
Work-In-Progress: Safe and Secure Configuration Synthesis
for TSN using Constraint Programming

Niklas Reusch, Paul Pop
Technical University of Denmark

Kongens Lyngby; Email: nikre@dtu.dk

Silviu S. Craciunas
TTTech Computertechnik AG

Vienna, Austria; Email: silviu.craciunas@tttech.com

Abstract—Time-Sensitive Networking (TSN) extends IEEE
802.1 Ethernet for safety-critical and real-time applications in
several areas, e.g., automotive, aerospace or industrial automa-
tion. However, many of these systems also have stringent security
requirements, and security attacks may impair safety. Given a
TSN-based distributed architecture, a set of applications with
tasks and messages, as well as a set of security and redundancy
requirements, we are interested to synthesize a system configu-
ration such that the real-time, safety and security requirements
are satisfied. We use the Timed Efficient Stream Loss-Tolerant
Authentication (TESLA) low-resource multicast authentication
protocol to guarantee the security requirements, and redundant
disjunct message routes to tolerate link failures. We consider that
the tasks are scheduled using static cyclic scheduling and that
the messages use the time-sensitive traffic class in TSN, which
relies on schedule tables (called Gate Control Lists, GCLs) in the
network switches. A configuration consists of the schedule tables
for tasks as well as the disjoint routes and GCLs for messages.
We propose a Constraint Programming-based formulation for
this problem and we evaluate it on several test cases.

I. INTRODUCTION

Many modern Cyber-Physical Systems (CPSs) are becom-
ing increasingly more interconnected with the outside world
opening new attack vectors [1], [2] that may also compro-
mise safety. Therefore, the security aspects should be equally
important to the safety aspects. Time-Sensitive Networking
(TSN) [3], which is becoming the standard for communication
in several application areas (e.g. automotive to industrial
control), is a set of amendments to the IEEE 802.1 standards,
equipping Ethernet with the capabilities to handle real-time
mixed-criticality traffic with high bandwidth. Available traffic
types are Time-Triggered (TT) traffic for real-time applica-
tions, Audio-Video Bridging (AVB) for applications that need
bounded latency, but do not have hard real-time requirements,
and Best-Effort (BE) traffic for non-critical applications.

We assume that safety-critical applications are scheduled
using static cyclic scheduling and use the TT traffic type with a
given Redundancy Level (RL) for communication. We consider
that the task-level redundancy is addressed using solutions
such as replication, and we instead focus on the safety and
security of the communication in TSN. The real-time safety
requirements of critical traffic in TSN networks are enforced
through offline-computed schedule tables, called Gate Control
Lists (GCLs), that specify the sending and forwarding times of
all critical frames in the network. Previously, the synthesis of
these schedules has taken into account different safety aspects,
such as frame collision, temporal isolation, synchronization
error, jitter constraints, and end-to-end latency requirements,
but usually did not consider security aspects [4].

Since link and connector failures in TSN could result in
fatal consequences, the network topology uses redundancy,
e.g., derived with methods such as [5]. In TSN, IEEE 802.1CB
Frame Replication and Elimination for Reliability (FRER)
enables the transmission of duplicate frames over disjoint
routes, implementing merging of frames and discarding of

duplicates. Regarding security, Timed Efficient Stream Loss-
tolerant Authentication (TESLA) [6] has been investigated as
a low resource authentication protocol for several networks,
such as FlexRay and TTEthernet [7] networks. Scheduling
time-sensitive traffic in TSN is non-trivial (and fundamentally
different from TTEthernet), because TSN does not allow the
control of individual frames as is the case in TTEthernet.
Instead, only the status of the queue gates can be controlled via
GCLs which may lead to non-determinism of frame transmis-
sion at runtime [4]. Additionally, adding security mechanisms
such as TESLA after the scheduling stage is oftentimes not
possible without breaking real-time constraints, e.g. on end-to-
end latency, and degrading the performance of the system [7].

