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ABSTRACT
Variable-bandwidth servers (VBS) control process execution
speed by allocating variable CPU bandwidth to processes.
VBS enables temporal isolation of EDF-scheduled processes
in the sense that the variance in CPU throughput and la-
tency of each process is bounded independently of any other
concurrently running processes. In this paper we aim at re-
ducing CPU power consumption with VBS by CPU voltage
and frequency scaling while maintaining temporal isolation.
Scaling to lower frequencies is possible whenever there is
CPU slack in the system. We first show that, in the presence
of CPU slack, frequency scaling of EDF-scheduled, possibly
non-periodic tasks (as they arise with VBS) is safe up to full
CPU utilization and propose a frequency-scaling VBS algo-
rithm that exploits CPU slack to minimize operating fre-
quencies with maximal CPU utilization while maintaining
temporal isolation. Additional power may be saved by re-
distributing computation time of individual processes while
still maintaining temporal isolation if the system has knowl-
edge of future events. We introduce an o✏ine algorithm as
an optimal baseline and an online algorithm that approxi-
mates the baseline. While the o✏ine algorithm works for
various, possibly complex power consumption models, the
online algorithm may reduce power consumption only for a
simplified power consumption model by reducing the CPU
utilization jitter in the system.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management—Schedul-
ing

General Terms
Algorithms, Management, Theory
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1. INTRODUCTION
We study methods to reduce CPU power consumption of

software processes scheduled with variable-bandwidth servers
(VBS) [9, 8]. A VBS is similar to a constant-bandwidth
server (CBS) [1]. The di↵erence is that while CBS allocates
a constant fraction of CPU time to a process (the server
bandwidth) at a constant granularity (the server period),
VBS allows the process to change both server bandwidth
and server period. This enables a VBS process to change
its execution speed at runtime, as long as the resulting CPU
utilization remains under a given bandwidth cap. Similar
to CBS, multiple VBS processes are EDF-scheduled with
deadlines equal to the server periods.

Process code that is executed at a constant speed with
VBS is called an action. A VBS process is therefore a se-
quence of actions. The response time of an action is the real
time it takes an action to execute from arrival to termina-
tion. For each action of a VBS process, there exist lower and
upper bounds on response times and thus also on response
time jitter that are independent of any other, concurrently
running processes, as long as CPU utilization (the sum of
all bandwidth caps) is less than or equal to 100% [9, 8] (Sec-
tion 3). VBS enables temporal isolation of processes on the
level of individual actions. Temporal isolation allows actions
to maintain their response time bounds and jitter even in the
presence of other, concurrently running processes in the sys-
tem. The overhead of VBS scheduling has been analyzed
and discussed [7].

Modern processors often support dynamic scaling of CPU
voltage and operating frequency, which opens up the gen-
eral possibility to reduce CPU power consumption. We first
relate our work to other research in the area of power-aware
computing (Section 2).

We then show that, in the presence of CPU slack, fre-
quency scaling of EDF-scheduled, possibly non-periodically
arriving tasks (such as the tasks from the actions of VBS
processes) is safe up to full CPU utilization. We identify
the sources of CPU slack in VBS-scheduled systems and
propose a frequency-scaling VBS algorithm, which exploits
CPU slack to minimize operating frequencies while main-
taining temporal isolation (Section 4).

In a VBS-scheduled system we distinguish two types of
slack, static and dynamic. Static slack is given by the total
sum of bandwidth caps of the VBS processes. With static
slack, the operating frequency is scaled back to the recipro-
cal of the static slack computed once at boot time and never
changed at runtime. Considering dynamic slack enables fur-
ther reductions in operating frequency. Dynamic slack may

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. 
The definitive Version of Record is available at https://doi.org/10.1145/1879021.1879056



occur at runtime and varies depending on action parame-
ters. We distinguish two types of dynamic slack, action and
termination slack. Action slack occurs whenever a VBS pro-
cess switches to an action that utilizes the CPU below the
bandwidth cap of the process. Termination slack is the re-
sult of the so-called VBS termination strategy, which delays
the transition from one action to the next by postponing the
actual completion of an action until its logical termination at
the end of the server period in which the action completed.
The termination slack of an action may be used to decrease
CPU utilization by decreasing the action’s server bandwidth
such that the action still completes within its response time
bounds. We present methods on how to exploit both types
of dynamic slack, individually and combined.

We consider the problem of reducing power consumption
further by giving the scheduler even more freedom to redis-
tribute computation time of actions among the server peri-
ods during which the actions execute without a↵ecting the
actions’ original response time bounds (Section 5). In or-
der to use this freedom, the system must have knowledge
of future actions. Furthermore, the problem of reducing
power consumption depends on the specific power profile
of the CPU as well as the number of frequency switches
performed. We present an optimal o✏ine algorithm that
minimizes a given power-consumption function (that may
incorporate such a power profile and switching overhead) by
computing the best possible configuration of server band-
widths for every server period during which an action exe-
cutes. The optimal o✏ine algorithm is a baseline for an on-
line algorithm that is feasible for real-time systems. Given
a simplified power consumption model, the online algorithm
decreases CPU utilization jitter to approximate the opti-
mal algorithm by steering actual CPU utilization towards a
computed average.

We show in a series of experiments using simulated pro-
cesses and actions that combining the two types of slack
saves more power than exploiting action slack alone, and
additionally that the best power consumption savings are
achieved through the optimal o✏ine algorithm (Section 6).
We conclude the paper and give an outlook on future work
in Section 7.

2. RELATED WORK
Reducing the operating frequency of a CPU allows a re-

duction of its supply voltage [5, 16] and may therefore reduce
power consumption. The consumed power P is proportional
to the square of the voltage level V . This dependency is typ-
ically expressed as P / f ·V 2, where f is the clock frequency.

