. Recently,
there has been an effort to enhance container-based virtual-
ization with time predictability (i.e., RT containers), enabling
container applications with RT requirements [7]–[9]. Through
these enhancements, containers may be used for time-critical
applications required by many industrial systems such as robot
control in fog computing [2], [3]. In parallel, due to the
continuous change in resource usage by applications running
in fog and the availability of the resources, there is a need
to dynamically manage and deploy containers in a cluster
of compute nodes necessitating container orchestrators that
take into account both resource requirements and resource
availability. Additionally, container orchestrators offer further
benefits, e.g., scalability and availability, fault-tolerance, and
efficient resource utilization [10].

RT systems require additional constraints regarding the
reaction time to environmental events [11]. So far, container
orchestrators do not consider RT requirements of applications
running inside containers, neither from the theoretical nor
practical points of view. There are no mechanisms of the
distribution of containers based on their RT requirements
without violating these requirements and how to manage the
co-execution of RT and Best Effort (BE) containers on the
same node. RT containers are a novel topic [9]. There are
no strategies for dealing with dynamic changes in container
workloads that may change interference between RT contain-
ers. Containers do not provide strict resource isolation as they
share not only physical resources but also Operating System
(OS) kernel [12], and hence, they are prone to performance
degradation in the presence of other competing containers. For
example, disk-intensive workloads can induce performance
degradation up to 35% [13]. Therefore, if the benefits of
containers are to be exploited for RT systems, run-time moni-
toring and container orchestration that continuously evaluates
Quality of Service (QoS) metrics and uses them in container
scheduling decisions is necessary.

This paper proposes a container orchestration architecture
to support the co-existence of RT and BE containers with
temporal isolation. Specifically, the contributions of this paper
are as follows:
• The design of a container orchestration architecture enabling

the deployment and online adaptation of both RT and BE
containers considering the timing requirements defined for
time-critical applications;

• The definition of a mathematical model for the RT com-
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ponents of the designed orchestration architecture, and of
the performance metrics needed to implement run-time
monitoring and orchestration of the RT containers;

• The implementation of the proposed orchestration over the
existing open-source container orchestrator Kubernetes.

II. BACKGROUND AND PRIOR WORK

RT systems are computing systems that require determinis-
tic temporal behavior since the correctness of their function-
ality depends not only on the value but also on the timing of
the computed result [11]. Many software applications utilize
periodic tasks that are cyclically executed [14]. Typically,
RT systems require that tasks finish their execution in every
period instance to be considered correct (assuming an implicit
deadline for the tasks).

Virtualization is a technology that allows multiple virtual-
ized applications or systems to be co-located onto the same
shared platform [15]. There are two prevalent virtualization
technologies: hypervisor- and container-based virtualization.
Hypervisor-based virtualization utilizes a hypervisor that is
a software layer that creates the different partitions within
which each virtualized instance of an OS runs. In contrast,
container-based virtualization utilizes OS features to create
an isolated environment for processes. Container-based vir-
tualization does not impose any requirements on hardware
support for virtualization. Hence, such technology can be
utilized on a broad range of devices. Containers co-located on
a single computing node run as user-space isolated tasks and
share functions of the host’s OS (e.g., scheduling, memory
allocation). From the user’s view, each container appears
and executes like a stand-alone OS. In comparison to the
hypervisor-based virtualization, container-based virtualization
has a negligible overhead, is more resource efficient (e.g., 29.4
times less RAM usage than a Virtual Machine (VM) [16]), has
higher flexibility, provides fast booting times [17], and enables
a near-native performance [4]–[6]. However, container-based
virtualization provides a low level of isolation for memory,
disk, and network operations [13]; hence, such operations may
lead to degrading QoS of the applications.

The container-based virtualization relies on namespaces and
control groups, referred to as cgroups, implemented in the
host OS [18]. Namespaces partition global resources, e.g.,
tasks, network, inter-process communication, into different
sets, only visible by different task groups [9]. cgroups enable
the organisation of tasks into hierarchical subgroups with
various configurable runtime properties, that allows a dynamic
resources redistribution among the subgroups [19].