Contributions: We jointly address the safety and secu-
rity requirements during the configuration of the TSN-based
distributed CPSs, which means deciding on the scheduling
of tasks, finding redundant disjoint routes for messages and
generating the GCLs, such that the real-time, safety and secu-
rity requirements are satisfied. We propose a Constrain Pro-
gramming (CP) formulation combining constraints imposed by
redundancy requirements, TSN and TESLA, and evaluate it on
several test cases, including real-life applications.

II. PRELIMINARIES

TSN: The key mechanisms that enable deterministic tempo-
ral behavior in TSN are the clock synchronization protocol
defined in IEEE 802.1ASrev, which provides a common time
reference with bounded precision, and the timed-gate function-
ality (IEEE 802.1Qbv) enabling the predictable transmission
of communication streams according to the predefined times
encoded in the GCLs. Using our CP-formulation we can
determine the disjoint paths for 802.1CB FRER frames and
802.1Qbv-compatible GCLs for the network switches.

TESLA: TESLA provides a resource efficient way to do
asymmetric authentication in a multicast setting [8]. It has
been proposed as an alternative for resource constrained
CPSs to traditional authentication approaches, e.g. symmetric
authentication using shared keys (compromised if one node
is taken over) or asymmetric authentication using public-
key cryptography (too computationally expensive). The source
of asymmetry in TESLA is a time-delayed key disclosure.
TESLA uses cryptographic message authentication codes
(MAC), e.g. HMAC. For further details we refer the reader
to [8]. We use a modification of TESLA for real-time au-
tomotive systems described in [7], where bandwidth and
computational resources are scarce. The modification is that
instead of appending the currently disclosed key to every
single frame, it is disclosed only once per interval in its own
redundant frame. We assume that the protocol is bootstrapped
by creating the necessary key-chains and distributing initial
keys.
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Fig. 1: Example Architecture and Applications

III. MODELS

A. Architecture and Application Models
We model our TSN network as a directed graph. The nodes
of the graph are either end-systems (ESs) or switches (SWs),
the edges represent directional network links. Each link has
a certain speed. An ES runs a real-time operating system
in which tasks run according to a periodic static schedule.
See Fig. 1a for a small example architecture, where a black
link represents a full-duplex link with 10 Mbit/s.

We use a similar application model to [7]. An application
is modeled as a directed acyclic graph. The nodes represent
tasks, the edges represent messages between tasks called sig-
nals, which define data dependencies. An application repeats
periodically and has a set of function paths (FPs) which model
a chain of tasks with an end-to-end deadline constraint.

A task is executed on the processor of a certain ES with a
certain worst-case execution time (WCET). Moreover, it needs
all the required incoming signals to arrive before it executes,
and it produces its outgoing signals at the end of its execution.

A signal models a message and data dependency between
a source task and a destination task. Source and destination
task can be assigned to different ESs, in which case the signal
has to travel across the network in an TSN stream. A signal
has a certain size given in bytes and it can belong to a group.
Signals belonging to the same ES and group are part of a
multicast transmission and will be packed into the same TSN
stream.

Critical signals have to deliver their data even in the case
of permanent link failures and we assume that the appropriate
redundancy level (RL), which captures the number of disjoint
paths necessary, has been provided by the system designer. We
call a signal and its carrier stream critical if the RL is larger
than one. In addition, we call them secure if they are to be
authenticated using TESLA.

Authenticating secure signals in our system with TESLA
means that some additional applications, tasks, signals and
streams are necessary, similar to [7]. We need to generate,
send and verify a key in each interval for each set of ESs
that communicate via a secure stream. Thus, for each ES
that is sending signals over the network, we create a key
authentication application with a period Pint, the interval
length of TESLA.

Each of these application consists of one key release task
scheduled on the sending ES and key verification tasks on each
ES that receives some signals from the sending ES where the
WCET of these tasks is scaled according to the speed of the
respective ES. A key release just requires sending a message
to the network while a key verification also requires one hash-
computation.

Key signals are transmitted in dedicated streams where the
size of the payload depends on the key size of the chosen MAC
function. The redundancy level of all key signals is set to the
max. RL of any signals on the sending ES. Moreover, each
secure stream will get a MAC appended, thus increasing the
frame size by the MAC length of the chosen MAC function.
For each stream the MAC has to be generated at the sender and
verified at the receiver, which requires one hash-computation
on that ES.