We relate our work to previously published research on
power-aware scheduling algorithms. The main technique
used is Dynamic Voltage scaling (DVS), which in the context
of real-time systems aims at reducing power consumption
without negatively a↵ecting the timing properties of tasks.

Most DVS algorithms for real-time systems reclaim the
unused time generated by tasks that finish their execution
faster than their worst-case execution times indicate. The
notion of load in our model is di↵erent than the notion of
worst-case execution time in classical scheduling. The load
describes the actual amount of CPU time that an action
takes. Furthermore, even if the load is unknown, an action
will execute for exactly the same amount of CPU time in
each period, specified by the limit (budget), except the last
period in some cases. Hence, the classical methods of spec-

ulating on early completions of processes for reducing power
consumption are not directly applicable to VBS. As a re-
sult, our power-reduction algorithms appear to be largely
orthogonal to existing ones. Furthermore, we aim at reduc-
ing CPU power consumption while maintaining temporal
isolation on the level of actions rather than tasks. In [12,
11], periodic processes with deadlines equal to periods are
considered. There are two phases, an o✏ine phase, which
calculates the voltage level such that, if all processes run for
their worst-case execution times, the timing requirements
are still met, and an online phase which tries to reclaim un-
used execution time. In addition to the two phases, the work
in [16] presents a look-ahead mechanism that tries to reduce
power consumption beyond the conservative approaches by
determining future computation needs of processes. A static
optimal solution assuming worst-case workload, online speed
reduction considering actual workload, and an online specu-
lative speed adjustment to anticipate early completions are
presented in [2]. Other studies use similar approaches by re-
laxing the periodicity assumption on the process model [17,
19]. Similar to our algorithm, the work in [17] modifies the
frequency of EDF-scheduled systems at runtime according
to the current utilization of released tasks.

Another class of algorithms, called intra-task DVS [3],
make use of the execution characteristics of processes and re-
quire compiler support to reduce power consumption. Such
methods allow CPU voltage and frequency scaling within the
process boundary, by calculating the slack of executed seg-
ments to reduce the voltage for further segments. One im-
portant issue is how to divide a program into segments since
more frequent changes in voltage result in more e�cient use
of slack but also imply more power and time overhead.

VBS is closely related to CBS [1]. The di↵erence between
VBS and CBS is in mechanism (dynamic rather than static
periods and budgets) and model (process actions rather than
tasks). The VBS model allows us to define a precise notion
of programmable temporal isolation for controlling the ”ex-
ecution throughput” as well as the ”execution latency” of in-
dividual process actions (pieces of code). Any process that
changes from/to throughput-oriented (large periods, bud-
gets) to/from latency-oriented (small periods, budgets) ac-
tivities may benefit from VBS [8, 7].

VBS is also related to other resource reservation schedul-
ing mechanisms like elastic scheduling [6] and RBED [4].
Reduced power consumption for systems employing resource
reservation techniques is presented in [18]. The algorithm,
called GRUB-PA, reclaims unused processor capacity and
uses it to slow down the processor without a↵ecting the tim-
ing properties of processes. Elastic scheduling is combined
with DVS [14] to either improve performance or power con-
sumption for real-time systems. In [13] power management
is integrated with the RBED scheduling framework by ex-
ploiting unused computation time generated by the early
completion of processes. Additionally, a more exact power
model and a frequency switching overhead analysis are also
considered.

3. VBS SCHEDULING
We briefly recall the necessary definitions and results of

VBS scheduling which was introduced in previous work [9,
8]. A variable-bandwidth server (VBS) is uniquely deter-
mined by a utilization u that represents an upper bound
bandwidth cap. A VBS process may allocate a fraction of



CPU time over a time interval as long as this fraction stays
below the given bandwidth cap. VBS is an extension of a
constant-bandwidth server (CBS) [1]. While CBS allocates
a constant fraction of CPU time to a process (the server
bandwidth) over a constant time interval (the server period),
VBS allows the process to change both server bandwidth and
server period, as long as the bandwidth remains under the
given bandwidth cap. This enables a VBS process to change
its execution speed at any time. VBS employs virtual peri-
odic resources [20], defined as a pair of a period and a limit
(with bandwidth equal to the ratio of limit over period). A
VBS can change its execution speed by changing the virtual
periodic resource. A process running on a VBS can initiate
a resource switch at any time. The portion of process code
from a change in speed to the next change is called an action.
A VBS process is therefore a sequence of actions. Note that
the execution of a process can be an unbounded sequence
of actions but the available virtual periodic resources are fi-
nite, which results in a finite schedulability condition. The
time it takes to execute an action is explicitly modeled and
called the response time of the action. The key result of
VBS is that, for each action of a VBS process, there exist
lower and upper bounds on response times and thus also on
jitter that are independent of any other concurrently execut-
ing VBS processes, as long as system utilization (the sum
of all bandwidth caps) is less than or equal to 100% [9, 8].
This property enables temporal isolation.

More formally, a process P (u) corresponding to a VBS
with utilization u is a finite or infinite sequence of actions,

P (u) = ↵0↵1↵2 . . .

for ↵i 2 Act, where Act = N ⇥ R, with R being the finite
set of virtual periodic resources explained below. An action
↵ 2 Act is a pair ↵ = (l, R). The load l of an action is the
exact amount of time the action needs to execute on R. The
virtual periodic resource R is a pair R = (�,⇡) of natural
numbers with �  ⇡, where � denotes the limit and ⇡ the
period of the resource. The limit � specifies the maximum
amount of time the process P can execute on the virtual
periodic resource within the period ⇡, while performing the
action ↵. The utilization of R is uR = �

⇡  u.