Looking at the RT support for container-based virtual-
ization, three major directions are aiming to improve RT
behavior of containers: hard RT co-kernel that co-exists with
a standard Linux Kernel [20]–[22], solutions based on the
preempt_rt patch for Linux that aims to minimize the latency
in the Kernel [23]–[25], and solutions that employ hierarchical
scheduling [7], [8], [18]. The RT properties of container-based
virtualization depend on the underlying OS. In this paper, we
consider the general-purpose OS Linux. While Linux was not

designed for RT operation, there are considerable efforts to im-
prove the time determinism on several levels, e.g., introducing
RT scheduling as a standard kernel feature and providing time-
predictable kernel behavior through full preemption. On the
task scheduling level, there are RT scheduling policies in the
Linux kernel: First-In-First-Out and Round Robin combined
with priority queues to provide different priority levels for
tasks, and Earliest Deadline First/Constant-Bandwidth Server
that prioritizes tasks dynamically according to their deadlines.

RT scheduling support for containers has been added
in [18] through the implementation of hierarchical scheduling
combining standard fixed priority scheduler (SCHED_FIFO
or SCHED_RR scheduling policy) and SCHED_DEADLINE,
consistent with the multiprocessor periodic resource analysis
from [26]. The kernel is extended with a reservation-based
scheduling policy in which each virtual CPU (vCPU) is
assigned a quota and a period, bounding the execution of
the vCPU to the respective quota in each time interval of
length equal to the period. On the container level, the global
SCHED_DEADLINE policy selects at each time instant the
container with the earliest deadline, while at the task level, the
SCHED_FIFO/SCHED_RR policy is used to schedule tasks
within containers. Once there is no task to be scheduled
by the SCHED_FIFO, other BE tasks, are executed via the
default scheduling policy. This enables the co-existence of
RT and BE containers. We use this hierarchical patch as the
implementation basis for our environment to host containers
in compute nodes.

Container orchestrators automate the deployment, manage-
ment, and scaling of containers in clusters of heterogeneous
computing nodes. The main functionality of container orches-
trators is the placement of containers in a cluster of compute
nodes following placement policies and user-supplied place-
ment constraints. The goal is to choose an optimal compute
node to start the requested containers on. The orchestrator
matches the resources requirements with the resource capacity
of the nodes, e.g., CPU, memory, and disk storage capacity,
and applies strategies to maximize the performance (e.g.,
the highest spread of containers). Additionally, orchestrators
address fault-tolerance of the deployed containers, scaling or
removing containers based, load balancing, container health
monitoring, and efficient resource utilization. There are several
container orchestrators available: Kubernetes, Docker Swarm,
None of them support the deployment of containers based on
their timing requirements [10]. Closest to our work is [27],
where Xi et al. utilizes OpenStack to orchestrate RT VMs.

III. ORCHESTRATION OF REAL-TIME CONTAINERS

This paper introduces a solution to enable the orchestration
of RT containers so that the RT requirements are taken into
account during the scheduling process. We define a set of
scheduling policies, run-time monitoring mechanisms, per-
formance metrics, and an implementation that supports the
deployment and execution of RT containers. The RT container
orchestrator provides the following functionalities:



• Placement of RT and BE containers: The orchestrator
places the RT containers according to their RT requirements
(i.e., quota and budget). The orchestrator prevents over-
reservation of the resources at the container scheduling level
by performing a utilization-bound schedulability test.

• Run-time monitoring of RT QoS of the containers: The
orchestrator continuously monitors resource usage and the
delivered QoS expressed by a set of metrics of the con-
tainers deployed in the compute nodes administrated by the
orchestrator. As the OS does not enforce strong container
isolation, there may be an interference with other noise-
perturbing containers that may influence the timing behavior
of RT containers. The orchestrator takes the information into
account in the next scheduling decisions.

