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Abstract—Time Sensitive Networks (TSN) emerge as the

set of sub-standards incorporating real-time support as an

extension of standard Ethernet. In particular, IEEE 802.1Qbv

defines a time-triggered communication paradigm with the

addition of a time-aware shaper governing the selection of

frames at the egress queues according to a predefined schedule,

encoded in so-called Gate Control Lists (GCL). Nonetheless,

the design of compositional systems with real-time demands

requires a proper configuration of these mechanisms to truly

achieve the temporal isolation of communication streams with

end-to-end timeliness guarantees. In this paper we address how

the synthesis of communication schedules for GCLs defined in

IEEE 802.1Qbv can be formalized as a system of constraints

expressed via first-order theory of arrays (TA). We formulate

the necessary constraints showing the suitability of the theory

of arrays and discuss optimization opportunities arising from

the underlying scheduling problem. Our evaluation using

general-purpose SMT/OMT solvers proves the validity of the

approach, scaling well for small- to medium-networks, and

exposing trade-offs for the time needed to synthesize a schedule.

Furthermore, we conduct a comparison against previous work

and conclude the appropriateness of the method as the basis

for future TSN scheduling tools.

I. INTRODUCTION

Deterministic real-time communication has long been a
requirement in the aerospace domain [1]. The strictness of
certification and industry practices are only satisfied if suffi-
cient proofs of evidence guarantee the deterministic behavior
of static configurations, which are often deployed in pro-
duction programs spanning over several decades. In recent
years, fast-moving markets like automotive and industrial
automation are increasingly joining the trend of deterministic
networking albeit being reluctant to accept a detriment
when it comes to generalized networking features, like high
communication speeds, near-to-full bandwidth utilization,
off-the-shelf component availability, or the capability of
dynamic reconfiguration.

The IEEE 802.1 Time Sensitive Networking (TSN) task
group [2] has been active standardizing time-sensitive capa-
bilities for Ethernet networks ranging from distributed clock
synchronization [3] and time-based ingress policing [4] to
frame preemption [5], redundancy management [6], and
scheduled traffic enhancements [7].

Two of these features, when combined, lay the foundation
for a standardized time-triggered communication paradigm
guaranteeing strict real-time communication and, at the same

time, introducing stream isolation mechanisms enabling
compositional system designs [8]. Namely,

• IEEE 802.1ASrev [3] defines a time-synchronization
protocol implementing a global clock reference with
basic fault-tolerance mechanisms.

• IEEE 802.1Qbv [7] specifies the time-aware shaper
functionality implementing the time-triggered
paradigm [9] at the egress ports of communicating
nodes.

The time-aware shaper defined in IEEE 802.1Qbv [7] is
essentially a gate mechanism dynamically enabling or dis-
abling the selection of frames from egress queues based on
a predefined cyclic schedule referred to as the Gate Control
List (GCL). More precisely, 802.1Qbv defines one timed-
gate on the egress side for each priority queue in a port,
which at a given time can be in one of two defined states:
open or close. When the gate is in the open state, frames
may be selected from the respective queue for transmission
to the physical link in first-in first-out (FIFO) order. If the
gate is in the close state, frames from the respective queue
are not selected. A priority-based arbitration or credit-based
shaper is then applied among all opened queues.

State changes are calculated offline and configured with
their predefined activation time via entries in the GCL. Later,
in a deployed network, each egress port is timely configured
at run-time following its own GCL, executed synchronously
based on the global notion of time.

Figure 1 depicts a simplified logical representation of an
802.1Qbv-capable switch. In the example, streams coming
from ports A and B (ingress) are routed to port C (egress).
Internally, a switching fabric determines to which output
port a frame is to be routed and assigns it to a queue (or
traffic class) in the respective egress port. This assignment
is based on criteria like the priority code point of the IEEE
802.1Q header or the priority table of the IEEE 802.1Qci
per stream filtering functionality. All ports in an 802.1Qbv-
enabled switch will have an equivalent logical composition
as the one depicted, including a number (typically 8) of
logical egress queues. In practice, a subset of the queues
may be reserved at design-time for scheduled streams and
the remainder used to isolate non-scheduled traffic [10].

We trace an equivalence between the problem of schedul-
ing timed-gates and scheduling gate windows by noting that
encoded in the GCL entries is an ordered list of transmission
windows on the time domain, i.e., intervals in which a
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Figure 1. Simplified view of an 802.1Qbv-capable switch.

gate remains in the open state. Each window is in itself
defined by a left boundary and a right boundary marking
the time instants where the gate state transitions to open
and, respectively, close.

The scheduling problem is approached via the formula-
tion of constraints to compute window intervals which are
directly mapped to entries in the GCL. These constraints
express dependencies between variables denoting among
others the open and close instants of time for scheduled
windows as well as the frame-to-queue and frame-to-window
assignments.

To the best of our knowledge, our work is the first to
directly address the scheduling problem of windows. In [10]
a transmission offset is computed for each individual frame
in the network deriving the events encoded in the GCL in
a post-processing step. While this is in principle a valid
approach it introduces several limitations. Namely, that the
schedule of individual frames leads in practice to a large
number of events as they are freely placed in the timeline.
Consequently, the post-processing step may easily exceed
the length of a GCL, expected to range from 8 to 1024
entries for typical nodes implementing IEEE 802.1Qbv.
In addition, the time granularity used by the scheduler
(so-called macrotick) generates unnecessary gaps between
scheduled frames, even when their offsets are computed to
be one after the other, causing a detriment in the available
bandwidth for non-scheduled traffic. Lastly, the strictly-
periodic communication model may significantly reduce the
solution space due to the global enforcement of 0-jitter
transmissions.