3.1 Schedulability Analysis
Let P = {Pi(ui) | 1  i  n} be a finite set of n processes

with corresponding actions ↵i,j = (li,j , Ri,j) for j � 0. Each
Pi(ui) = ↵i,0↵i,1 . . . corresponds to a VBS with utilization
ui. Let Ri,j = (�i,j ,⇡i,j) be the virtual periodic resource
associated with the action ↵i,j with li,j ,�i,j , and ⇡i,j being
the load, the limit, and the period for the action ↵i,j . Let I
denote the process index set, I = {1, . . . , n}.

Proposition 1 ([8, 9]). Given a set of VBS processes
P, if

P
i2I ui  1, then the set of processes P is schedulable

within the upper and lower response-time bounds, bui,j and
bli,j , explained below.

Given a schedule for P, for each process Pi 2 P and each
action ↵i,j = (li,j , Ri,j) that appears in Pi we distinguish
four absolute moments in time:

• Arrival time is the time instant at which ↵i,j arrives.
The first action has zero arrival time while for all others
the arrival is the time instant at which the previous
action of the same process has been terminated.

• Completion time of ↵i,j is the time at which the action
finishes executing its load.

• Termination time of ↵i is the time at which the action
is terminated. There is a di↵erence between comple-
tion and termination. Termination is set to be at the
end of the period within which the action has com-
pleted. The process can only invoke its next action if
the previous one has been terminated.

• Release time is the earliest time when ↵i can be sched-
uled. In VBS an action is released at the next period
instance. Another release strategy is also possible with
VBS [8] but is irrelevant for the results of this paper.

Given that the set P of VBS processes is schedulable, its
schedule is obtained using EDF for the set of tasks resulting
from each action. Namely, each action can be seen as a se-
quence of EDF tasks with release times at period instances,
computation times equal to the limit (except for the last
task), and deadlines equal to the next period instance.

The upper and lower response-time bounds for an action
↵i,j are given by

bui,j = ⇡i,j � 1 +

⇠
li,j
�i,j

⇡
⇡i,j , bli,j =

⇠
li,j
�i,j

⇡
⇡i,j .

Using these bounds, we can compute the response-time
jitter of an action ↵i,j , i.e., the di↵erence between the upper
and lower bound on the response time. We di↵erentiate
between the logical response time jitter, which is the time
from arrival until termination, and the actual response time
jitter given by the time from arrival to completion. The
logical response time jitter is at most ⇡i,j�1 while the actual
is bounded by 2(⇡i,j � 1). This di↵erentiation is based on
the time at which an action e↵ect takes place, i.e., whether
the e↵ect of the action is at termination and not before, or
whether the action has an e↵ect on the system at completion.

3.2 VBS Utilization Slack
Weminimize operating frequency of the processor by max-

imizing system utilization which may result in lower power
consumption. In order to achieve this, we must identify the
sources of slack in the system. This slack can be then used
to scale down the maximum frequency fmax to a new fre-
quency fnew such that all actions still respect their response
time bounds. Let

⌘ =
fnew

fmax

be the frequency-scaling factor, the ratio between the new
processor frequency and the maximum frequency. If the pro-
cessor has been scaled with the factor ⌘, a load of 1 time
units will take 1

⌘ time units.
Consider a set of two VBS processes with one action each,

namely P1(0.25) with action ↵1,1 = (5, (1, 4)) and P2(0.25)
with action ↵2,1 = (6, (3, 12)). Scheduled with VBS, the sys-
tem would be idle for 50% of the time. We can use this idle
time to reduce the frequency of the processor such that the
actions still meet their response time bounds. In this simple
example, the system behaves like an ordinary periodic EDF-
scheduled system due to no action switches. For EDF, com-
puting the minimum speed at which the processes still meet
their deadlines is straightforward. For a system of n periodic

EDF-processes with utilization U =
Pn

i=1

Ci

Ti
, where Ci is



the computation time and Ti is the period of process Pi, the
minimum frequency at which the processes still meet their
deadline is given by the frequency-scaling factor ⌘ = U [21].
Since in this example the two VBS processes are periodic
EDF processes, we can scale the frequency of the processor
to 50% such that the actions become ↵1,1 = (10, (2, 4)) and
↵2,1 = (12, (6, 12)). The response time bounds of the actions
are the same even when running at this lower frequency.

In general the VBS process model di↵ers from the periodic
EDF process model so we cannot use this metric straightfor-
wardly due to the changing and interleaving of the actions.
We also cannot use traditional slack estimation techniques
that take advantage of the WCET of processes because we
assume that the load of an action is fixed. A VBS system
has two types of slack, static and dynamic. The static slack
results from the total system utilization, i.e. the sum of
the bandwidth caps. This static slack provides a reference
frequency for our system of VBS processes.

The dynamic slack results from the property of VBS that
actions may have utilization lower than the bandwidth cap
and from the termination strategy. In the following section
we will describe the static and dynamic slack and use the
dynamic slack to reduce the frequency even further than the
reference frequency while still allowing all actions to finish
their execution within their response time bounds.

4. FREQUENCY-SCALING VBS

4.1 EDF frequency scaling
Before we proceed with frequency-scaling VBS, we present

a general result for frequency scaling of EDF tasks, on which
all our other results rely.

Lemma 1. An EDF-schedulable set of tasks with release
times, computation times, and deadlines, is still schedulable
if the processor frequency in between any two release times
is set to at least Uc · fmax, with Uc being the current total
utilization of all released tasks in the considered interval of
time between two releases.

Proof. We are first going to prove the following auxiliary
statement. Let T = {⌧i | ⌧i = (Ci, Ti) for 1  i  n} be an
EDF-schedulable set of tasks released at time 0, with task
⌧i having computation time Ci and deadline Ti. Moreover,
without loss of generality we may assume that T is ordered
by the deadlines, that is Ti  Tj for i  j. Let r be the
first time instant at which a new task is released. Then
scaling the frequency by the total utilization in the time
interval [0, r) is safe. More precisely, the utilization of all
tasks remaining at time r, having scaled the frequency in
[0, r), is not larger than the original utilization of the tasks
in T .

