
Real-Time Traffic Guarantees in Heterogeneous Time-sensitive
Networks

Mohammadreza Barzegaran
Technical University of Denmark

Kongens Lyngby, Denmark
mohba@dtu.dk

Niklas Reusch
Technical University of Denmark

Kongens Lyngby, Denmark
nikre@dtu.dk

Luxi Zhao
Beihang University

Beijing, China
zhaoluxi@buaa.edu.cn

Silviu S. Craciunas
TTTech Computertechnik AG

Vienna, Austria
silviu.craciunas@tttech.com

Paul Pop
Technical University of Denmark

Kongens Lyngby, Denmark
paupo@dtu.dk

ABSTRACT
Time-Sensitive Networks (TSN) enhance standard IEEE 802.1Q
Ethernet devices with real-time and time-aware capabilities. The
forwarding of time-critical frames is done according to a so-called
Gate Control List (GCL) schedule via the timed-gate mechanism
introduced in IEEE 802.1Qbv. Most TSN scheduling mechanisms im-
pose that all devices in the network must have the TSN capabilities
related to scheduled gates and time synchronization. However, this
is often an unrealistic assumption since many distributed applica-
tions use heterogeneous TSN networks with legacy or off-the-shelf
end systems that are unscheduled and/or unsynchronized.

We proposes a novel, more flexible TSN scheduling algorithm
that intertwines a worst-case delay analysis within the scheduling
synthesis step. Through this, we leverage the solution’s optimality
to support heterogeneous TSN networks featuring unscheduled
and/or unsynchronized end-systems while still guaranteeing the
timeliness of critical communication. We evaluate the performance
of our approach using both synthetic and real-world use cases, com-
paring it with existing TSN scheduling mechanisms. Furthermore,
we use OMNET++ to validate the generated GCL schedules.

CCS CONCEPTS
• Computer systems organization→ Dependable and fault-
tolerant systems and networks.

KEYWORDS
Time sensitive networking, Scheduled traffic, Network calculus.

ACM Reference Format:
Mohammadreza Barzegaran, Niklas Reusch, Luxi Zhao, Silviu S. Craciunas,
and Paul Pop. 2022. Real-Time Traffic Guarantees in Heterogeneous Time-
sensitive Networks. In Proceedings of the 30th International Conference on
Real-Time Networks and Systems (RTNS ’22), June 7–8, 2022, Paris, France.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3534879.3534921

RTNS ’22, June 7–8, 2022, Paris, France
© 2022 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
30th International Conference on Real-Time Networks and Systems (RTNS ’22), June 7–8,
2022, Paris, France, https://doi.org/10.1145/3534879.3534921.

1 INTRODUCTION
Standardized communication protocols allowing safety-critical com-
munication with real-time guarantees are becoming increasingly
relevant in application domains beyond aerospace, e.g., in indus-
trial automation and even in the automotive sector for advanced
driver assistance functions or fully autonomous driving [1]. Time-
Sensitive Networking (TSN) [24] amends the standard Ethernet pro-
tocol with real-time capabilities ranging from clock synchronization
and frame preemption to redundancy management and schedule-
based traffic shaping [9]. These novel mechanisms allow standard
best-effort (BE) Ethernet traffic to coexist with isolated and guar-
anteed scheduled traffic (ST) within the same multi-hop switched
Ethernet network. The main enablers of this coexistence are a
network-wide clock synchronization protocol (802.1ASrev [25])
defining a global network time, known and bounded device laten-
cies (e.g., switch forwarding delays), and a Time-Aware Shaper
(TAS) mechanism [23] with a global communication schedule im-
plemented in so-called Gate Control Lists (GCLs), facilitating ST
traffic with bounded latency and jitter in isolation from BE com-
munication. The TAS mechanism is implemented as a gate for each
transmission queue that either allows or denies the sending of
frames according to the configured GCL schedule.