The goal of this work is particularly concentrated on the
suitability analysis of first-order theory of arrays for the for-
mal specification of scheduling constraints allowing a direct
encoding via the GCL of IEEE 802.1Qbv-capable nodes.
The formalization theory applied in the specification of a
system of constraints may enable the use of dedicated tools
like specialized solvers to search for a satisfiable solution.
In this paper, we particularly address the appropriateness of

first-order theory of arrays as a suitable means of specifying
the set of constraints for the gate operations (open and close)
incorporating the size of the GCL as an input bound to the
scheduler, hence showing how the satisfiability of the system
can be solved with the use of general-purpose SMT solvers.

The first-order theory of arrays (TA) is built around two
operations: select, used to return an element of an array from
a certain index, and store, used to write an element into an
array at a certain index. In addition to the usual operators
from linear integer arithmetic, we use the syntax presented
in [11] to introduce array theory and express the scheduler
constraints in the following sections. Usually, the signature
of TA is defined as

P
A : {· [· ], · h· · i,=}. In [11], the

sorts array , elem , and index are used for arrays, elements,
and indices, respectively. Furthermore, the syntax a[i] is used
for the select function of the element at index i from array
a and ahi ei is used for the store operation of element e
in array a at index i. The two main axioms of array theory
are [12], [11]:

8a : array , 8i, j : index , 8x : elem

i = j ! ahi xi[j] = x

i 6= j ! ahi xi[j] = a[j]

Together with axioms of linear integer arithmetic these
form the theory of integer-indexed arrays (T {Z}

A ). Although
T {Z}
A has been shown to be undecidable, the quantifier-free

fragment, which we use in this paper, is decidable (NP-
complete) [11].

The resulting system of constraints builds on top of a
relaxed timing model allowing communication with bounded
jitter, yet guaranteeing determinism. We define this model
based on reasonable assumptions over the distributed time
synchronization capabilities. In particular, we assume that
a global notion of time, provided by a protocol stack
like e.g. IEEE 802.1AS-rev, allows nodes to synchronize
their transmission events within a known bounded precision
(�), denoting the maximum difference between any two
synchronized clocks in the network at any instant of time.

It is known from previous work (e.g. [13], [14], [15])
that approaches of similar complexity can be implemented
by incremental scheduling algorithms yielding a significant
decrease in the required runtime as well as improving
scalability in comparison to the solutions based on direct
SMT encoding. However, we explicitly opt to analyze the
problem without the consideration of advanced scheduling
algorithms and let the scalability concerns be addressed at
a future time.

In section II we introduce the network and traffic model
and formulate the scheduling constraints for IEEE 802.1Qbv
using first-order theory of arrays (TA) (section III). In
section IV we elaborate an SMT-based synthesis algorithm
implementing the previously defined constraints together
with a discussion and formalization of several optimization



opportunities arising from our model. We evaluate the scal-
ability of our approach in section V and survey related work
in section VI. We conclude the paper in section VII.

II. SYSTEM MODEL

We model a network as a graph G = {V, E}, where V
is a set of vertices, E is a set of directed edges connecting
vertices to each other. If there exists a physical link between
vi and vj then (vi, vj), (vj , vi) 2 E , where the first vertex in
the pair description defines the source node and the second
vertex defines the destination node. Nodes may be the source
or destination of messages (end systems) or may forward
messages to other nodes (switches).

Communication requirements are modeled through the
concept of streams. A stream (or flow) is a periodic multicast
data transmission (the message) from one talker (the sender
node) to one or multiple listeners (the receiver nodes).
Without loss of generality, we reduce the number of receivers
to one (unicast) and the message size to one Ethernet frame
in order to simplify the formalism, noting that extending the
model to the general case is a trivial step [15]. We denote
the set of streams in the network with S . Similar to [13], we
denote the route of a stream si 2 S from talker v1 to listener
vn routed through the intermediary nodes (i.e. switches)
v2, v3 . . . , vn�1 as Ri = [(v1, v2), . . . , (vn�1, vn)].

We assume that the routing of a stream from source v1 to
destination vn is computed beforehand and therefore known.

A stream si 2 S is defined by the tuple hCi,Ti,Li, Jii,
denoting the message size in bytes, the period, the maximum
allowed end-to-end latency, and the maximum allowed jitter
of the stream, respectively.

The instance of a stream si 2 S routed through link
(a, b) 2 E is defined by the frames f (a,b)

i,j 2 F (a,b)
i , where

F (a,b)
i ⇢ F (a,b) is the set of all frames of stream si that

are to be scheduled on link (a, b). We denote the set of all
frames routed through link (a, b) with F (a,b). Since streams
may have different periods resulting in an overall schedule
cycle (hyperperiod) larger than any individual stream period,
when constructing the GCL we must consider all instances
of a specific stream repeating until the schedule cycle.
Hence, a set F (a,b)

i will have Ts/Ti frames, where Ts is
the schedule cycle of all scheduled streams in the network,
calculated as the least common multiple of the periods
of all streams si 2 S . Additionally, each such periodic
frame is characterized by a frame transmission duration l(a,b)i
calculated based on the data size Ci of the stream si and
the speed of the egress port associated to the physical link
(a, b). For example, a maximum- sized Ethernet frame of
1542 bytes (including the IEEE 802.1Q tag) has a duration
of 12.336µsec on a 1Gbit/sec link.