The utilization of task ⌧i is the ratio ui =
Ci
Ti

. The total

utilization of the set T is therefore U =
P

in
Ci
Ti

. Since the
set T is EDF schedulable, we have that U  1, and therefore
it allows for frequency scaling by factor ⌘ = U . Assume there
is a frequency scaling by U in the interval [0, r). This means
that the actual amount of work done in this interval is (at
most) r · U , but this work takes time (at most) r.

Let k be the largest task index such that

r �
X

i<k

1
U

· Ci � 0,

meaning that r �
P

ik
1
U · Ci < 0. If no such index exists,

then all tasks, even though scaled, can finish their compu-
tation up to time r, so the statement trivially holds. Note
that it is also possible that k = 1.

The crucial fact now is that in the interval of time (0, r)
no task is released. Therefore, using that the tasks were
ordered by deadlines, the schedule after scaling looks like
this: Task ⌧1 runs first having the earliest deadline for 1

U ·C1

time units (if k > 1), then task ⌧2 runs for 1
U ·C2 time units

(if k > 2), and so on, task ⌧k�1 runs for 1
U ·Ck�1 time units,

and finally task ⌧k runs for whatever remains until time r.
It is important to notice that

X

im

1
U

· Ci  Tm

for all m  n since
X

im

Ci

Tm

X

im

Ci

Ti
 U.

As a result, also Tk > r.
By this, the tasks up to ⌧k�1 finish their computation up

to time r, whereas part of the work of ⌧k remains, and the
tasks ⌧k+1, . . . , ⌧n have not even been scheduled yet, i.e.,
all their computation work remains to be done after time
r. Note that the actual work (scaled down to original fre-
quency) done by ⌧k up to time r can be computed as the
di↵erence from all the actual work done up to r and the
work done by all tasks with smaller index (earlier deadline):

r · U �
X

i<k

Ci.

Therefore, the remaining computation work of ⌧k is then

Ck �
 
r · U �

X

i<k

Ci

!
.

and hence the “remaining utilization” of ⌧k or rather the
utilization of the k-th task after time r is

Ck �
�
r · U �

P
i<k Ci

�

Tk � r
=

P
ik Ci � r · U

Tk � r

=
X

ik

Ci

Tk � r
�

r ·
P

in
Ci
Ti

Tk � r
.

Furthermore, the “remaining utilization” of ⌧i for i > k is

Ci

Ti � r
.

No other tasks remain in the system. We need to show that
the total utilization of the remaining tasks does not exceed
the original remaining utilization at time r which consists
of the utilization of all original tasks with deadlines after r.
Let m be the largest index such that Tm  r. We have that
m < k.

Hence, we need to show that

X

ik

Ci

Tk � r
�

r ·
P

in
Ci
Ti

Tk � r
+
X

i>k

Ci

Ti � r


nX

i=m+1

Ci

Ti
. (1)

Inequality (1) is equivalent to

X

ik

Ci

Tk � r
+
X

i>k

Ci

Ti � r


nX

i=m+1

Ci

Ti
+

r ·
P

in
Ci
Ti

Tk � r



which, after multiplying by Tk � r and some rearranging,
becomes

X

ik

Ci + (Tk � r) ·
X

i>k

Ci

Ti � r
 Tk ·

nX

i=m+1

Ci

Ti
+ r ·

X

im

Ci

Ti
.

Having that

X

im

Ci  r ·
X

im

Ci

Tm
 r ·

X

im

Ci

Ti

it would su�ce to prove that

kX

i=m+1

Ci

Tk
+

Tk � r
Tk

·
X

i>k

Ci

Ti � r


nX

i=m+1

Ci

Ti
. (2)

We have Ci
Tk

 Ci
Ti

for i  k since then Ti  Tk and hence

kX

i=m+1

Ci

Tk


kX

i=m+1

Ci

Ti
.

For the rest, if i > k, we first notice that

Tk � r
Tk

· Ci

Ti � r
=

Ci

Ti
· (Tk � r) · Ti

Tk · (Ti � r)
.

Hence, it would su�ce to prove that

(Tk � r) · Ti  Tk · (Ti � r) for i > k

which holds using the following arguments. For i > k, we
have Ti � Tk and hence (Tk � r) · Ti = Tk · Ti � r · Ti 
Tk · Ti � r · Tk = Tk · (Ti � r). As a result, we have that for
i > k,

Tk � r
Tk

· Ci

Ti � r
 Ci

Ti

which proves the inequality (2), completes the proof of in-
equality (1), and completes the proof of the auxiliary state-
ment.

Finally, the same arguments apply between any two con-
secutive releases.

4.2 Static Slack
In the VBS process model, each process Pi has a band-

width cap ui which represents the maximum utilization that
any of its actions may have. As a consequence of Lemma 1,
if the sum of all bandwidth caps is less than 1, we can safely
scale down the processor frequency by a frequency-scaling
factor equal to the sum of the bandwidth caps.

Proposition 2. A set of processes P = {Pi(ui) | 1  i 
n}, with a total system utilization

U =
X

i2I

ui,

is schedulable within the response-time bounds if the proces-
sor frequency is at least fref = U · fmax.

We call fref the reference frequency. If used, this reference
frequency is set once and never changed at run-time.

4.3 Dynamic Slack
Dynamically, at runtime, the operating frequency can some-

times be reduced further than the reference frequency. As
stated before, dynamic slack arises out of two VBS proper-
ties, hence we distinguish two types of dynamic slack.

