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TTTech Computertechnik AG, Vienna, Austria

{rse,scr,gst}@tttech.com

Abstract—Scheduling and guaranteeing strict timeliness for
real-time communication across large networks, like those envi-
sioned in the Industrial Internet of Things (IoT), in coexistence
with non-critical traffic, opens up a remarkable opportunity
of application for Deterministic Ethernet. However, the inher-
ently dynamic behavior and flexibility required in IoT systems
contrast with the typically static design of scheduled time-
triggered networks. This paper explores the feasibility of online
incremental synthesis of network schedules that adapt to such
dynamic behavior without losing the strict timeliness guarantees.
We investigate the computational complexity of the incremental
scheduling problem and profile performance metrics enabling the
evaluation of potential trade-offs setting the boundaries of online
–close to real-time– time-triggered scheduling for the Industrial
Internet of Things.

I. INTRODUCTION

The Internet of Things (IoT) [1], particularly in the in-
dustrial domain, is a prominent area of application for De-
terministic Ethernet. In this paper, we present our findings
evaluating the feasibility of scheduled networks for industrial
control systems in the context of IoT. Our analysis explores
the challenges synthesizing online incremental time-triggered
schedules for industrial-sized network topologies and loads,
extracting a number of key performance metrics and their
impact on the overall schedule efficiency. Our goal is to inves-
tigate the problem complexity with sufficient detail to discern
the boundaries of online –close to real-time– scheduling.

Deterministic Ethernet is an IEEE 802.1 compliant exten-
sion to Quality of Service (QoS), using scheduled message
release mechanisms based on a global time instead of dynamic
priority schemes. In a Deterministic Ethernet network, regular
unconstrained best-effort Ethernet traffic can co-exist with
real-time critical traffic flows without altering the guaranteed
and deterministic strict delivery timeliness of scheduled traffic
flows. Mixed-criticality requirements from classic industrial
deployments (e.g. factory floor) can be fulfilled and guaranteed
with the support of deterministic scheduled networks and a
carefully build distributed communication scheme. However,
the rapid conceptual expansion of the IoT introduces a new
range of dynamic applications which cannot be handled by
a single, static communication scheme. In the context of
IoT, adaptability, scalability, and self-configuration are key to
success. However, deterministic guarantees are still needed in
order to ensure the timely execution of critical applications.

The research leading to these results has received funding from the
ARTEMIS JU under grant agreement n� 621429 (Project EMC2) and from
the Austrian Ministry for Transport, Innovation and Technology under the
funding programme ”IKT der Zukunft”, grant agreement n� 842567.

The IEEE Time-Sensitive Networking1 (TSN) Task Group
is currently defining key mechanisms for Deterministic Ether-
net; once this technology becomes commercially available, the
challenge for efficiently using it lies in creating and distributing
appropriate message transmission schedules for the network
nodes. However, the synthesis of schedules for time-triggered
distributed networked systems (e.g. [2]) is a known NP-hard
problem typically approached by offline methods. At design
time, a model of the network and traffic requirements is created
and an exhaustive search over the scheduling domain space –
based on exact methods (e.g. [3], [4]) or heuristics (e.g. [5],
[6]), is conducted. The high computational complexity of these
methods makes them nonviable for online solutions.

Abstract modeling and simulations are common tools for
the analysis of network properties and protocol performances,
specially when the objects of study belong to new application
domains for which no real deployment exists. Examples of
modeling and simulation analysis for large IoT networks
include [7], [8] and [9].

II. METHODOLOGY

Our aim in this analysis is to investigate the viability of
online incremental scheduling methods suitable for typical
scenarios motivated by the industrial IoT domain. We pursue
a deep analysis of the scheduling problem abstracted from the
network particularities (e.g. network protocols, schedule dis-
tribution mechanisms, security, etc). We consider, nonetheless,
the distributed nature of the problem as well as a meaningful
characterization of network topologies and traffic load based
on realistic industrial scenarios (see Section III). We evaluate
our analysis against a set of algorithms exploring alternative
scheduling techniques, which range from trivial to medium
complexity. Note that our goal is not the implementation of
an efficient scheduling algorithm but rather the suitability
evaluation of an online incremental approach for the synthesis
of time-triggered schedules, as well as profiling a set of metrics
and trade-offs having a key impact on feasibility, scalability,
and efficiency.

A. Simulation Environment

We have designed a flexible simulation environment for the
analysis and evaluation of distributed scheduling algorithms
based on the principles of industrial control networks. The
main purpose driving the design of this tool is the ability of
fast prototyping implementation enabling testing and analyzing
different scheduling methods. The set of inputs, which can be
stored in files for later reuse, includes a complete description of

1IEEE TSN Task Group, online: http://www.ieee802.org/1/pages/tsn.html
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a network topology. For our purposes (i.e. message scheduling)
we limit the scope of the simulation to new route requests
applied to the network switches (from now on nodes), as these
are the devices which effectively implement the communica-
tion schedule. Note that we intentionally leave out the end-
system nodes as we are not interested in the production and
consumption of the data but merely in schedules for message
transportation2.