A. System Model
In this section, we define our system model including

infrastructure, compute node, container, and task elements.
Infrastructure: We consider a system S consisting of a
container orchestrator F and n connected compute nodes
denoted by f1, . . . , fn.
Compute node: Each node fj offers memory and storage
resources of a given capacity, denoted with f

M
j and f

S
j ,

respectively. Each compute node fj is capable of hosting
a mixture of RT containers and BE containers. We define
the set of RT and BE containers on node fj with ⇧rt

j and
⇧be

j , respectively. We introduce the Operating System Level
Metrics (OSLM) property of a node fj , denoted by OSLMj ,
to quantify its performance.
Container: Each container ⇡k has memory (⇡M

k ) and storage
(⇡S

k ) demands. An RT container ⇡k 2 ⇧rt
j has RT interface

expressed as (Pk, Qk) where Qk is a CPU quota over period
Pk. We introduce the metric of a container ⇡k, denoted by
CLMk, to capture the performance of RT containers.
Task: Each container ⇡k accommodates a set of tasks denoted
by Tk. Each RT task ⌧i is defined by the tuple hai, Ci, Ti, Dii,
where ai represents the release or arrival time (i.e., the time
relative to the period when the task becomes active), Ci is
the worst-case execution time bound, Ti is the period, and
Di is the relative deadline of the task. We use two functions
Li(t0, t1), and Ri(t0, t1) to capture the maximum lateness and
maximum response time of the task ⌧i in the interval [t0, t1).
The lateness represents the delay of the task’s completion
with respect to its deadline, while the response time measures
the difference between the finishing and arrival time of a
task. The functions return a set of lateness and response
time values, respectively, corresponding to the task instances
executed within the given time interval. We also use a counter
defined as µi(t0, t1) to capture the number of deadline misses
for task ⌧i in the time interval [t0, t1). Tasks assigned to BE
containers do not have any timing requirements.

There are methods [28] to abstract the timing requirements
of a set of RT tasks under certain scheduling algorithms
into a periodic resource model in a form similar to the
RT interface (Qk, Pk) of the containers. If the appropriate
scheduling mechanisms are in place, the abstracted resource

guarantees that when the resource receives an allocation of Qk

over a period Pk, all RT tasks within the resource will meet
their RT requirements [28].

B. Performance Metrics

There are several metrics, collectively defined as
OSLM [29], to evaluate the performance of a system in
terms of task execution. Such metrics are useful to estimate
the suitability of the system to run RT tasks. E.g., Interrupts
with a non-preemptable section that can influence the RT
performance of the system [30], CPU Utilization, number of
handled interrupts per second, number of I/O requests per
second, and amount of data read/written. There is a number
of tools for collecting performance data [31]: mpstat, iostat.
These tools collect the performance data of tasks from proc
and cgroups directories to estimate the OSLM.

On the container level, there is a lack of measurement
methodology, tools, and best practices, as well as a lack of
metrics on the characterization of the container overhead [31].
Available tools, e.g., docker stats and cAdvisor allow to
estimate the basic set of container-related metrics (e.g., CPU
and memory utilization). However, when considering the RT
QoS evaluation of containers, the available tools are lacking
such capabilities. In this paper, we define Container Level
Metrics (CLM) that helps to evaluate the performance of RT
containers.

C. Container Level Metrics

Several metrics are used to evaluate the timeliness [11]
of tasks running in the system, which we adapt to assess
the RT performance of containers. The following properties
characterize the RT performance of a task:
• Number of deadline misses: represents the number of times

that a deadline of a task was exceeded.
• Lateness: represents the delay of a task with respect to its

deadline [11]. If the task finishes before its deadline, the
lateness is negative.

• Response time: represents the difference between the finish-
ing time and the start time of a task. [11]
We define CLM to evaluate the RT performance of tasks

running in the respective container. For each of the tasks in a
container ⇡k, the CLM are:
• Number of deadline misses: characterizes the total number of

deadline misses of tasks inside of the container ⇡k between
time t0 and t1:

Mk(t0, t1) =
X

⌧i2Tk

µi(t0, t1).