Most approaches that guarantee real-time temporal properties of
critical traffic (e.g., [9, 33, 37]) assume a homogeneous TSN network
in which all devices have the time-aware shaper mechanism and
are synchronized to a global network time. However, many brown-
field deployments in industrial systems require end-to-end guar-
antees in heterogeneous TSN networks that connect TSN-capable
switches with legacy resource-constrained end-points (e.g., PLC,
sensors, actuators) that are not easily retrofitted with TSN capa-
bilities. Moreover, in industrial systems that have a long life-cycle
and which are dependent on legacy technology [36], customers
are more likely to accept the replacement of switches but not of
customized end-points; hence it is more beneficial to transition
gradually to new technologies making the integration of legacy
systems into TSN networks essential [29]. Furthermore, converged
IT/OT networks in, e.g., fog and edge use-cases [36], interconnec-
tion of TSN networks with, e.g., 5G domains [27], or multi-domain
TSN networks with different sync mechanisms cannot readily com-
municate isochronous (fully periodic) traffic [6]. Here, the region
outside the TSN domain can be viewed as an unscheduled and un-
synchronized end-point sending sporadic critical traffic. Moreover,

https://doi.org/10.1145/3534879.3534921
https://doi.org/10.1145/3534879.3534921
Silviu Craciunas
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution.
The definitive Version of Record is available at https://doi.org/10.1145/3534879.3534921



RTNS ’22, June 7–8, 2022, Paris, France Mohammadreza Barzegaran, Niklas Reusch, Luxi Zhao, Silviu S. Craciunas, and Paul Pop

even if the end-points do have some form of TSN capability (e.g.,
via switched end-points [45]), the software layers on top of the
TSN hardware mechanism can suffer from non-deterministic jitter
and delays, leading to missed transmission slots and ultimately
resulting in a sporadic, rather than periodic frame transmission
from the end-points

Hence, we investigate in this paper heterogeneous TSN networks
where the end-systems are unscheduled and/or unsynchronized
(i.e., they do not have the TSN capabilities related to 802.1Qbv
and 802.1AS), leading to a sporadic arrival of critical traffic at the
TSN-capable switches in the network. Classical schedule genera-
tion methods for GCLs enforce either a fully deterministic 0-jitter
forwarding of critical frames using either exact SMT/ILP-based
solvers [9] or heuristics [33], or a more flexible window-based
approach that allows some (bounded) degree of interference be-
tween critical frames [37]. However, both methods require that
end-systems send the respective critical frames in a scheduled and
synchronized way that matches the forwarding schedule defined
in the switches, thus requiring TSN capabilities on both end sys-
tems and switches. Other work, c.f. [20, 34], introduce scheduling
approaches that do not impose synchronization on the end-systems
level but constrain all forwarding GCL windows on switches to
be aligned and, furthermore, do not use safe formal verification
methods like network calculus for the schedule creation.

In this paper, we consider heterogeneous TSN networks, relaxing
the requirement that end-systems need to be synchronized and/or
scheduled and, furthermore, take into account relative offsets of
windows on different nodes. We intertwine the worst-case delay
analysis from [50] with the scheduling step in order to generate
correct schedules where the end-to-end requirements of ST flows
are met. Furthermore, we compare different TSN scheduling ap-
proaches that have been proposed in the literature (see Table 3 for
an overview) to our flexible window-based approach (FWND). We
define the analysis-driven window optimization problem resulting
from our more flexible approach with the goal to be able to enlarge
the solution space, reduce computational complexity, and apply it
to end-systems without TSN mechanisms. Depending on industrial
applications’ requirements, our evaluation can help system design-
ers choose the most appropriate combination of configurations for
their use-case.

The main contributions of the paper are:

• Wepropose a novel flexiblewindow-based schedulingmethod
that does not individually schedule ST frames and flows but
rather schedules open gate windows for individually sched-
uled queues. Hence, we can support non-deterministic queue
states and thus networks with unscheduled and/or unsyn-
chronized end-systems by integrating the WCD Network
Calculus (NC) analysis into the scheduling step. The NC
analysis is used to construct a worst-case scenario for each
flow to check its schedulability, considering arbitrary arrival
times of flows and the open GCL window placements.

• We propose a proxy function as an extension for the analysis
in [50] and implement it in our problem formulation.

• We formulate and solve a window optimization problem that
uses the proxy function and provides timing guarantees for
real-time flows even in heterogeneous TSN networks.

• We compare and evaluate our flexible window-based sched-
uling method with existing scheduling methods for TSN
networks. The evaluation is based on both synthetic and real-
world test cases, validating the correctness and the scalability
of our implementation. Furthermore, we use the OMNET++
simulator to validate the generated solutions.