• Termination slack, resulting from the VBS termina-
tion strategy.

• Action slack, generated by an action having utiliza-
tion less than the bandwidth cap of the process.

The termination strategy ensures that if an action finishes
its load at some time within a period, the termination is
postponed until the end of that period. We compute at
every arrival of a new action the termination slack of the
action and assign a new limit for the action that represents
the minimum time per period that does not cause the action
to exceed its upper response time bound.

For example, an action ↵ = (55, (30, 100)) could run for
28 time units every period and still meet its response time
bound 200, therefore the virtual periodic resource for this
action can be changed from (30, 100) to (28, 100) and the
resulting slack of 2 time units per period can be used to
scale down the processor.

At every time instant t when an action has an arrival the
scheduler computes the new limit considering the termina-
tion slack for the arriving action as

�⇤
i,j =

⇠
li,j
ni,j

⇡
,

where ni,j =

⇠
li,j
�i,j

⇡
is the number of periods needed for

the action ↵i,j to finish its load. Note that the new limit
never exceeds the old limit (�⇤

i,j  �i,j), so this change does
not influence schedulability. The action ↵i,j will thus be
transformed into an action ↵⇤

i,j = (li,j , (�
⇤
i,j ,⇡i,j)).

The action slack arises from newly arriving actions. If the
utilization of the new action is lower than the bandwidth
cap for the process, dynamic slack is introduced in the sys-
tem. The scaling factor is computed as the sum of remaining
utilizations of the active actions (the current actions of each
VBS process). The algorithm is invoked at the time in-
stants when an action has a release. The correctness of the
algorithm is ensured by the following corollary of Lemma 1,
which holds since between two action releases, even though
there are more task releases, the total utilization remains
constant.

Proposition 3. Let P = {Pi(ui) | 1  i  n} be a
schedulable set of VBS processes, with a total utilization cap
U =

P
i2I ui  1, where ↵i,j with a virtual periodic resource

(�i,j ,⇡i,j), for j � 0 are the actions of process Pi. This set
of processes is schedulable within the response-time bounds
if in between two action releases the processor frequency is

at least fnew = Uc · fmax where Uc =
Pn

i=1

�i,ji
⇡i,ji

is the to-

tal utilization of all released actions ↵i,ji in the considered
interval of time between two action releases.

Note that the two types of slack can be exploited sep-
arately or together. Using only the termination slack may
reduce the actual response time jitter of the action, while us-
ing just the action slack does not modify the original limit of
the action. It is only when used together that the minimum
possible operating frequency is achieved and CPU utilization
is maximized.

It is worth noting here that CBS is a special case of VBS
for ”periodic processes”. The utilization of a CBS does not
change (unlike of a VBS). Therefore, the CPU slack gener-
ated by changing actions with VBS does not exist in CBS.



However, the CPU slack generated by the termination strat-
egy may also exist with CBS. Therefore, our method for
exploiting termination slack may also be applicable to CBS.

4.4 FS-VBS Algorithm
We present the algorithm that computes the minimum fre-

quency at which the processor can run such that all actions
meet their response time bounds. The two types of dynamic
slack can be used separately or together, we present the com-
bined algorithm in Listing 1.

Listing 1 FS-VBS(t)

Require: t
1: AA = ARRIVAL[t]
2: for all ↵i,j 2 AA do

3: ni,j =

⇠
li,j
�i,j

⇡

4: �i,j =

⇠
li,j
ni,j

⇡

5: end for

6: RA = RELEASED[t]
7: for all ↵i,j 2 RA do

8: Uc = Uc +
�i,j

⇡i,j

9: end for

10: return fnew = Uc · fmax

The algorithm is invoked at every time instant t given by
the release or arrival of an action. The first part of the algo-
rithm (line 1�5) adjusts the limit of every action taking ad-
vantage of the termination slack while the second part (line
6 � 9) computes the utilization of all released actions. For
the termination slack, we compute the minimum limit per
period for all actions that have an arrival at time t such that
all actions will still respect their response time bounds. For
the action slack, we consider all actions that are released in
the system at time t, i.e. the current actions of the processes
at time t. In the end, the algorithm computes the minimum
operating frequency in relation to the maximum frequency
available. We can now safely scale down the processor to
fnew since we know that the system of VBS-scheduled ac-
tions will meet their response time bounds.

5. LOOK-AHEAD FS-VBS
Up to this point we maximize CPU utilization by switch-

ing to the lowest possible operating frequency such that all
actions still respect their response time bounds. This may
lead to improvements in power consumption. However, our
assumptions are based on a simple power model and disre-
garded the switching cost (both in power and time). The
power consumption of a system is typically non-linear and
depends largely on the platform and workload [22]. Switch-
ing to the lowest possible frequency by exploiting the static
and dynamic slack of VBS processes may not lead to the
best possible power savings due to the complex power pro-
file of the system as well as the overhead introduced by the
frequency switches [15].

In general, in terms of power consumption, we have to
consider the active energy (Ea) consumed by the CPU at
di↵erent frequencies and the energy usage introduced by the
switching of frequencies (Es) over a time interval �t, i.e.

E = (Ea + Es) ·�t.

In most studies, it is assumed, for simplicity, that the active
energy consumption Ea is proportional to V 2. More ac-
curate models can be found in [23, 24]. The time overhead
generated by the switches could be readily incorporated into
the schedulability analysis by accounting for it using an over-
head accounting framework, cf [7].

Our analysis now aims at improving power consumption
beyond what has been presented in Section 4. Depending
on the system model, more energy can be saved by allowing
an action more freedom on how the load is executed within
the periods, i.e., an action may assign a di↵erent limit for
every period of its execution as long as the original response
time bounds are met. In order to use this freedom, an action
must have knowledge of the future.