We differentiate three levels of nodes organized in a
tree/star topology matching common industrial use-cases, and
define a taxonomy as illustrated in Figure 1:

• Edge nodes (e), are the bottom level switches typically
operating at 1Gbps to which end-system are plugged.

• Aggregation nodes (a), interconnect several edge nodes
typically via 10Gbps links forming so called clusters.

• Core nodes (c), are top-level nodes connecting clusters
(i.e. aggregation nodes) typically via 100Gbps links.

Forwarding delays are set proportionally to typical values of
6µs, 4µs, and 3µs, respectively. Note that this classification
as well as the characteristics of each node type is easily
configurable within the simulation tool and is not restricted
to any combination of node types.

The scheduling simulator core incrementally schedules
new periodic communication routes following the selected
algorithm. In essence, it tries to reserve a time slices (i.e.
transmission window) in the corresponding timeline of each
hop belonging to the network path between the source and
destination nodes. Note that we assume switches with the ca-
pacity of simultaneously forwarding full-duplex traffic through
all physical ports, and hence we assign an independent trans-
mission schedule for each directional network link. From the
moment the transmission windows at each node are reserved,
the end-to-end timeliness is fixed and guaranteed and no other
message will be scheduled overlapping the reserved time.
New route requests are generated following a configurable
traffic pattern, characterized by the frame size (between a
configurable minimum a maximum), a communication period,
a maximum end-to-end delay (E2E) as a factor of the period
(e.g. E2E = 50%, E2E = 100%), and the communication
locality (�). We model the critical network traffic following a
locality pattern in which a percentage of communication routes
remain within the same cluster (i.e. source and destination
edge nodes are connected to a common aggregation node).
Typical use-cases in a factory floor set the locality to either
extreme, being � = 90% and � = 10% values of interest,
corresponding to e.g. control loops within a single machine,
and communication between a local controller and the main
factory floor controller.

B. Test-bed Algorithms

We evaluate our system against four different scheduling
algorithms implementing alternative scheduling methods to
service new requests:

CSI-1 (Simple) – A straightforward implementation di-
viding the total interval {frame arrival, deadline} into equal
sub-intervals for each hop in the route. The algorithm tries to

2For a complete end-to-end scheduling approach including the generation
and consumption of data in the end-systems refer to [3].

Name HPi |⇧|ii ⇧iii

⇧100
1

100 ms
2 {100, 50} ms

⇧100
2 4 {100, 50, 25, 10} ms

⇧100
3 6 {100, 50, 25, 10, 5, 4} ms

⇧500
1

500 ms
2 {500, 250} ms

⇧500
2 4 {500, 250, 100, 50} ms

⇧500
3 6 {500, 250, 100, 50, 25, 10} ms

⇧1000
1

1000 ms
2 {1000, 500} ms

⇧1000
2 4 {1000, 500, 250, 100} ms

⇧1000
3 6 {1000, 500, 250, 100, 50, 25} ms

i Hyperperiod ii Number of Periods iii Set of Periods

Table I: Sets of periods and their Hyperperiod.

allocate a transmission window on each hop within its assign
sub-interval and fails if no free interval is found for at least
one hop.

CSI-2 (Proportional) – Similar to CSI-1 but the sub-
interval division is proportional to the current link utilization.
Therefore, highly utilized links are assigned a larger region to
search for an empty slot.

CSI-3 (Iterative) – A sequential approach taking the end
of the allocated transmission window in link i as the beginning
of the search interval for link i+ 1.

CSI-4 (Offset) – A variation of CSI-3 in which the starting
of the transmission window on the first hop defines the offset
with respect to the schedule cycle, i.e. the frame is offset with
respect to the schedule cycle and can, potentially, wrap over
the hyperperiod.

* Random – we analyze the impact of randomness in the
search of the scheduling slot. For this, we implemented CSI-
2* and CSI-3* similar as above, but instead of searching for
the first free slot within the interval, sub-dividing it into n

parts, which are then searched in random order. The actual
n depends on the original interval size, such that each part
can accommodate at least one maximum length frame. For
efficiency, n is bounded to {1..32}. Our aim is to evaluate the
impact of introducing random gaps in the timeline with respect
to the chances of scheduling future requests.