We start with a review of related research, focusing on the exist-
ing scheduling mechanisms that we compare our work to, in Sect. 2.
We introduce the system, network, and application models, as well
as a description of the main TSN standards, in Sect. 3, and outline
the problem formulation in Sect. 3.4. In Sect. 4, we present the
novel scheduling mechanism and the optimization strategy based
on the Constraint Programming (CP) for FWND followed by the
comparison and evaluation results in Sect. 5. We conclude the paper
in Sect. 6.

2 RELATEDWORK
Scheduling homogeneous TSN networks in which all devices are
scheduled and synchronized has been solved in various forms us-
ing heuristics [28, 30–32, 42] and optimal ILP- or SMT-based ap-
proaches [9, 13, 15, 37, 44, 54, 55]. The most relevant results for
providing real-time communication properties in TSN networks, to
which we compare our approach, have been presented in [9, 14, 33,
37] (summarized in Table 3).

Originally, the TSN scheduling problem was addressed in [9]
for fully deterministic ST traffic temporal behavior and temporal
isolation between ST and non-ST (e.g., AVB, BE) streams, simi-
lar to TTEthernet [7, 40]. In our comparison, we call this method
0GCL, since, besides enforcing the required end-to-end latency of ST
streams, the scheduling constraints also impose a strictly periodic
frame transmission resulting in 0 jitter forwarding of critical traffic.
The work in [33] uses heuristics instead of SMT-solvers to solve the
0-jitter scheduling problem in order to improve scalability while
also minimizing the end-to-end latency of AVB streams. In [37],
which we call Frame-to-Window-based, the 0-jitter constraint of [9]
is relaxed by allowing more variance in the transmission times
of frames over the hops of their routed paths. This increases the
solution space at the expense of increased complexity in the cor-
rectness constraints. The method in [37] can be viewed as window-
based scheduling, but, unlike our approach, it requires a unique
mapping between GCL windows and frames in order to avoid non-
determinism in the queues. In [14] the TSN scheduling problem
is reduced to having one single queue for ST traffic and solving it
using Tabu Search that optimizes the number of guard-bands in
order to optimize bandwidth usage.

The main goal of the aforementioned works is similar to ours,
namely to allow temporal isolation and compositional system de-
sign for ST flows with end-to-end guarantees and deterministic
communication behavior. However, all previous methods impose
that the end-systems from which the ST traffic originates are syn-
chronized to the rest of the network and have the IEEE 802.1Qbv
timed-gate mechanism (i.e., they are scheduled). The open gate
windows are then either a result of the frame transmission sched-
ule [9, 33] or are uniquely associated with predefined subsets of
frames [37]. However, the above property is a significant limita-
tion. In many use cases, especially in the industrial and automotive



Real-Time Traffic Guarantees in Heterogeneous Time-sensitive Networks RTNS ’22, June 7–8, 2022, Paris, France

domains (c.f. [36]), the end-systems are usually off-the-shelf sen-
sors, MCUs, industrial PCs, and edge devices that do not have TSN
capabilities.

The work in [34] proposed a more naive window-based approach
(WND) in which the GCL window offsets on different network
nodes are not included, thereby essentially limiting the mecha-
nisms by requiring all GCL windows to be lined up between bridges.
Moreover, [34] uses a less advanced analysis step (c.f. [49]) in the
scheduling decisions and a more naive heuristic approach. The
work in [21] proposes a scheduling model for TSN networks in
industrial automation with different traffic types and a hierarchical
scheduling procedure for isochronous traffic. The method proposed
in [20] adopts a so-called stream batching approach, which can be
classified as window-based in that it can assign multiple frames to
the same GCL window. However, the end-points still need to be
synchronized and scheduled, and, additionally, the worst-case de-
lay bounds within the batch windows may lead to deadline misses
since they are not based on formal methods like the network cal-
culus framework in our approach. In [38], the authors present an
NC-based analysis for overlapping GCL windows with less pes-
simistic latency bounds and a scheduling algorithm (FWOS) that
focuses on maximizing the allowable overlap of GCL windows to
increase the bandwidth of unscheduled traffic without jeopardizing
the schedulability of ST traffic. As opposed to our method, [38]
cannot guarantee the schedulability of traffic arriving from un-
scheduled or unsynchronized end-systems.