In the remainder of the paper we concentrate on describing
more advanced methods to reduce CPU power consumption
while maintaining response times, using future knowledge.
First, we present an optimal o✏ine method that computes
limits for all period instances of the actions that will result
in the best power savings. The energy consumption function
can be plugged in depending on the specific power profile of
the system. We consider a simple power model in which
energy consumption depends on frequency but also on the
number of frequency switches and present the optimal o✏ine
algorithm for it. We then present an online algorithm that
approximates the o✏ine algorithm for that particular power
model.

5.1 Optimal Offline FS-VBS
We start from the ideal case, where the sequence of action

changes is fully known. Since a process can run for an infinite
amount of time, yet the changes of actions are known, we
assume that action changes are periodic, i.e., the process can
be seen as a finite loop that executes infinitely often.

For any process Pi(ui) let ⇢i : N ! R be a function that
keeps trace of the resources used. That is ⇢i(j) = Ri,j if
and only if ↵i,j = (li,j , Ri,j), i.e., Ri,j is the resource used
by the action ↵i,j . A process Pi(ui) is a loop if there exists
a number si 2 N such that ⇢i(j + si) = ⇢i(j), 8j 2 N. This
may seem as a serious restriction, but actually it is only
used in Equation (3) and (4). Moreover, it is common that
processes are actually loops.

Considering an action ↵i,j that runs (normally, in the

standard VBS algorithm) for ni,j =

⇠
li,j
�i,j

⇡
periods, we aim

at finding values �i,j,k for k = 1, . . . , ni,j such that if the
action runs for time �i,j,k in the k-th period instance of ↵i,j

then the power consumption, given a certain power model, is
minimal. This amounts to a constrained optimization prob-
lem for minimizing power consumption. Namely, we look
for values �i,j,k minimizing the power consumption function
which we denote by

F (�i,j,k | i 2 I, j � 0, 1  k  ni,j).

Note that if we consider ⇧ = {⇡i,j | i 2 I, j � 0}} then any
interval [n · gcd(⇧), (n + 1) · gcd(⇧)] for n 2 N is contained
in a single period instance of each active action. This means
that in such an interval, the total utilization of the system
is calculated as

X

i2I

�i,j,kn

⇡i,j
,



where �i,j,kn is the new limit for the period instance ⇡i,j that
contains the mentioned interval of the active action ↵i,j .

The total power consumption is the sum of the power
consumption in each interval [n · gcd(⇧), (n+1) · gcd(⇧)] for
n 2 N, thus we can write that

F (�i,j,k | i 2 I, j � 0, 1  k  ni,j) =

gcd(⇧)
X

n2N
Fn(�i,j,kn | i 2 I, j � 0).

As in the general model, we can write

Fn(�i,j,kn) = Ea,n(�i,j,kn) + Es,n(�i,j,kn).

By plugging particular power-consumption functions Ea,n

and Es,n, one gets the global power consumption function.
We minimize F (�i,j,k) subject to the following constraints
imposed by the semantics of VBS. For all �i,j,k,

ni,jX

k=1

�i,j,k 
⇠
li,j
�i,j

⇡
�i,j ,

expressing that the sum of �i,j,k for an action ↵i,j does not
exceed the amount of work the action could do in its periods
in the standard VBS execution. Next,

ni,jX

k=1

�i,j,k � li,j ,

expressing that the action ↵i,j will execute its entire load
li,j . It may be that in a period instance an action does not
execute any of its load, yet the new limits can not be nega-
tive, �i,j,k � 0. In order to respect the response-time jitter,
we have to ensure that the action will not finish earlier than
its lower response time bound. Therefore, in the last period
instance, the action must execute for at least 1 time unit and
additionally, the action must not complete its entire load in
the previous period instances. We express this through the
following two constraints

ni,j�1X

k=1

�i,j,k < li,j ,

�i,j,ni,j � 1.

Next, for every interval [n · gcd(⇧), (n+ 1) · gcd(⇧)], n 2 N,
the system may not be over-utilized, namely

X

i2I

�i,j,kn

⇡i,j
 1,

where kn is as before.
As an instantiation, we consider the simplified model in

which the active energy consumed is proportional to the
square of the voltage and the number of frequency switches.
In this model, we reduce the power consumption by reduc-
ing the CPU utilization jitter. CPU utilization jitter is the
di↵erence between the system utilization at a certain time
and a computed average system utilization over the whole
life-time of the system.

In order to compute Ea and Es, we start by computing the
upper response-time bound for a loop iteration of process Pi

now assumed to be a loop, as

bui =
siX

j=1

bui,j . (3)

The average utilization uavg
i of process Pi is therefore

uavg
i =

Psi
j=1

⇣l
li,j
�i,j

m
�i,j

⌘

bui
. (4)

Next, we compute the average utilization of a system of
n processes {P1, . . . , Pn} as the sum of average process uti-
lizations, i.e.,

uavg =
nX

i=1

uavg
i .

The active energy consumption in the interval [n·gcd(⇧), (n+
1) · gcd(⇧)], for n 2 N, is proportional to the square of the
voltage, thus we try to minimize

Ea,n =

 
uavg �

X

i2I

�i,j,kn

⇡i,j

!2

.

Recall that the number of frequency switches over any such
interval is at most 1. Hence, the energy consumed by a fre-
quency switch is a constant �. The function to be minimized
is therefore

F (�i,j,k) = gcd(⇧)
X

n2N

  
uavg �

X

i2I

�i,j,kn

⇡i,j

!2

+ �

!
. (5)

In real-time systems this solution may not be feasible due
to the large number of variables that need to be stored
(one for each period instance of each action) and due to
the computational complexity of finding the optimal val-
ues. We therefore elaborate on an online algorithm that
approximates the o✏ine algorithm under the same power-
consumption model.