III. ANALYSIS

We perform simulations over the set of network topolo-
gies {Ta, Tb, T c, Td} depicted in Figure 1. For each network
topology, we generate multiple sets of new requests, each con-
sisting of 250000 requests with frame sizes randomly chosen
between {64..1518} bytes. We define a set of hyperperiods
(hp) H = {100, 500, 1000} ms. For each hp 2 H we create
randomly three sets (⇧hp

1 ,⇧hp
2 ,⇧hp

3 ) with cardinality 2, 4,
and 6, respectively,

���⇧hp
1

��� = 2,
���⇧hp

2

��� = 4,
���⇧hp

3

��� = 6, as
summarized in Table I. For each such scenario, we produce
two complementary sets with traffic locality � 2 {10%, 90%}.

We collect the following statistical data for each run:

• Total number of scheduled requests;
• First request that could not be scheduled;
• Average link utilization when first error occurred;
• Schedule (timeline) for each link;
• Utilization for each scheduled link;
• Memory utilization histogram per node;
• Simulation runtime (for complexity comparison).
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Figure 1: Network topologies (a) Tb = 1c2a, (b) Tb = 1c3a8e (c) Tc = 2c8a, and (d) Td = 1c8a8e.

A. Average Utilization Analysis

The simulation environment keeps track of the total number
of successfully scheduled requests as well as the instance in
which the first request could not be satisfied. Note that for
the comparison of algorithms the same sequences of requests
is used. Figure 2 summarizes the simulation results for the
topology 1c3a8e. The simulation runs are grouped vertically
by hyperperiod, hp 2 H , and horizontally by number of pe-
riods (

��⇧hp
��). We additionally annotate the average utilization

achieved after processing the total number of new requests
(i.e. 250000). Figure 2(a) refers to results with E2E = 100%,
while Figure 2(b) depicts results with E2E = 50%.

Not surprisingly, low utilization runs are successfully
scheduled even with the simplest algorithms. However, we can
observe an increasing trend on the occurrence of the first error
as the average utilization increases. Adding randomness to the
scheduling process (CSI-2* and CSI-3*) has different effects
compared to the original algorithms. CSI-2* slightly improves
schedulability over CSI-2, although CSI-3* performs worse
than its counterpart. This may be due to different division
of time window during the search of a free interval for a
new request. CSI-2 relies on the link utilization but this can
be misleading if the timeline is not filled equally for the
entire hyperperiod length (e.g. the overall link utilization could
be low although the utilization on the exact time-window
of interest would be close to 100%). CSI-3 performs an
iterative division which adapts better to the runtime conditions,
independent of the utilization.

In general, adding random gaps within the timeline seems
to serve the purpose of increasing the chances of accommodat-
ing future requests, although we observe a negative influence
towards the total number of scheduled requests. In essence,
future requests are of unknown size and therefore likely to
under-utilize the available gaps when they are scheduled. This
is not a problem when the overall utilization remains low, but
as it increases, a larger number of gaps are left in the timeline,
which are too small to fit new requests.

From the same figure, it is already visible that the number
of different periods influences the occurrence of the first
error. In that sense, independently of the algorithm, the higher
the number of periods the sooner a new request results non
schedulable. This is related to the repetition of instances
for each request up to the hyperperiod. If all instances are
exactly scheduled the same number of times (e.g. one single
period), the fitting is done without conflicts. However, once
the number of repetitions differs, some of the instances must
“compete” with frames of different periodicity falling within
their scheduling region.

B. Runtime Analysis

Figure 3 depicts the runtime of the previous simulations,
showing the proportion of scheduled and not-scheduled re-
quests. Note the logarithmic scale on the time axis. Without
surprise, the runtime trend increases for algorithms CSI-1 to
CSI-3. Randomness increases the runtime for CSI-2, bringing
similar runtime bounds than CSI-3 and CSI-3⇤. However, CSI-
3 outperforms the two random variants in most cases. We have
observed different variations on other topologies with respect
to the random algorithms (not shown due to space limitations).
C. Link Utilization Analysis

Figure 4 shows the average utilization on links grouped
by their direction of communication. In other words, all
directional links are grouped based on the type of the node
they belong to as well as the direction –uplink or downlink–.
Note that the utilization is shown as a heat-map following the
color scale on the right.

Subfigure 4(a) shows the total utilization after 250000
requests with locality � = 10% have been processed, while
Subfigure 4(b) corresponds to the same scenario with � =
90%. Here we can observe how the utilization follows a much
more homogeneous distribution in the former case where most
communication crosses the cluster boundary. In the latter,
in which most of the communication takes place within the
same cluster, the utilization is significantly higher on the up-
and down-links connecting edge nodes. This analysis shows
valuable information for the correct dimensioning of systems
based on the topology and communication patterns. It may
also help estimating the overall system capacity to support
non-scheduled traffic, based on the available capacity at each
communication level.
D. Memory Utilization Analysis