Classical approaches like strict priority (SP) and AVB [22] do not
require a time-gate mechanism and also work with unscheduled
end-systems. In order to provide response-time guarantees, a worst-
case end-to-end timing analysis through methods like network cal-
culus [11, 35] or Compositional Performance Analysis (CPA) [12]
are used. In [4, 51, 53], the rate-constrained (RC) flows of TTEth-
ernet [26, 41] are analyzed using network calculus. Other works,
such as [10, 47], study the response-time analysis for TDMA-based
networks under the strict priority (SP) and weighted round-robin
(WRR) queuing policies. Zhao et al. [50] present a worst-case delay
analysis, which we use in this paper, for determining the interfer-
ence delay between ST traffic on the level of flexible GCL windows.
Using SP only or leaving all ST windows open for the entire hy-
perperiod duration (which amounts to SP for ST traffic) will not
result in the same response-time bounds and schedulability as our
method. Our method can delay specific high-priority ST streams
when needed to allow a timely transmission of lower-priority ST
streams with a much tighter deadline.

In [43], the authors present hardware enhancements to standard
IEEE 802.1Qbv bridges (along with correctness constraints for the
schedule generation) that remove the need for the isolation con-
straints between frames scheduled in the same egress queue defined
in [9]. Another hardware adaptation for TSN bridges, which has
been proposed by Heilmann et al. [19] is to increase the number of
non-critical queues in order to improve the bandwidth utilization
without impacting the guarantees for critical messages.

3 SYSTEM MODEL
This section defines our system model for which we summarize the
notation in Table. 1.

Table 1: Summary of notations

Symbol System model
𝐺 = (𝑽 , 𝑬) Network graph with nodes (𝑽 ) and links (𝑬 )
[𝑣𝑎, 𝑣𝑏 ] ∈ 𝑬 Link
[𝑣𝑎, 𝑣𝑏 ] .𝐶 Link speed
[𝑣𝑎, 𝑣𝑏 ] .𝑚𝑡 Link macrotick
𝑝 ∈ 𝑃 Output port
𝑝.𝑄 Eight priority queues in an output port 𝑝
𝑞 ∈ 𝑝.𝑄𝑆𝑇 A queue used for ST traffic in 𝑝

⟨𝜙,𝑤,𝑇 ⟩𝑞 GCL configuration for a queue 𝑞 ∈ 𝑝.𝑄𝑆𝑇 , where
𝑞.𝜙 , 𝑞.𝑤 , and 𝑞.𝑇 are the window offset, length,
and period for queue 𝑞, respectively.

𝑓 .𝑙, 𝑓 .𝑇 Payload size and period of a flow 𝑓 ∈ F
𝑓 .𝑃, 𝑓 .𝐷 Priority, and deadline of a flow 𝑓 ∈ F
𝑓 .𝑟 Route for a flow 𝑓 ∈ F

3.1 Network Model
We represent the network as a directed graph 𝐺 = (𝑽 , 𝑬) where
𝑽 = 𝑬𝑺

⋃
𝑺𝑾 is the set of end systems (ES) and switches (SW) (also

called nodes), and 𝑬 is the set of bi-directional full-duplex physical
links. An ES can receive and send network traffic while SWs are
forwarding nodes through which the traffic is routed. The edges 𝑬
of the graph represent the full-duplex physical links between two
nodes, 𝑬 ⊆ 𝑽 × 𝑽 . If there is a physical link between two nodes
𝑣𝑎, 𝑣𝑏 ∈ 𝑽 , then there exist two ordered tuples [𝑣𝑎, 𝑣𝑏 ], [𝑣𝑏 , 𝑣𝑎] ∈ 𝑬 .
An equivalence between output ports 𝑝 ∈ 𝑃 and links [𝑣𝑎, 𝑣𝑏 ] ∈ 𝑬
can be drawn as each output port is connected to exactly one link. A
link [𝑣𝑎, 𝑣𝑏 ] ∈ 𝑬 is defined by the link speed𝐶 (Mbps), propagation
delay 𝑑𝑝 (which is a function of the physical medium and the link
length), and the macrotick 𝑚𝑡 . The macrotick is the length of a
discrete time unit in the network, defining the granularity of the
scheduling timeline [9]. Without loss of generality, we assume
𝑑𝑝 = 0 in this paper.