We denote the maximum number of scheduled windows
per edge derived from the maximum length of the GCL with
W(a,b). In order to encode the scheduling problem in T {Z}

A ,

we define for each link (a, b) two arrays, �(a,b) and ⌧ (a,b)

over the sort array , containing the integer variables for,
respectively, the open and close time instants of the windows
indexed by the position in both arrays for the egress port
associated to link (a, b). Furthermore, we define for each
frame instance f (a,b)

i,j 2 F (a,b)
i a window index !(a,b)

i,j over
the sort index representing the frame-to-window assignment
index in both aforementioned arrays.

We adopt the definition in [10], where the queue configu-
ration is expressed as a tuple G(Q) = h@,@tt,@prioi, where
@ is the total number of queues per egress port, of which
@tt is the number of queues for scheduled traffic and @prio
the remaining number of priority queues for non-scheduled
traffic. In order to connect windows to egress queues, we
define an additional array (a,b) over the sort index denoting
the assigned queue for each window.

III. FORMAL SCHEDULING CONSTRAINTS

We formalize the constraints for gate operations (i.e. open,
close) as well as for the frame-to-window and window-
to-queue assignment variables such that the resulting gate
control list correctly drives the deterministic time behaviour
of frames.

A. Technology Constraints

Technology constraints are those derived from the func-
tional specification of 802.1Qbv. They define a system of
constraints that shall be fully satisfied in a feasible solution.

Well-defined Windows Constraints: We first formalize
logical constraints for all windows of an egress port. Since
each physical link connects one egress port to one ingress
port, we assume an equivalence in the formalism between an
egress port and the connected directed edge (physical link)
for the remainder of the paper.

We constrain the open and close events of each window
defined on that link to be greater than or equal to 0 and
less than or equal to the schedule cycle of all streams in the
network. Hence, we have the constraint:

8(a, b) 2 E : 8k 2 {1, . . . ,W(a,b)} : (1)
�
�(a,b)[k] � 0

�
^
�
⌧ (a,b)[k] < Ts

�
,

where, as defined above, Ts is the schedule cycle (hyperpe-
riod) of all communication streams in the network.

Additionally, each window is assigned to an egress queue
scheduled in the range [0..@tt � 1], therefore we add the
bounds for the queue assignment array

8(a, b) 2 E : 8k 2 {1, . . . ,W(a,b)} : 0  (a,b)[k] < @tt.

Stream Instance Constraints: Communication in sys-
tem deployments rarely appear with a normalized period.
Instead, streams are sourced at multiple rates which result
in a hyperperiod defining the length of the schedule tables to
be at least the least common multiple of all periods involved.



The assignment of frames, and as a consequence the
length of each window, is a result of the scheduler. Streams
routed through the same link having different periods will
contribute a number of frame instances, each to be scheduled
within each period instance occurring until the hyperperiod.
As a result, the open and close bounds for each window
is further constrained to set the window of a each frame
instance within the corresponding period instance. Hence,
for each stream si routed through (a, b) we construct the
following constraint:

8si 2 S : 8(a, b) 2 E : 8j 2

0,

Ts

Ti
� 1

�
: (2)

�
�(a,b)[!(a,b)

i,j ] � j ⇥ Ti

�
^

�
⌧ (a,b)[!(a,b)

i,j ] < (j + 1)⇥ Ti

�
,

which for each frame instance scheduled at different period
instances until the hyperperiod sets a lower bound for the
window open event and upper bound to the window close
event to, respectively, the beginning and the end of the
respective period instance.

While we allow for greater flexibility resulting in an
increased solution space than in previous approaches [10],
we note that our model can also handle strictly periodic
systems, i.e., systems in which frames belonging to the
same stream have to arrive at exactly the same time in each
period instance. For that, we define an optional constraint
for the opening time of the assigned windows of each frame
instance to be exactly one period apart and allow only one
frame to be assigned to those windows, resulting in 0 jitter
for those streams:

8si 2 S : 8(a, b) 2 E : 8j 2

0,

Ts

Ti
� 2

�
: (3)

�
�(a,b)[!(a,b)

i,j+1]� �(a,b)[!(a,b)
i,j ] = Ti

�
.

8si 2 S : 8(a, b) 2 E : 8j 2

0,

Ts

Ti
� 1

�
:

�
⌧ (a,b)[!(a,b)

i,j ]� �(a,b)[!(a,b)
i,j ] = l(a,b)i

�
.

Ordered Windows Constraint: An essential constraint
for determinism is that no two frames transmitted on the
same egress link overlap in the time domain. Moreover, we
explicitly forbid multiple windows to remain open at the
same time in order to avoid the non-determinism introduced
by contention. Note that guaranteeing determinism while
allowing multiple opened windows simultaneously would
require a complex step in addition to scheduling to ana-
lyze the resulting worst-case interference of different traffic
classes. Methods like network calculus (e.g. [16]) allow such
analysis at the cost of reducing the compositionality property
provided by offline scheduling.