• Maximum lateness: characterizes the maximum lateness
encountered by a task inside the container between time
t0 and t1:

Lmax
k (t0, t1) = max

⌧i2Tk

{Li(t0, t1)}



• Maximum response time: characterizes the maximum re-
sponse time encountered by a task inside the container
between time t0 and t:

Rmax
k (t0, t) = max

⌧i2Tk

{Ri(t0, t1)}.

We express CLM within the observation interval [t0, t1) (usu-
ally from system start at t0 = 0 until the current time) as
follows:

CLMk(t0, t1) = [Mk(t0, t1),Lmax
k (t0, t1),Rmax

k (t0, t1)]

IV. DESIGN OF THE RT ORCHESTRATOR

The orchestration system is based on the master-minion
architecture that consists of a master node and a set of
minion compute nodes connected in a cluster as described
in [10]. The core of the system is the master node that makes
global decisions about the cluster; it receives users’ requests
for container deployments, continuously monitors states of
compute nodes in the cluster and schedules containers on
computing nodes. The master node’s functionality can be
distributed across several physical machines to avoid a single
point of failure [10].

The compute nodes, depicted in Fig. 1, provide an envi-
ronment for hosting containers and run a node agent that
communicates with the master node through defined APIs. The
node agent takes container deployment specifications defining
container requirements and deployment parameters.

A. RT Extension of the Master Node
The master node depicted in Fig. 2 is a central point in

the architecture; it accepts user-defined container deployment
specification enhanced with RT interface and task annotations.
It provides mechanisms for admission control and schedul-
ing of containers. Additionally, it continuously collects per-
formance metrics of compute nodes and containers. In the
following text, we elaborate on the proposed enhancements:

Container Deployment Specification: Each container de-
ployment specification, which is supplied to the master node
via a dedicated API, contains the specification of the RT
interface and the container annotation. The RT interface spec-
ifies the CPU reservation (Pk, Qk) of the respective container
following the periodic resource model of the hierarchical
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Fig. 2: A high-level container orchestrator architecture en-
hanced with RT capabilities.

scheduling framework (c.f. [32]). The container specification
contains the description of the tasks inside the container to
compute the CLM during run-time.

RT Resource Monitor: RT Resource Monitor stores the
OSLM and CLM from individual compute nodes. The data
are accessible to RT Admission Controller and RT Container
Scheduler to support the scheduling decisions.

RT Admission Control: The admission control determines if
there are nodes in the cluster with enough available resources
to accommodate the resource demands of the new container.
Moreover, it performs necessary utilization-bound schedula-
bility tests that reject those nodes on which the RT timing
requirements cannot be met.

We perform the checks as defined below to decide if a new
container, denoted by ⇡new, can be allocated to a certain node.
1) We check if the available resources (memory, storage),
when considering both RT and BE containers, are enough to
fit the resource demands of the new container:

8fi 2 S :

8
>>><

>>>:

⇡
M
new +

X

⇡k2⇧rt
i [⇧be

i

⇡
M
k  f

M
i

⇡
S
new +

X

⇡k2⇧rt
i [⇧be

i

⇡
S
k  f

S
i

(1)

2) We check that the new container will not make the exist-
ing RT containers unschedulable by performing a necessary
utilization-based test [11]:

8fi 2 S :
Qnew

Pnew
+

X

⇡k2⇧rt
i

Qk

Pk
 1� �i (2)

where, �i refers to the system overhead of node fi (discussed
in detail below), which reduces the amount of CPU bandwidth
available to the containers/tasks. We remind the reader that



(Pk, Qk) is the RT interface of a RT container ⇡k, which
defines that the container will be scheduled for at most Qk time
units over a period of Pk time units. Hence, this utilization-
based test (c.f. [14]) defines that if the utilization of the RT
containers (including the utilization of the new container)
exceeds the bandwidth of the CPU, then the RT requirements
of the new container cannot be guaranteed. Please note that
the check is not sufficient, i.e., if the check is passed, it does
not mean that the RT behavior will always be guaranteed since
the actual execution of the RT tasks diverges from the ideal
RT schedule due to e.g., timer resolution, scheduling jitter,
locking mechanisms (c.f. [30]) or the overhead introduced by
the container mechanism.