Figure 1: Utilization jitter with fixed limits for every

period of ↵ (standard VBS semantics).

5.2 Look-ahead Online FS-VBS
Consider the example in Figure 1. We only look at one

action ↵ of one process with period 100 and utilization 30%
(u↵). The action needs 5 periods to finish its load of 148.
The actions of other processes in the system that run con-
currently generate a changing system utilization, uP in Fig-
ure 1, resulting in a total CPU utilization uS . We only look
at one action at a time and we will henceforth refer to it
simply as ↵, dropping the indices i, j, in order to simplify
the notation. At time t, when the action ↵ arrives, we cal-



Figure 2: Reduced utilization jitter with modified

limits for each period of ↵.

Interval u↵ uP uS

[0, 60) 30% 60% 90%
[60, 160) 30% 20% 50%
[160, 220) 30% 40% 70%
[220, 300) 30% 70% 100%
[300, 500) 30% 20% 50%

Table 1: Utilization of ↵, concurrently running pro-

cesses and total CPU utilization in subintervals of

[0, 500].

culate the utilization over every interval where the actions
of the other processes in the system change, starting from t
until the time of termination of ↵. For the example in Fig-
ure 1 we have the intervals of changing CPU utilizations in
the system shown in Table 1, where u↵, uP , and uS are as
before. The total system utilization uS is given by uP +u↵.

The algorithm computes the average system utilization
over each period instance of action ↵. Additionally, we also
compute the total average system utilization uavg as in Sec-
tion 5.1. In the k-th period instance of ↵, let ue

k denote the
utilization error, which is the di↵erence between the average
utilization in the k-th period instance and the total average
system utilization uavg. The new utilization for the k-the
period instance of ↵ is computed as

u↵⇤
k = u↵ � ue

k.

In the example, the first period instance of ↵ is the interval
[0, 100). In this interval the system utilization is 90% from
time 0 to 60, and 50% from time 60 to 100. Therefore the
average system utilization for this period instance is 74%.
Since the uavg = 65%, the utilization error for this period
instance is 9%.

k Interval ue
k u↵⇤

k

0 [0, 100) 9% 21%
1 [100, 200) �7% 37%
2 [200, 300) 29% 1%
3 [300, 400) �15% 45%
4 [400, 500) �15% 45%

Table 2: Utilization error and new utilization for ↵
in di↵erent period instances.

Table 2 shows the resulting utilization error and new uti-
lization for every period instance of ↵.

Ideally, if action ↵ would be modified to have the uti-
lization in each period instance equal to the computed new
utilization, the utilization jitter would be minimal. How-
ever, there are two issues to be addressed before the action
can be changed. One issue is that the response-time bounds
of ↵ should not change. By modifying the utilization in
each period instance, the limit of the action for each period
changes. In the example, the new limits will be 21, 37, 1, 45,
and 45 for each of the 5 period instances respectively. We
have to make sure that the load of the action, which is in
this case 148, can be executed with the new limits in the
same number of period instances as in the standard VBS
algorithm.

We introduce the notion of positive and negative utiliza-
tion bound. The positive utilization bound �+ denotes the
maximum amount of utilization that can be added to the ac-
tion without a↵ecting the lower response-time bound. The
negative utilization bound �� denotes the maximum amount
of utilization that can be subtracted from the action with-
out a↵ecting the upper response-time bound. Thus, the uti-
lization bounds give the amount of error in utilization that
can be compensated for without violating the response-time
bounds. The utilization bounds are computed as follows,
with l, �, and ⇡ being the load, the limit, and the period of
the considered action ↵,

�+ =
d l
�e�� l

⇡
,

�� =
b l
�c�� l

⇡
.

Note that if d l
�e = b l

�c then �� = 1��
⇡ . In the example we

have �� = �0.28 and �+ = 0.02.
The utilization bounds can o↵er a trade-o↵ between per-

formance of the algorithm and temporal isolation of the ac-
tion. If the utilization bound is set to larger values then the
action may be faster than the lower response time bounds
or slower than the upper response time bound, increasing
the response time jitter by one or more periods, but it can
result in overall lower utilization jitter.

We compute the sum of the utilization error over the whole
execution time of the action, i.e. u↵,e =

P
k u

e
k. In the

above example u↵,e = 1%, which means that if we were to
modify the utilization of the action in each period instance
according to the table, we would have an error in the overall
utilization of the action of 1% which will be reflected in the
response time of the action.

Another issue is that in each period instance, the total
system utilization must be lower than or equal to 100%. A
change in utilization can occur at any time during a period
instance of an action but there is only one limit we can set for
a period instance. We address this issue in the algorithm by
adding a flag that specifies if at every time instant of every
period instance the system is not over-utilized. Only if this
is the case, the limits of every period instance of ↵ can be
changed according to the computed new utilization.

The look-ahead online algorithm is presented in Listing 2.
For every action ↵ that has an arrival at time t the algo-

rithm starts by calculating total number of period instances
(n) the action needs to finish its load (line 3). The flag c↵
denotes whether the limits of action ↵ can be changed. In
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Figure 3: Normalized power consumption

Listing 2 Look-ahead FS-VBS(t)

Require: t
1: AA = ARRIVAL[t]
2: for all ↵ 2 AA do

3: n = d l
�e

4: c↵ = true
5: for k = 0 to n do

6: ue
k =

P(k+1)⇡
i=k⇡ uS(i)