At the current stage of investigation we do not consider
enforcing maximum bounds on the utilization of physical
resources like memory. Our aim, however, is to enable the
analysis of resource utilization achieved by the studied algo-
rithms in a way that exposes trade-offs between the demand
of physical resources and the schedule efficiency (i.e. cost vs
performance). To do this, we run a post-simulation analysis
on the memory utilization by adding up the number of frames
inside the node’s memory at each instant of time. Thanks to
the schedule that we have build over time, we can simply
keep count of the frames as they ingress and egress along
the timeline. Figure 5 shows an example of such analysis for
two selected nodes (note the different scale). For completion,
we calculate in parallel the exact memory demand in bytes
depending on the frame size (in green) as well as the number
of frames (red line), assuming that most hardware reserves
buffers of a pre-defined maximum frame size.
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Figure 2: Number of scheduled requests (total and first error) vs utilization on 1c3a8e, � = 10%
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Figure 3: Runtime vs successful requests for 1c3a8e, � = 10%
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Figure 4: Link utilization heat-maps for 1c3a8e, E2E = 100%, HP = 100.

E. Metrics and Trade-Off Opportunities

The analysis of an extensive set of simulations with alter-
native topologies and traffic loads already profiles a number
of metrics providing a sense of quantity as well as quality for
the analyzed algorithms. This metrics are especially valuable
to evaluate quantitatively and qualitatively the performance of
new scheduling algorithms, as well as for the identification of
trade-off opportunities.

Hyperperiod – We devise a certain relation between the
periods of the scheduled requests and the average computation
time required to compute new requests. In particular, the
relation between the hyperperiod (hp) and each one of the
periods in the set of requests defines the amount of instances
that need to be scheduled for each periodic request. Larger
differences have a strong impact on the required computation
time regardless of the scheduling algorithm (i.e. the algorithm
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Figure 5: Memory utilization comparison of two aggregation nodes under different algorithms, with topology 1c3a8e, ⇧ =
{200, 100, 50, 40, 25} ms, � = 90%, E2E = 100%.

needs to schedule more instances for each request). In essence,
a trade-off lays in the optionality of choosing arbitrary periods
for each request –potentially leading towards large HP relation,
against a predefined set of harmonic periods.

Resource scheduling – Additional constrains towards the
utilization of resources add up to the overall scheduling
complexity. We have used the memory utilization histogram
over the scheduling cycle (i.e. hyperperiod) to analyze how
the different algorithms perform. Including this and other re-
sources into the scheduling algorithm increases the complexity
significantly. We face, in this case, a trade-off between the
algorithm complexity –and potentially execution time– and the
accurate planning of resources in the network devices.

Raster size – In relation with the hyperperiod length,
the raster size –that is, the granularity at which schedule
events are possible; infers a huge impact on the algorithm
runtime performance. Naturally, the smaller the raster size, the
more opportunities of placing each scheduled frame within
the timeline. On the other hand, a larger raster size reduces
the search space at the expenses of potentially losing valid
fittings. The trade-off between the two extremes depends on the
specific use-cases and hardware support. If the use-case does
not require highly utilized scheduled links, a higher raster size
may improve the overall performance significantly. However,
maximum utilization may only be achieved if frames are
places side-by-side on the lowest time granularity possible. In
addition, device-specific properties may set a minimum raster
size based on its own hardware design.

End-to-end Latency – The end-to-end scheduling window
in which all frames need to be scheduled for each intermediate
hop has an obvious impact on the algorithm performance.
The wider this window is, the more flexibility is given to
the algorithm to find a placement for each frame. E.g. the
analysis of simulation runs in which the relation between the
period and the maximum allowed end-to-end delay (E2E) is
1 show a higher scheduling success than those with E2E = 2
(i.e. maximum end-to-end is half of the period). If the allowed
end-to-end latency is smaller than the period, the placement
of the fist frame on the initial hop determines the scheduling
window for all subsequent frames.

Link utilization – The average as well as maximum link
utilization are good quality indicators for the scheduling algo-
rithm. In essence, these values reflect how well the algorithm
performs finding an empty slot for a new frame. We have
also considered the utilization achieved upon the first non
schedulable request as a benchmark to reflect the advantages
of different scheduling techniques provisioning ’gaps’ in the
schedule for future requests.

IV. CONCLUSION

In this paper, we summarize the initial results our sys-
tematic analysis, based on dynamic scheduling simulation,
targeting deterministic scheduled networks for industrial con-
trol systems in the context of IoT. We show how such
analysis can provide valuable hints regarding the feasibility
and complexity inherent to the synthesis of schedules, online
and incrementally, providing deterministic guarantees. Our
findings expose relevant variables and design decisions with
a significant impact on key performance metrics. We profile a
number of trade-offs based on the results obtained through an
extensive set of simulations based on industrial-size scenarios.
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