RT Container Scheduler: The Container Scheduler decides
which of the feasible nodes in the cluster, the feasibility being
determined through the admission control tests defined above,
to assign the new container to. The decision is based on the
CLM and OSLM introduced above, which are constantly mon-
itored at run-time. Additionally, the scheduler might decide to
change some properties of already running containers (e.g.,
the RT interface) to be able to fit the new container on a
node. Hence, the problem of where to place new contain-
ers according to their RT requirements or which containers
to modify can be viewed as a multi-objective optimization
problem. While the exact mechanism on how to assign (and
re-dimension) containers is out of the scope of this paper,
we give a brief discussion on the important aspects of this
orchestration problem and leave the definition and solution
of this optimization problem for future work. Furthermore,
selecting the best mix of metrics and optimization objectives
to use is also not in the scope of this paper. However, we will
briefly discuss several strategies below.

In terms of the observed OSLM properties, we identify
several important aspects and strategies which we briefly
discuss below.

The system overhead (�) reduces the amount of CPU band-
width that the containers can use. We show in the experiment
section (Sect. VI) that the overhead when co-locating RT and
BE containers influences only the BE containers while the RT
containers are guaranteed their allotted budget (c.f. Fig. 4). We
see that the overhead remains constant and jitters around the
constant value both when changing the RT container period
and when increasing the number of RT containers. Please
note that the overhead analysis needs to be extended in future
work to create a more accurate overhead model that produces
a safe upper bound for admission control. However, even
though the overhead model is deduced empirically and not
analytically, we can still use it in the admission control since
any overhead impact on RT containers will be corrected by
the online reconfiguration algorithm.

Another objective may be to perform load balancing on
nodes to not over-utilize some of the nodes. This decreases
the probability of deadline misses and lateness for tasks and
increases the probability of fitting future container requests.

The optimization function may also select nodes with a
low number of context switches as this also influences the

system utilization, leaving more CPU bandwidth available for
container execution. Furthermore, nodes with a high number
of interrupts/sec are more likely to lead to deadline misses due
to the irregular nature of interrupt arrivals. Hence, they might
not be the best selection for placing RT containers.

In terms of CLM properties, nodes with few (or zero)
deadline misses are better candidates for new RT containers.
However, adding additional RT containers might increase the
number of deadline misses or the lateness/response times
of tasks. The container scheduler needs to consider if an
increased rate of timing failures is acceptable, depending on
the nature of the running RT containers.

When using EDF to schedule containers, the admission test
above also becomes necessary, i.e., if the test is passed, the
new container can, in theory, be scheduled on the respective
node. However, the divergence from the real schedule (de-
scribed in [30]) can lead to deadline misses and/or negative
effects on the lateness and response times of tasks. Hence,
the run-time monitoring of the CLM properties can give hints
about which containers to re-assign or re-dimension. The
observation interval in the CLM properties can be dynamically
adjusted to identify which of the new containers has a negative
impact on the RT properties of the already running containers.

Feedback-based resource reservation mechanisms can be
used to adapt the CLM properties at run-time while keeping
hard RT guarantees for all the RT containers [33]. Such
mechanisms can be implemented at the orchestration level
to compensate for potential unforeseen over-or under-runs,
providing a limited impact on the other RT containers. The
overhead for feedback-based resource reservation is minimal
since it requires implementing an integral control strategy for
each container. Such approaches have proven successful also
in other domains, such as mixed-critical systems [34].