B. Fault and Threat Model
Reliability models discussed in [5] (e.g., Siemens SN 29500)
indicate that the most common type of permanent hardware
failures are due to link failures (especially physical connectors)
and that ESs and SWs are less likely to fail. Our disjoint
routing can guarantee the transmission of the signal of RL n
despite any n � 1 link failures. For example, signals �2 and
�3 in Fig. 1 have a RL of 2 and can thus tolerate the failure
of any one link in Fig. 1a.

Similar to the threat model in [7], we assume that an attacker
is capable of gaining access to some ESs or SWs in our system.
We consider that the attackers have the following abilities:
they know about the network schedule and the content of the
streams on the network; they can control (block, delay, replay)
frames which are routed through the SW they control; they
can attempt to masquerade as another ES they do not control
by faking the source address of streams they send; they have
access to the key material in the ES they control; they can flood
the network with many frames. The combination of TESLA
and TSN protocol features (e.g., authentication, scheduling and
filtering) can prevent such attacks.

IV. PROBLEM FORMULATION

Given the architecture, application and security models intro-
duced earlier, we are interested to synthesize an optimized
configuration such that: all applications are schedulable (i.e.,
the end-to-end latency of FPs is less than their deadlines),
the redundancy requirements of all signals are met (i.e.,
we can find disjoint routes for all critical signals) and the
security constraints imposed by TESLA are fulfilled. Once the
applications are schedulable, we are interested to minimize the
latency of the FPs. Hence, synthesizing a configuration means
determining: the routing of streams, the schedules for tasks
and for messages (as 802.1Qbv GCLs) as well as the TESLA
interval duration Pint for key releases.

Let us illustrate the problem using the architecture and
applications in Fig. 1. Our applications period is 1,000 µs.
Pint is determined to be 500 µs. Our application �1 has two
function paths ⇢1 = [⌧1, ⌧3] and ⇢2 = [⌧2, ⌧4] both with a
deadline of 1,000 µs. Signal �1 is packed into stream s1, �2



and �3 are packed into s2. The key signals of �2 and �3 are
packed into their own separate streams (not shown).

With this setup, an optimized routing is depicted in Fig. 1a.
A simple schedule can be seen in Fig. 2a. The red blocks
visualize the transmission of streams s1 and s2 on network
links. The blue blocks visualize tasks executed on the pro-
cessing element of the end-systems. To guarantee deterministic
schedules in TSN we have to isolate the frames in the time
domain, leading to the delay of f1 and thus ⌧3. See [4] for a
discussion on non-determinism in TSN.

However, this simple schedule does not consider the re-
dundancy or security requirements of the signals. Considering
them results in the schedule shown in Fig. 2b. Note how the
black dashed line separates the TESLA key release intervals.
Streams carrying keys are orange, key generation tasks purple,
key verification tasks green and the MAC generation/validation
operations on ES red. Especially interesting to see is the delay
incurred by the time-delayed release of keys. Tasks ⌧3 and ⌧4
can only be executed after the keys authenticating s1 and s2
have arrived in the second interval, and after key verification
and MAC validation tasks have been run.

V. CONSTRAINT PROGRAMMING-BASED SOLUTION

Several related scheduling problems have been successfully
solved using Integer Linear Programming [7] and Satisfiability
Modulo Theories [4]. Hence, we have decided to use a Con-
straint Programming (CP)-based solution. In our solution, we
decompose the problem into separate constraint optimization
problems, determining: (1) Pint; (2) stream routes; and (3) task
and stream schedules, using determined routes and Pint.
Although such a problem decomposition does not guarantee
optimality, it increases the scalability, and we have found it to
obtain good results in practice. For brevity reasons, we do not
formalize the constraints here and refer the reader to [9] for a
complete formulation.

A. Pint

We constrain Pint to be the maximum value for which we can
satisfy the latency requirements of our system, while we fix d
to 1, similar to [7].