Conceptually, the formulation of this constraint does not
allow any two windows on the same link to overlap, similar

to [10], which we define as

8(a, b) 2 E : 8i, j 2 {1, . . . ,W(a,b)}, i 6= j : (4)
�
⌧ (a,b)[i]  �(a,b)[j]

�
_
�
⌧ (a,b)[j]  �(a,b)[i]

�

Note that this formulation results in a large number of
assertions with a disjunction operator, which has proved to
be computationally intensive. However, since the assignment
of frames to windows is not restricted beforehand and any
frame may be assigned to any window, we can simplify this
constraint if the order of windows on each link is predefined
offline, hence fixing their respective open and close events
to be sequential. We prefer the following alternative formu-
lation performing significantly better in terms of resources:

8(a, b) 2 E : 8i 2 {1, . . . ,W(a,b) � 1} : (5)

⌧ (a,b)[i]  �(a,b)[i+ 1],

which enforces an ordered sequence for the open event of
each window to be after the close event of its predecessor.

In addition, the latter formulation allows reducing the
number of assertions in (1) by reducing the required bounds
to the open event of the first window and, respectively, the
close event of the last window of each link. All other events
(open/close) will be bounded due to the imposed sequential
order. Hence, we reduce constraint (1) to the following:

8(a, b) 2 E : (6)
�
�(a,b)[1] � 0

�
^
�
⌧ (a,b)[W(a,b)] < Ts

�
.

Frame-to-Window Assignment Constraint: The frame-
to-window assignment variable defines the index in the 3
arrays (open, close, and queue assignment) of the respective
port. Thus, we restrict the variables to be no larger than
the configurable maximum number of windows per port
(W(a,b)):

8(a, b) 2 E : 8f (a,b)
i,j 2 F (a,b) : (7)

�
!(a,b)
i,j � 1

�
^
�
!(a,b)
i,j W(a,b)

�
.

Window Size Constraints: Since frames are assigned
to windows by the scheduler, i.e., they are not known a-
priori, the size of a window results from the accrued sum
of the duration of all frames assigned to it. Hence, we must
ensure that the close event of each window allows sufficient
time to transmit the set of assigned frames. We note that
this constraint is the first and only one in our formalism
requiring the store operation of array theory.

We start by storing the uninterpreted term for each open
variable in the respective position of the close array:

8(a, b) 2 E : 8k 2 {1, . . . ,W(a,b)} : (8)

⌧ (a,b)hk  �(a,b)[k]i.

This is equivalent to setting all close events equal to the open
event at the same index, initializing the length of the window



to 0. Note that, the close event of all windows without any
frame assigned will remain equal to the respective open
event.

We now construct at each position in the close array the
sum over the duration of all frames assigned to that window,
using the frame-to-window assignment index:

8(a, b) 2 E : 8f (a,b)
i,j 2 F (a,b) : (9)

⌧ (a,b)h!(a,b)
i,j  ⌧ (a,b)[!(a,b)

i,j ] + l(a,b)i i.

The construct iterates for all frames, adding the frame
duration to the previous uninterpreted value for the close
event of the window to which the frame is assigned and
storing the result at the same index as a new uninterpreted
expression.

Stream Constraint: The stream constraints describe the
sequential nature of communication from talkers to listeners.
The generic condition is that frames belonging to the same
stream must be scheduled sequentially with respect to time
along the routed communication path. Hence, we have

8si 2 S : 8(vk, vk+1) 2 Ri, k 2 {1, . . . , n� 2} : (10)

8f (vk,vk+1)
i,j 2 F (vk,vk+1)

i : 8f (vk+1,vk+2)
i,j 2 F (vk+1,vk+2)

i :

⌧ (vk,vk+1)[!
(vk,vk+1)
i,j ] + �  �(vk+1,vk+2)[!

(vk+1,vk+2)
i,j ],

where � is the constant value representing the precision.
In other words, the propagation of frames of a stream

follow the sequential order along the path. Therefore, the
window open event of each frame has to be greater than
or equal to the close event of the window assigned to the
predecessor frame, plus the network precision constant to
compensate for clock differences between the two hops.

Stream Isolation Constraint: We only briefly present
here the isolation problem in TSN networks and refer
the reader to [10] for a more in-depth description of the
general problem. IEEE 802.1Qbv [7] specification controls
the opening and closing of the timed gates and not the
sending and receiving of individual frames, like TTEthernet.
It is plausible that at runtime, a network may experience
frame losses or streams showing differences in their periodic
payload size. Therefore, to ensure that the execution of the
schedule during runtime conforms to the offline planning
we need to compute a schedule providing guarantees on the
deterministic state of each queue at any given instant of time.

Consider the case in which two streams si and sj are
received from different links, (x, a) and (y, a), respectively,
on device a and both forwarded to the same egress port on
link (a, b). If their frames are put in the same queue, the
order of frames in that queue may differ during runtime
depending on minimal variations on the exact order of
arrival, or the processing mechanism for ingress ports in
the switch fabric. Moreover, frame losses in one or the
other stream may equally introduce differences in the queue
state at each period instance. Hence, the offline scheduled

opening and closing of the egress queue may effectively
cause a different behavior at runtime induced by the non-
deterministic state of the queue.

Guaranteeing determinism implies that all frames respect
their computed window assignment throughout the lifetime
of the system. Hence, we must either isolate them in the
time domain, similar to [10], restricting that a stream is not
received until the other stream has already been scheduled
for egress, or assign the respective frames of the two streams
to the same scheduled window, which was not possible
in [10]. Alternatively, if multiple queues are available for
scheduled traffic we can isolate the two frames in windows
of different queues, in which case they may as well be
received within overlapping intervals without altering the
run-time behavior.