B. RT Extension of Compute Nodes

We enable RT containers on node-level through the use
of the preempt_rt patch, hierarchical scheduling of contain-
ers [18], hard RT co-kernel, or a combination of these
technologies. The overview of the compute node extension
is depicted in Fig. 1. A module responsible for the RT
related functionality is denoted as RT manager. The process
of deployment of RT containers is as follows: Upon receiving
a deployment request from the orchestrator, the RT manager
locate a requested image (either locally or in a remote reposi-
tory), the container image is fetched, and instantiated with the
requested parameters that set-up resources for the container.
Concerning the RT functionality, the RT Manager offers the
following:
• Deployment of RT containers: The containers have to be

instantiated in RT mode and must be assigned the requested
quota and period.

• Monitoring of RT performance: The monitoring functional-
ity assesses the wellness and the performance of the compute
node and the containers deployed. There are two monitoring
parts: the OSLM monitor and the CLM monitor. The OSLM
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monitor collects data through the proc and cgroup file-
system, which contain information related to interrupts,
memory usage, CPU utilization. The CLM monitor evaluates
the timelines of the containerized tasks in the RT containers.

• Reporting of the performance metrics to the orchestrator:
The compute nodes report the OSLM and CLM to the
master node, that uses the collected data for the admis-
sion control and container scheduling and, additionally, it
can take decisions whether to re-allocate and/or re-assign
resources of the containers.

V. IMPLEMENTATION

In order to show the feasibility of the proposed system,
we have extended the existing open-source orchestrator Ku-
bernetes with the ability to schedule containers onto compute
nodes while taking into account their RT requirements. The
RT behavior of containers on compute nodes is enabled by
using the hierarchical patch1 presented in [18] which we have
extended with the monitoring capabilities. The system allows
users to define RT requirements of the containers which need
to be deployed (i.e., quota and period) and ensures that at the
container scheduling level, the allocation to compute nodes re-
spects the given requirements and does not lead to an overload
in the respective node. Additionally, as the containers do not
provide strong resource isolation, the system provides run-time
monitoring of the container’s performance. The implemented
extension consists of the following components:
• The RT Scheduler Extender on the Master node is an

extension of the Kubernetes control plane, which provides
admission control and scheduling of RT containers onto
compute nodes in the cluster.

• The RT Manager on compute nodes provides functionality
to deploy RT containers and periodically evaluate and report
the RT performance to the Master node.

The architecture of the Kubernetes extension is described in
Fig. 3. The Kubernetes Master receives a deployment request
to deploy a set of containers (denoted as a Pod in the context
of Kubernetes). A new Pod is placed in a queue with other
unscheduled pods, the Kubernetes scheduler (kube-scheduler)
periodically checks the queue. If there is an unassigned pod,
the Kubernetes scheduler attempts to place the Pod in a
suitable node. First, the scheduler filters out infeasible nodes
with insufficient available resources (e.g., insufficient memory
or storage) as described in Section IV-A. Subsequently, so-
called custom webhooks are triggered during each schedule

1Available at https://github.com/lucabe72/LinuxPatches/tree/HCBS

polling cycle. The webhooks permit to attach custom actions
to scheduling events (e.g., filtering and prioritizing events). We
have implemented a custom rt-filter webhook that takes into
account the utilization of the node as well as the RT interface
as requested in the container deployment specification. If the
utilization, including the new RT container, is above a certain
level, the node filtered out as infeasible and not used for
hosting the container. In this way, we avoid overloading the
host.

The RT Scheduler Extender performs a secondary filtering
as described in Section IV and ranks the nodes with the
custom rt-scoring webhook. The rt-scoring ranks the nodes
according to their suitability to host the RT container. For this
work, the scoring is computed as the remaining unreserved
CPU capacity. However, the rt-scoring step can incorporate
additional properties of the compute node given in the OSLM
and CLM to minimize the number of, e.g., deadline misses on
compute nodes. As the orchestration is not part of the current
paper, we leave this extension to future work.