⇡
� uavg

7: u↵,e = u↵,e + ue
k

8: for i = k⇡ to (k + 1)⇡ do

9: if ue
k < uS(i)� 1 or

�
⇡ � ue

k > 0 then

10: c↵ = false
11: end if

12: end for

13: end for

14: if �� < u↵,e  �+ and c↵ then

15: for k = 0 to n do

16: �⇤
k = �k � ue

k⇡
17: end for

18: end if

19: end for

the beginning we set it to true (line 4). Next, for each period
instance of the action, we compute the utilization error ue

k

for the k-th instance (line 6) and the total utilization error
u↵,e (line 7). Here, uS(i) refers to the total system utiliza-
tion at time i. We check that for each time instant of the
k-th period instance the new utilization �

⇡ � ue
k will not be

negative or over-utilize the CPU (line 9). If this is the case
for any time instant then we set the flag c↵ to false signaling
that the action cannot be changed (line 10). If the total uti-
lization error u↵,e is within the computed utilization bounds
and the flag is true (line 14) we can compute the new limits
�⇤
k for the action (line 16).
This method is conservative in that it relies on other ac-

tions to reduce the utilization jitter if the current action
cannot be changed. More accurate methods to reduce the
utilization jitter are subject of future work.

In the example, since at no point the CPU becomes under-
or over-utilized and also the total utilization error is within
the positive and negative utilization bounds, we can change
the limits of the period instances for the action according to
Table 2. In Figure 2 the solution is shown where the con-
trolled process from the example modifies its utilization to

compensate for the changing CPU utilization thereby reduc-
ing the utilization jitter.

Both the optimal o✏ine and the online FS-VBS methods
compute values for the limits for each period instance of
the actions in the system. At each point in time where
the resulting CPU utilization changes we switch to a new
frequency given by the frequency scaling factor equal to the
sum of the utilizations for the current period instances of
the released actions, in accordance to Lemma 1.

6. EXPERIMENTS
We have conducted a series of experiments, using di↵er-

ent simulated processes and actions, that show the e↵ects on
the power consumption of exploiting action and termination
slack with the FS-VBS algorithm and also using the optimal
o✏ine method. We use a simulated DVS-capable platform
that has a continuous set of available frequencies and a lin-
ear power consumption model, i.e., the relation between the
frequency and the corresponding voltage level is linear. The
power consumed is proportional to the square of the voltage.

For the first experiment we run 10 processes with two
actions each. The first action of each process has a load
of 400 and uses the resource (100, 1000). The period of the
resource used by the second action is also 1000. We vary the
limit and load of the second action as follows: the limit �
is chosen from the set {5, 25, 50, 75, 85, 90, 95, 100} and the
load l is chosen to be 3� + 1. This results in an increasing
utilization (x-axis) for the second action. In Figure 3(a) we
show the normalized power consumption (y-axis) using just
action slack and using both action and termination slack in
relation to the power consumption of an unscaled system.

In the second experiment (Figure 3(b)) we show the nor-
malized power consumption (left y-axis) for 10 sets of ran-
dom processes and actions. The right y-axis shows the CPU
idle percentage when using just action slack and then both
action and termination slack. As expected, there is a cor-
relation between CPU idle time and power consumption,
i.e., the higher the CPU idle time the lower the power con-
sumption. Compared to using just the action slack, more
CPU idle time is generated by exploiting also the termina-
tion slack thus reducing power consumption even further.

The third experiment (Figure 3(c)) shows the normal-
ized power consumption (y-axis) using the optimal o✏ine
method compared to an unscaled system, a scaled system
using action slack, and a scaled system using both action and
termination slack. There are two processes in the system,
process P1(30%) has one action ↵1,1 = (2600, (300, 1000))



and process P2(70%) has three actions, namely: ↵2,1 =
(1500, (1500, 3000)), ↵2,2 = (2100, (2100, 3000)), and ↵2,3 =
(l2,3, (�2,3, 3000)). The limit of ↵2,3, �2,3, is chosen from
the set {300, 600, 900, 1200, 1500, 1800, 2100} which results
in an increasing utilization for the action (x-axis). The load
of the action is equal to its limit, i.e., l2,3 = �2,3, such that
the action executes for only one period. We used AMPL/C-
PLEX [10] to find the optimal configuration of the limits
of action ↵1,1 such that the objective function described in
Equation (5) is minimized. Note that using the online algo-
rithm for this experiment results in the same limits for the
period instances of action ↵1,1 and therefore the same power
savings as with the optimal o✏ine algorithm.

7. CONCLUSION AND FUTURE WORK
We presented methods that may reduce CPU power con-

sumption with variable-bandwidth servers while maintaining
temporal isolation of concurrently running processes. We
have shown that, in the presence of CPU slack, frequency
scaling of EDF-scheduled, possibly non-periodically arriv-
ing tasks (such as the tasks from the actions of VBS pro-
cesses) is safe up to full CPU utilization and proposed a
frequency-scaling VBS algorithm that exploits CPU slack
to minimize operating frequencies with maximal CPU uti-
lization while maintaining temporal isolation. Furthermore,
we have shown that, given knowledge of future events, fur-
ther reductions in CPU power consumption may be possible
by allowing the scheduler to redistribute computation time
of process actions among the server periods during which
the actions execute without a↵ecting the actions’ original
response time bounds. We presented an optimal o✏ine al-
gorithm that minimizes a given power-consumption func-
tion and an online algorithm that is feasible for real-time
systems and approximates the o✏ine algorithm with a sim-
plified CPU power profile.

As future work we aim at improving and implementing the
online algorithm in a real system and comparing it to the op-
timal o✏ine algorithm using real and simulated workloads.
An issue that also needs to be addressed is the change in re-
sponse time bounds in a real system with discrete frequency
levels. As discussed before, our analysis so far relies on a
theoretical model where there are infinitely many available
frequency levels. Switching to the nearest frequency (either
smaller or greater) will potentially result in being faster or
slower than the lower or upper response time bounds, re-
spectively. We therefore plan to extend the existing schedu-
lability analysis with response time bounds that take into
account discrete frequency levels.
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