Hence, we formulate the stream isolation condition for
streams si and sj sent on link (a, b) as:

8k 2

0,

Ts

Ti
� 1

�
: 8l 2


0,

Ts

Tj
� 1

�
: (11)

⇣�
⌧ (a,b)[!(a,b)

i,k ] + �  �(y,a)[!(y,a)
j,l ]

�
_

�
⌧ (a,b)[!(a,b)

j,l ] + �  �(x,a)[!(x,a)
i,k ]

�⌘
_

⇣
(a,b)[!(a,b)

i,k ] 6= (a,b)[!(a,b)
j,l ]

⌘
_
⇣
!(a,b)
i,k = !(a,b)

j,l

⌘
,

where the three disjunctive conditions guarantee that either
one of the two frames is received when the other one has
already been forwarded (by comparing the sequence of the
respective open and close events of the windows assigned
to each frame), or each is assigned to a different queue (and
hence to a different window), or both frames are assigned
to the same window (and hence to the same queue).

B. User Constraints

User constraints are those denoting additional require-
ments on a particular property of the solution. They extend
the system of constraints and shall be equally satisfied
in a feasible solution but their exclusion does not imply
an invalid schedule from the technology point of view.
Following, we formalize two of the most industry relevant
user constraints.

Stream End-to-End Latency Constraint: The end-to-
end latency constraint states that the difference between
the receiving instant of a stream on the listener side and
the sending of the stream from the respective talker has to
be smaller than or equal to a given maximum end-to-end
latency.

As before, we construct the formula using the frame
assignment variables in combination with the open and close
events given that the frame-to-window assignment is not
known a-priori. Therefore, we define the end-to-end latency



constraint for stream si as:

8j 2
⇢
0, · · · , Ts

Ti
� 1

�
: (12)

8f (v1,v2)
i,j 2 F (v1,v2)

i , f (vn�1,vn)
i,j 2 F (vn�1,vn)

i :

⌧ (vn�1,vn)[!(vn�1,vn)
i,j ]� �(v1,v2)[!(v1,v2)

i,j ]  Li � �.

Note that we also include the precision � in the constraint
to compensate the possible synchronization error between
the two nodes.

Stream Jitter Constraints: Real-time communication
are typically sensitive to jitter introduced between the rela-
tive transmission or arrival times of the periodic frames of
a stream. We base our jitter constraint on the observation
that within the network, the jitter of individual frames of a
stream is not relevant except for the sending and receiving
nodes. The jitter becomes relevant on the sending side since
the data may be produced by a periodic task requiring the
transmission of that data with a bounded jitter. Similarly,
on the receiver side the data has to be processed by a
listener task which also may have requirements on the jitter
for example in the case of control tasks [17]. Hence, we
constrain the jitter of a stream for the sender and receiver
nodes to be within a configurable maximum bound. Note,
however, that for receiving the jitter constrain is applied to
the scheduled window on the last hop before the listener.

In addition, we must also consider the relaxed periodicity
on different period instances, i.e., the jitter has to be main-
tained between frame of any period instance of the stream
until the hyperperiod.

We define the sender jitter constraint for stream si as:

8j, k 2
⇢
0, · · · , Ts

Ti
� 1

�
: (13)

8f (v1,v2)
i,j , f (v1,v2)

i,k 2 F (v1,v2)
i :

�
⌧ (v1,v2)[!(v1,v2)

i,j ]� j ⇥ Ti

�
�

�
�(v1,v2)[!(v1,v2)

i,k ]� k ⇥ Ti

�
� l(v1,v2)i  Ji.

The constraint takes the relative offset of each variable
being compared (open/close) with respect of the period
instance to which it is bounded (see (2)). It then enforces
that the difference between the latest transmission of a
frame (i.e. the relative close instant of the window minus
the frame duration) and the earliest possible transmission
(i.e. the relative open instant of the window) of any two
frame instances of the same stream is at most equal to the
jitter. This also guarantees that the window duration for
any stream is at most equal to the defined jitter plus the
frame duration since, otherwise, the non-deterministic order
of transmission within a window could already introduce a
larger jitter than required. Moreover, it extends the condition
to all frame instances of the same stream regardless of the
period instance in which they are scheduled.

Similarly, we define the jitter constraint on the receiving
side for stream si as:

8j, k 2
⇢
0, · · · , Ts

Ti
� 1

�
: (14)

8f (vn�1,vn)
i,j , f (vn�1,vn)

i,k 2 F (vn�1,vn)
i :

�
⌧ (vn�1,vn)[!(vn�1,vn)

i,j ]� j ⇥ Ti

�
�

�
�(vn�1,vn)[!(vn�1,vn)

i,k ]� k ⇥ Ti

�
� l(vn�1,vn)

i  Ji

Note that the formulation of (14) and (13) can be
simplified in configurations with a single communication
period where the only open and close events would refer
to the same window.

If the jitter perception is globally relevant within the entire
network, i.e. between intermediate nodes along the route of
the stream, the constraint can be readily applied for all of
those nodes.