The Pod is then assigned to the node with the highest score.
The node agent on the compute node identifies that the Pod
is assigned to its node and deploys it with the given RT
parameters. The RT Manager continuously monitors the node’s
state beyond the understanding of the default Kubernetes
monitoring metrics and reports them back to the master node.
The RT manager monitors the previously described CLM and
OSLM: i.e., the number of context switches, interrupts per
second, I/O access, as well as task deadline misses, response
time, and lateness.

As an input, the Kubernetes master accepts a Pod de-
ployment request that contains the deployment specification
of a group of one or more containers. If there are multiple
containers in a pod, these are assigned and scheduled on the
same node and run in a shared context (i.e., sharing memory
and network). As a simplification, we assume that each Pod
contains at most one RT container. We amend the deployment
configuration (stored in the annotation part of the deployment
file) to contain the RT interface (Qk, Pk) as well as the list
of tasks and their hCi, Ti, Dii parameters.

The RT manager runs as a Kubernetes daemon set and
provides functionality for run-time monitoring and reporting
of the performance of the RT containers and the system.
A daemon runs on every compute node in the cluster. The
monitoring part continuously monitors OSLM and CLM. The
OSLM are computed by utilizing the Linux special procfs file
system (/proc and /cgroups) that contain information about
tasks, similar to [31]. The CLM are derived from the custom
tracepoints that we injected into the schedulers implementing
the SCHED_FIFO and SCHED_DEADLINE policies in the
Linux Kernel. The following events are recorded and period-
ically evaluated by the daemon:
• Container Started: The container is in a running state, the

quota/period has been allocated, and the container’s tasks
are ready to run.

• Container Throttled: The container used more CPU quota
than the allocated one and therefore, the scheduler throttled



the container.
• Task Instance started: The start of jth instance of task ⌧i.
• Task Instance finished: The end of jth instance of task ⌧i.
From these tracepoints, we compute deadline misses, lateness,
and response times of tasks within the RT containers.

VI. EVALUATION

In this section, we show the system’s behavior for co-located
RT and BE containers on a single compute node. The set
of experiments illustrates the distribution of the CPU time
amongst co-located containers. Tables I, II and III show the
feasibility of having a mixture of RT and BE containers on
a single compute node. We change the reservation period
and budget from values 0.1ms to 1000ms and measure the
overhead (described below). We show the behavior of low
utilization containers (10%) and high utilization (90%). We
investigate if RT containers with very short periods introduce
significantly more overhead than those with large periods.
In the experiments, we instantiate an RT container and a
heavy load BE container. The experiments for Table I, II use
containers that run CPU intensive operations. We measure the
actual time that the containers spend on the CPU. The rest of
the CPU that is not used by any container is considered as
an overhead. Table III shows a similar experiment where the
BE container runs stress-ng to generate an excessive workload
aiming to affect the assigned CPU time of the RT containers.
The stress generating BE containers execute 10 CPU intensive
threads, 10 HDD intensive threads, 10 threads generating I/O
stress, and 10 threads generating context switches.

We use an Intel i5 machine with 8GB RAM running De-
bian Linux, Kernel 5.2. patched with Hierarchical Scheduling
Patch [18], and Docker v20.10.

We consider the overhead to be the part of the CPU capacity
that is not used for any computation of the containerized
tasks. It is caused by system-related tasks, context switches or
docker-related processes, etc. In the experiments, we execute
RT and BE containers simultaneously. Each of the containers
executing a loop with a CPU-heavy computation. In theory,
the containerized processes should fully utilize the processor;
however, the full CPU capacity is not used exclusively for
these processes. We can see that the overhead stays the same
even when using an RT container with a very short period.

To investigate the overhead, we utilize systemTap, which is
an instrumentation framework for Linux-based kernels. Sys-
temTap allows instrumenting Linux events with user-defined
code in form of loadable kernel modules. We monitor the
following events in the Linux kernel:
• scheduler.cpu_on: The process is beginning execution on a

CPU.
• scheduler.cpu_off : The process leaving the CPU.
From the recorded events, we are getting the total measure-
ment time (from the first event to the last one) and each
containerized task’s total time.