Constraints: Pint is small enough to allow function paths
to be authenticated before their deadline. Pint is smaller than
the minimum period of all applications. Pint is a factor of the
greatest common divisor of all application periods.
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Fig. 2: Example solution showing schedules for the architec-
ture and applications in Fig. 1

Optimization Objective: Maximize Pint. This will minimize
the CPU and bandwidth overhead of the security applications.

B. Stream Routing
The routing problem consists of finding multiple disjunct (non-
overlapping) minimum-cost spanning trees between a source
node and one or more destination nodes on a directed weighted
graph. Each edge of our graph (network link) is assigned
the same weight, such that the minimum-cost spanning tree
represents the shortest route. Our solution is inspired by [10].

Iteratively selecting the minimum-cost spanning tree for
each redundant route may lead to sub-optimal results (e.g. for
trap topologies). Our heuristic is that by minimizing the total
number of links used in the disjoint routes, we can improve
the latency of FPs.

Routing Constraints: The stream sender must have a succes-
sor (on the route), all stream receivers must have a predecessor,
and each switch which is a successor of a node must also have
a successor. The sum of the bandwidth used by all streams
routed through a link may not exceed the available bandwidth.
All redundant copies of a stream cannot have common links
on their routes and a route may not contain cycles.

Optimization Objective: Minimize the total sum of links
used by all routes.

C. Task and Stream Scheduling
The scheduling problem consists of finding a network schedule
such that all deadline requirements are satisfied, the TESLA
security condition is fulfilled and the TSN frame isolation
constraints are applied. Some constraints are adapted from [7]
and [4].

Stream Constraints: A stream is only scheduled on the ESs
and links of its route; its transmission time on a link is equal
to the stream size divided by the link speed. Streams may not
be transmitted on a link before they have been fully received
at the link’s source and they may not overlap on the same link.
A stream’s execution time (for MAC generation/verification)
on an ES is equal to one hash worst-case computation time.

The key corresponding to a stream’s MAC may only be
released in the interval after the stream has been fully received.
The key corresponding to a stream’s MAC has to be verified
before the MAC can be verified.

For each link connected to an output port of a SW, the
streams arriving at all input ports of that SW that want to
use this output port, cannot overlap in the time domain (TSN
frame isolation for determinism, see [4] for more details).

Task Constraints: A task may not start before its incoming
streams have arrived and are authenticated and it has to finish
before its outgoing streams can be sent. Tasks’ execution
does not overlap with themselves or stream MAC genera-
tion/verification.

Function Path Constraint: The end-to-end latency of each
function path is smaller than its the deadline.

Optimization Objective: Maximize the sum of all function
path laxities, whereby the laxity is the difference of the
deadline and latency of a function path.

VI. EVALUATION

Our CP approach was implemented in Python 3.7 using the
CP-SAT solver from Google OR-Tools. The evaluations were
run with an i7-8565U CPU and 16 GB of DDR4-RAM. We
have used the following test cases, with varying topologies,
see their details in the first five columns of Table I: the
example used in this paper (TC0), a realistic automotive test
case from General Motors (TC1), a medium-sized automotive



TABLE I: Evaluation of our Constraint Programming approach
No TESLA ASAP OPT

ES SW Tasks Signals Lax. Bw. Util. Runtime Lax. Bw. Util. Runtime Missed D Lax. Bw. Util. Runtime
TC0 4 2 4/9 3/6 1,367 2.88 10 0.1 s 314 6.56 14 0.1 s 0/2 1007 6.56 14 0.1 s
TC1 20 20 47/115 48/96 150977 0.15 2.73 30 min -3233466 0.69 5.74 6.5 min 48/48 33995 0.69 5.74 30 min
TC2 6 1 24/37 21/28 24718 0.99 18.59 6 min -3207 4.77 21.01 1 s 4/7 19046 4.77 21.01 20 s