IV. SMT/OMT-BASED SCHEDULE SYNTHESIS

So far we have formalized a system of constraints de-
noting the scheduling requirements within the flexibility of
the defined model. We chose to compute a schedule based
on these constraints with the aid of Satisfiability Modulo
Theories (SMT).

SMT solvers are used to determine the satisfiability or un-
satisfiability of first-order logical formulas with respect to a
certain background theory or a combination of background
theories [18], [19]. A background theory may be for e.g.
linear integer arithmetic (LA(Z)), bit-vectors (BV), or, as
required in our case the theory of arrays (TA). If the set of
constraints is satisfiable with respect to the defined theory,
SMT solvers also provide a model which represents one
solution for the given variables and constraints. Further-
more, a new branch called Optimization Modulo Theories
(OMT) [20], [21] can provide optimal solutions with respect
to given minimization or maximization objectives. Solving
NP-complete scheduling problems with combinatorial char-
acteristic defined through linear arithmetic constraints, like
the one addressed in this paper, has proven to be suitable use-
cases for SMT/OMT solvers, especially in the case of small
and medium networks [22], [23]. In this paper we focus
primarily on the suitability of array theory for encoding
and solving the scheduling problem, leaving scalability
improvements for exploration in future work. Therefore we
do not claim the contribution of a new scheduling algorithm,
and particularly, it is not the aim of this evaluation to include
improvements to the constraint solver like, for example,
the incremental scheduler in [13], which have been found
beneficial to reduce the synthesis time for the average case.
Our primary goal is, therefore, to evaluate the suitability
of our approach, as well as to explore the trade-offs and
optimization opportunities emerging from our model.

The aim of our scheduling algorithm for IEEE 802.1Qbv
is to find solutions for the window open and close arrays on



each port as well as for the frame-to-window and window-
to-queue index variables such that the constraints defined
in section III are fulfilled. As background theory we use
quantifier-free integer-indexed arrays (T {Z}

A ) over integer
elements (QF ALIA).

A. Optimization

Recently, SMT solvers like z3 [21] also offer the possibil-
ity to express optimization objectives binding the solver to
provide an optimized solution with respect to given (single
or multiple) minimization or maximization objectives.

Optimization objectives differ based on particular system
requirement and deployment characteristics. Whereas a num-
ber of relevant objectives has been already discussed in [15],
we prefer to concentrate on optimization opportunities aris-
ing from the characteristics of our model which were not
possible in prior work. In particular, we address the trade-
off between the defined number of windows per egress port
and the resulting maximum jitter experienced by a stream.
We focus here on a particular optimization objective that
minimizes the receiving jitter for streams. This can be either
expressed as minimizing the accrued jitter over all streams
in the network or as a collection of objectives minimizing
the individual jitter of each stream, which may result in local
minima for some of the streams.

The jitter value for a stream si is defined in our model
as Ji, denoting the maximum allowed jitter for the stream
at the scheduled times of sending and receiving. Thus, we
introduce an additional variable ji  Ji, 8si 2 S replacing
Ji in conditions (13) and (14). The optimization objective
is then either defined as minimizing each ji (using either
lexicographic or Pareto fronts combinations [21]) or the
sum over all ji. Moreover, the solver allows introducing
a weight jwi for each stream si representing the relative
importance of minimizing the jitter of that particular stream.
The optimization criteria is expressed as

minimize
X

si2S
jwi ⇥ ji,

subject to the constraints defined in section III.
Note that for strictly periodic streams or single period

configurations we can directly express the minimization
objective as the difference between the closing and opening
times of the respective windows eliminating the need for an
additionally variable per stream.

V. EVALUATION

We have implemented a prototype tool for synthesiz-
ing schedules based on the system model and constraint
definitions presented in the previous sections. We used
z3 [24] v.4.5.0 as the underlying SMT/OMT solver with
QF ALIA as the background theory for the version without
optimization and the built-in optimization solver of z3 for

the experiments requiring optimization objectives. All ex-
periments were run on an Intel(R) Core(TM) i7-2600 64bit
CPU @ 3.40GHz with 12 GB of RAM. For convenience we
have chosen a timeline granularity of 1µsec and a uniform
communication speed for all physical links of 1Gbit/s. The
message size for all experiments is fixed as one maximum-
size Ethernet frame, resulting in a frame duration of 13µsec
with the chosen time granularity.

A. Topology
As a baseline configuration for the evaluation we have

chosen a simple line topology for switches with the same
number of end systems connected to each of them. Only end
systems act as senders (talkers) and receivers (listeners) of
communication streams. An example is depicted in Figure 3.
Note that the simple example includes three streams already
illustrating scenarios which are relevant to the analysis.
Among others, streams converging from different sources
into one egress port (e.g. streams A and B at the first
hop), incoming streams from the same ingress port diverging
to different egress ports (e.g. streams A and B at the
second hop), as well as other potential sources for jitter like
unbalanced network load, cross traffic (e.g. stream C), etc.

We denote the configuration setting for each experiment
in terms of the number of switches (SW), the total number
of end systems (ES) equally distributed along the switches,
the set of periods for the streams (T), and the number of
queues for each egress port (@tt). Streams are routed through
the topology based on a random selection of a talker and a
listener end systems. The network size as well as the chosen
configurations are inspired by industrial use-cases.