The utilization test in Fig. 4 shows the distribution of
CPU time on a single core amongst multiple RT and BE
containers when increasing the number of RT containers from
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Fig. 4: Distribution of CPU in a multi-container environment.

1 up to 7. Each RT container has a RT demand of 10%
of the CPU bandwidth (RT period = 100ms, RT budget =
10ms). The experiments indicate that hierarchically scheduled
containers using the Hierarchical Scheduling Patch [18] can
keep the allocated CPU resource even when competing with
BE containers under heavy load. Moreover, the RT containers
keep their reserved resource allocation (CPU budget over the
periods) with very low run-time jitter on a single core. The
system overhead does not influence the RT containers but
reduces the remaining CPU utilization used by BE containers.

The experiments indicate that RT containers maintain the
target resource reservation even in the presence of heavy RT
and BE load. The overhead (indicated in red in Fig. 4) remains
relatively constant when increasing the number of containers
scheduled on the same node.

VII. CONCLUSION

In this paper, we have introduced a container orchestra-
tion for RT systems designed to prevent over-reservation
of the CPU at the container scheduling level. Additionally,
we considered the weak isolation inherent in container-based
virtualization (e.g., the effects of the use of shared resources
or context switches), which can lead to an interference and
thereby harm temporal guarantees of RT containers. We have
proposed metrics for measuring the RT performance at the
container and node levels, which can be used for both the
admission control and the online re-configuration of container
deployment in order to guarantee timely behavior. We have
implemented a scheduler extension and node monitoring sys-
tem on top of an orchestrating system Kubernetes and have
shown the feasibility of co-locating RT and BE containers on
the same node in a series of experiments.

We aim to address the optimization problem arising from
the orchestration needs in RT containerized systems in future
work. This orchestration includes both the admission/alloca-
tion of new container requests as well as the online resource
re-dimensioning of already deployed RT containers in case of
run-time performance drops.



TABLE I: RT containers (10% utilization) on a single core with noise generated by 10 CPU intensive containers.

(1ms, 0.1ms) (10ms, 1ms) (100ms, 10ms) (1000ms, 100ms)

RT Containers 10.0607% ± 0.00193% 10.0021% ± 0.00002% 9.9983% ± 0.00002% 9.9978% ± 0.00002%
NRT Containers 88.7870% ± 0.00406% 88.8963% ± 0.00280% 88.8713% ± 0.00222% 88.8906% ± 0.00264%
overhead 1.1522% ± 0.0035% 1.1016% ± 0.0028% 1.1304% ± 0.0022% 1.1115% ± 0.0025%

TABLE II: RT containers (90% utilization) on a single core with noise generated by 10 CPU intensive containers.

(1ms, 0.9ms) (10ms, 9ms) (100ms, 90ms) (1000ms, 900ms)

RT Containers 89.9037% ± 0.00031 89.8597% ± 0.00042% 89.8818% ± 0.00066% 89.7780% ± 0.00316%
NRT Containers 9.0345% ± 0.00212 9.0368% ± 0.00193% 9.0349% ± 0.00045% 9.0658% ± 0.00164%
overhead 1.0618% ± 0.0022 1.1035% ± 0.0019% 1.0833% ± 0.0005% 1.1563% ± 0.0018%

TABLE III: RT containers (10% utilization) on one core with noise generated by BE containers executing stress-ng.

(1ms, 0.1ms) (10ms, 1ms) (100ms, 10ms) (1000ms, 100ms)

RT Containers 10.0508% ± 0.00045% 10.0065% ± 0.00005% 9.9956% ± 0.00006% 9.9956% ± 0.00002%
NRT Containers 89.0251% ± 0.00091% 88.9333% ± 0.00034% 88.8779% ± 0.00296% 88.9798% ± 0.00142%
overhead 0.9241% ±0.0037% 1.0602% ±0.0031% 1.1265% ±0.0024% 1.0246% ± 0.0029%
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