TC3.1 4 2 16/20 5/8 2997 0.64 49.60 0.6 s -1422 0.71 56.10 0.2 s 4/5 2801 0.71 56.10 1 s
TC3.2 8 4 32/41 12/19 6797 1.05 49.62 2 s -2447 1.13 57.46 0.6 s 8/12 6330 1.13 57.46 16 s
TC3.3 16 8 64/80 27/40 16000 0.59 49.53 10 s -5524 0.64 55.83 15 min 19/27 14856 0.64 55.83 21 min
TC3.4 32 16 128/161 52/79 27951 0.32 49.59 30 min -11417 0.35 55.32 30 min 40/52 26424 0.35 55.32 30 min

case study from [11] (TC2) and synthetic industrial test cases
of increasing size inspired by [12] (TC3.1–3.4). All testcases
contain security and safety-critical (with RLs between 1–3)
applications and the topologies support redundant routing, i.e.,
disjoint routes can be constructed where necessary. As MAC
function for TESLA, we chose HMAC-MD5 with a key length
and MAC length of 16 B and a hash computation time of 10 µs
on all ESs. The MTU is 1,500 B and an Ethernet frame has
an overhead of 22 B. The link speed is 10 Mbit/s for TC0 and
TC2, 100 Mbit/s for TC1 and 1000 Mbit/s for TC3.1-3.4.

We were interested to evaluate the ability of our CP imple-
mentations to derive optimized solutions using TESLA, see the
results in Table I. We used two CP implementations: ASAP,
which uses optimized Pint and routing, but uses a heuristic
where tasks and messages are scheduled as-soon-as-possible
when their resources are available without considering end-to-
end latency constraints; and OPT, which is our full CP solution
that also optimizes scheduling according to the optimization
objective in Sect. V-C and function-path deadline constraint.
ASAP and OPT were compared on the cost function (Lax
in the table), Bandwidth (Bw., mean bandwidth used on all
network links) and the CPU utilization of ESs (Util.). Note
that a larger Lax is better, and when FPs miss their deadlines,
the value can be negative. Runtime is the time it took to run
the CP solver.

In the table we also show the results for an implementation
we call No TESLA, which is our OPT implementation without
applying TESLA for security, which means that there are less
tasks and signals (first number in the Tasks/Signals column) at
the cost of security and safety. As expected, TESLA introduces
overheads in terms of Lax, Bw and Util, see the OPT columns
compared to No TESLA. We expect that for larger realistic test
cases, where only a small part of applications are security- and
safety-critical, the overheads introduced by TESLA via our CP
implementations will be relatively small.

As we can see from the table, our proposed OPT solution
is able to find feasible solutions. Although applying TESLA
introduces overheads compared to No TESLA, OPT is able
to significantly reduce these overheads through optimization.
Regarding scheduling optimization, when comparing OPT to
the ASAP solution, which does not optimize the schedules,
we can see that OPT improves the laxity results significantly.

Using the synthetic test cases (TC3.1–3.4) of increasing size
we evaluate the scalability of our solution. The synthetic test
cases feature mesh topologies with increasing number of ESs
and SWs. Each ES runs 8 tasks of which 4 communicate
over the network. We can see that the runtime increases
exponentially with the test case size. We have used a time limit
of 30 minutes for all runs. If the solver has finished before this
time limit (see the Runtime columns), then the optimal solution
(considering our problem decomposition) has been obtained;
otherwise, it returns the best solution found.

VII. CONCLUSION

In this paper we have addressed distributed safety-critical
cyber-physical systems that use TSN for communication.
We have considered mixed-criticality real-time applications
that use static cyclic scheduling for tasks and the time-
triggered traffic type for messages; applications have both
fault-tolerance and security constraints, addressed via redun-
dant routing and TESLA, respectively.

We have developed a method to derive the necessary tasks
and signals needed for the use of the TESLA authentication
protocol. We have formulated constraints that guarantee the
timing properties of applications using TSN and the security
properties of TESLA, as well as the redundancy constraints of
streams to tolerate permanent link failures. These constraints
have been used with a CP solver to synthesize stream routes
and combined task and network schedules.

We have evaluated the impact of TESLA in terms of
application latency and network bandwidth. As the results
show, we are able to derive optimized implementations that
can significantly reduce the latency overheads.

In the future we would like to extend this work by com-
paring the CP implementation with a heuristic, adding more
testcases and discussing the threat model in more details.
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