B. Synthesis Time
Figure 2 plots the runtime of the scheduling synthesis

when varying the number of streams and the maximum
number of windows (W) per egress port (2, 4, 8, 16, 32).
The periods of the streams are (10, 20)ms resulting in a
hyperperiod of 20ms. The queue configuration is @tt = 4.
On the x-axis we also indicate the total number of frame
instances that are scheduled in the network as a result of a
the streams being routed. The timeout for the solver was set
to 40 hours. Note that both the y-axis (showing the number
of windows per port) and z-axis (representing the synthesis
time of the scheduler) are logarithmic.

Equivalent experiments were run with two alternative
network sizes, shown in Figures 2(a) and 2(b), namely,
a small-sized network consisting of 15 end-systems dis-
tributed through 5 switches (3 end-systems per switch),
and a medium-sized network consisting of 50 end-systems
distributed in a network of 10 switches (5 end-systems per
switch).

The synthesis method shows to scale well for a small
number of windows per egress port, even up to 50 streams
(resulting in 211 and 264 frame instances) being scheduled
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Figure 2. Synthesis time when varying the number of streams (frames) and maximum number of windows per egress port.

Stream A

Stream B

Stream C

Switch
End System

Figure 3. Example topology depicting four switches connected in a line,
each switch with three end systems connected, and three streams (A, B,
and C).

in small- and medium-scale networks. However, when in-
creasing the number of windows, the synthesis time also
increases from a few minutes to several hours, eventually
timing out at 40 hours when scheduling 50 streams with 32
windows per port in the medium-sized topology.

While all cases were scheduled in under 1 minute with
2 or 4 windows per port, we note that the problem is NP-
complete [10] resulting in an exponential runtime complex-
ity with increasing input size. Several dimensions of the
input, like period choice, macrotick, topology size, number
of streams, etc., affect the runtime and have been studied for
e.g. in [15] and [10]. We observe, for instance, that compared
to related work (c.f. [10]) the number of windows per port
has a greater impact on the synthesis time than for example
the number of scheduled streams. Therefore we identify this
variable as a metric particular to our solution.

C. Jitter vs Window Trade-Off

We have identified a fundamental trade-off exposed by a
low bound on the number of windows. Indeed, the synthesis
time is directly affected by the window count, however
we observe in Figures 4(a) and 4(b), discussed below,
what intuitively seems plausible: the number of windows

has an impact on the effective jitter experienced by the
communication streams.

Constraining the jitter is straightforward (13) and (14),
however, in this experiment we want to show the effect of
the number of windows per port on the jitter (in contrast to
synthesis time) when jitter minimization objectives are intro-
duced. We chose a reference topology with 5 switches and
15 end-systems in which 25 streams are transmitted between
random talkers and listeners, all streams with a period of 20
ms. The queue configuration is set to @tt = 1 to increase the
confluence of frames on the same windows. We conduct the
schedule synthesis with three alternative implementations of
the algorithm. Namely, without optimization objective, with
multiple optimization objectives minimizing the jitter for the
sender and receiver of each stream, and, lastly, with multiple
optimization objectives minimizing the jitter of all scheduled
frames. The prioritization of the multiple optimization ob-
jectives is done using lexicographical ordering (c.f. [21]).

Figure 4(a) shows the average jitter when varying the
number of windows per port from 1 to 8 and Figure 4(b)
shows the synthesis time for the same configurations. The
x-axis in both figures describes the number of windows per
port and the y-axis shows the average jitter in the network
and the synthesis time, respectively.

As expected, the jitter decreases when increasing the
number of windows per port even in cases when no opti-
mization is performed. However, optimizing the jitter either
for senders/receivers or for all frames in the network reduces
the average jitter, down to the minimum possible of 0 for
cases with 7 and 8 windows per port. The trade-off becomes
obvious when observing the trend in the synthesis time for
the configurations, which scales rapidly in proportion to
the number of windows for the configurations with jitter
optimization. An observation worth noticing is the decrease
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Figure 5. Scalability comparison between the frame-based and window-
based synthesis algorithms.

in the runtime for the two experiments reaching 0 jitter.
While this may not hold for all cases, we hypothesize
that the effect is due to the inherent simplification of the
constraint solving problem when each frame is assigned to
an individual window. Even for the experiments optimizing
only send and receive jitter we observe a similar decrease
in the exponential trend, which could be equally explained
by a partial assignment of frames to individual windows.

D. Frame-based vs Window-based Synthesis

We are interested in the scalability of this method in con-
trast to a frame-based approach. For this we replicated the
synthesis constraints from [10] and compare the synthesis
time of the frame-based approach against our window-based
scheduler.

The reference configuration is based on 5 switches and

3 end-systems per switch, resulting in 15 end-systems in
total. For the window-based method we select the number of
windows from the set {1, 2, 3} and for both implementations
we set the queue configuration @tt = 2. A time-out aborts
the synthesis if no schedule is found within 10 minutes. We
try to schedule with each configuration 25, 50, 75, 100, 150,
200, 250, 500, and 750 streams within this time and evaluate
the success of each algorithm. The period of all streams is
set to 20 ms.

The results in Figure 5 show that the window-based
method scales significantly better for the configuration with
one window per port and even for two windows per port it
reflects a slight improvement. However, with three windows
per port it already shows a larger synthesis time, timing out
at 10 minutes for 100 streams. Nevertheless, we argue that
the relaxed jitter model and increased solution space provide
a considerable benefit for the window-based scheduling
method over the frame-based approach.

We demonstrate our claim of increased schedulability
using a simple experiment in which streams with a small
period of 150µs are scheduled in a topology of 5 switches
and 10 end-systems with @tt = 1. With the frame-based
method we can schedule up to 25 streams. When using
the window-based method with 2 windows per port we can
schedule 2 additional streams while with 3 windows per
port an additional 7 streams are schedulable, leading to a
significantly higher bandwidth utilization given the high rate
of the streams (T = 150µs).

VI. RELATED WORK

Traditionally, asynchronous networks are analyzed in
terms of worst-case end-to-end communication latencies
through methods like network calculus [25], [26]. One of
the major drawbacks of this approaches is that the worst-
case latency is analyzed based on the pre-assigned traffic



priorities and the arrival patterns of competing periodic and
sporadic streams. This has the effect that compositional
system design and temporal isolation of communication
streams become very difficult. Time-triggered technologies
on the other hand enable compositional system design as
well as deterministic behavior and isolation of streams in
the time domain.

Time-triggered scheduling has been initially formulated
as a static cyclic task scheduling problem by Baker et
al. [27]. Creating time-triggered communication schedules
for deterministic networks (TTEthernet) using SMT solvers
was first proposed in [13] and extended in [14], [15]
to include the application layer on end-systems. Network
scheduling problems for other proprietary technologies (e.g.
PROFINET, FlexRay, TTP) have been studied in [28], [29],
[30], [31].

Different aspects of TSN networks has been treated in
existing literature. For example, in [32], Gutiérrez et al.
analyze the synchronization quality of IEEE 802.1AS in
large networks typically found in the industrial domain.

Our previous work [10] formally defined necessary con-
straints to compute deterministic schedules that could be
mapped to TSN-compliant multi-hop switched networks pro-
viding jitter-free transmission and deterministic end-to-end
latency guarantees for strictly-periodic scheduled frames.
However, such stringent requirements on jitter and latency
came at a high cost. On one hand, fully deterministic
communication constraints restrict the solution space for
valid schedules due to the isolation of streams in the time
domain. On the other hand, the focus was given to finding
exact timing for each transmitted frame, which was then
mapped on a second step into a GCL reproducing the
expected behavior. This made it difficult to optimize and
tailor the output to device-specific properties, like the length
of the GCL or the minimum distance between consecutive
open and close gate events.

In [33], the authors introduce a new asynchronous traffic
class to TSN and a mechanism for shaping that provides
low delay guarantees. While the strictness of the new traffic
class is lower than the time-triggered one, similar to our
model, the paper does not consider the scheduling problem
assuming that the timed-gates remain permanently in the
open state.

Meyer et al. [34] analyze the interference effects of
higher-priority time-triggered communication on AVB traf-
fic converging in the credit-based shaper of TSN devices.
Alderisi et al. [35] introduce a new traffic class, called
Scheduled Traffic (ST), which has real-time guarantees
and is strictly isolated from AVB streams via hardware
mechanisms and not via the schedule of the timed-gates.
Both papers assume that isolation of critical and non-critical
streams is done via non-standard mechanisms whereas we
enforce isolation and real-time behavior through the standard
timed-gate schedule on the egress ports. Additionally, none

of the papers address the underlying scheduling problem for
Time-Sensitive Networks.

Heuristic approaches to schedule frames in TSN networks
that are based on the constraints defined in [10] have been
discussed in [8] and [36]. In [37], the authors define the
TSN scheduling problem as a no-wait packet scheduling
problem (NWPSP) and use a Tabu search algorithm for find-
ing near-optimal solutions. Furthermore, the paper presents
an optimization heuristic for reducing the number of gate
open events by compressing the schedule such that multiple
frames are transmitted in the same window. The reduction
of the number of gate events is done after a schedule has
been found, thus not having any guarantee that the resulting
schedule will fit within the constraints of the hardware
implementation. In our work, the number of gate events is
an input and can be set to the respective hardware limit, thus
ensuring that the resulting schedule can also be executed in
hardware.

Array theory has been primarily used in software model
checking and verification for sequential and concurrent
programs [38], [39]. To the best of our knowledge, our
work is the first to use array theory for encoding scheduling
problems in distributed systems.

VII. CONCLUSION

We have presented a novel approach to synthesize the
communication schedules for TSN based on the require-
ments defined in IEEE 802.1Qbv. Our model is based on the
definition of constraints for gate windows defining the open
and close instants for the timed gates of the egress ports. We
have shown the suitability of the first-order theory of arrays
(TA) to express these constraints and we have conducted a
number of experiments to evaluate the performance as well
as the underlying trade-offs. We have additionally compared
our method to prior work and explored the scalability and
schedulability dimensions of the proposed solution.

The results allow us to argue that our model and the
formulation of constraints is suitable for the synthesis of
schedules, even exhibiting potential to solve large networks
with the aid of efficient scheduling algorithms. In particular,
we conclude that our work is a valuable reference for the
conception of synthesis tools for TSN with the application
of incremental scheduling techniques like those presented
in [13] and [14], where the incremental step is built around
the number of windows, which we identify as a metric
reflecting the most time-consuming factor in the system of
constraints.

For even larger networks exceeding the reasonable size
for offline configured systems, like some envisioned in the
context of smart cities and the Internet of Things (IoT), a
combination of heuristic algorithms and SMT-based meth-
ods implementing the presented constraints remain, in our
opinion, the most promising approach.
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