As opposed to previous work, we do not require that end-system
are either synchronized or scheduled. Since ESs can be unsynchro-
nized and unscheduled, they transmit frames according to a strict
priority (SP) mechanism. Switches still need to be synchronized
and scheduled using the 802.1ASrev and 802.1Qbv, respectively.

3.2 Switch Model
Fig. 1 depicts the internals of a TSN switch. The switching fabric
decides, based on the internal routing table to which output port 𝑝
a received frame will be forwarded. Each egress port has a priority
filter that determines in which of the available 8 queues/traffic-
classes 𝑞 ∈ 𝑝.𝑄 of that port a frame will be put. Within a queue,
frames are transmitted in first-in-first-out (FIFO) order. Similar
to [9], a subset (𝑝.𝑄𝑆𝑇 ) of the queues are reserved for ST traffic,
while the rest (𝑝.𝑄) are used for non-critical communication. As
opposed to regular 802.1Q bridges, where enqueued frames are sent
out according to their respective priority, in 802.1Qbv bridges, there
is a Time-Aware Shaper (TAS), also called timed-gate, associated
with each queue and positioned behind it. A timed-gate can be
either in an open (O) or closed (C) state. When the gate is open,
traffic from the respective queue is allowed to be transmitted, while



RTNS ’22, June 7–8, 2022, Paris, France Mohammadreza Barzegaran, Niklas Reusch, Luxi Zhao, Silviu S. Craciunas, and Paul Pop

Switch

ST priority P1

ST priority Pn
...

...

Other traffic classes
Switching

fabric
Priority
filter

Ingress
Ingress

Egress

GCL
Schedule

Figure 1: TSN Switch Internals

a closed gate will not allow transmission, even if the queue is not
empty. When multiple gates are open simultaneously, the highest
priority queue has preference, blocking others until it is empty or
the corresponding gate is closed. The 802.1Qbv standard includes a
mechanism to ensure that no frames can be transmitted beyond the
respective gate’s closing point. This look-ahead checks whether the
entire frame present in the queue can be fully transmitted before
the gate closes and, if not, it will not start the transmission.

The state of the queues is encoded in a GCL, which (contrary
to e.g., TTEthernet [26]) acts on the level of traffic-classes instead
of on an individual frame level [8]. Hence, an imperfect time syn-
chronization, frame loss, ingress policing (c.f. [9]), or the variance
in the arrival of frames from unscheduled and/or unsynchronized
ESs may lead to non-determinism in the state of the egress queues
and, as a consequence, in the whole network. If the state of the
queue is not deterministic at runtime, the order and timing of the
sending of ST frames can vary dynamically. In Fig. 2, the schedule
for the queue of the (simplified) switch SW, opens for two frames
and then, sometime later, for the duration of another two frames.
The arrival of frames from unscheduled and/or unsynchronized
end systems may lead to a different pattern in the egress queue of
the switch, as illustrated in the top and bottom figures of Fig. 2.
Note that we do not actually know the arrival times of the frames,
and what we depict in the figure are just two scenarios to illustrate
the non-determinism. There may be scenarios where one of the
frames, e.g., frame “2”, arrives much later. This variance makes it
impossible to isolate frames in windows and obtain deterministic
queue states, and, as a consequence, deterministic egress transmis-
sion patterns, as required by previous methods for TSN scheduling

ES1

ES2

13

24

13 24

SW

13 24

ES1

ES2

13

24

13 24

SW

13 24

Figure 2: Queue states (inspired by [43]).

(e.g. [9, 14, 33, 37]). We refer the reader to [9] for an in-depth ex-
planation of the TSN non-determinism problem.

The queue configuration is expressed by 𝑞 = ⟨𝑄𝑆𝑇 , 𝑄⟩. The
decision in which queue to place frames is taken either according
to the priority code point (PCP) of the VLAN tag or according to the
priority assignment of the IEEE 802.1Qci mechanism. In order to
formulate the scheduling problem, the GCL configuration is defined
as a tuple ⟨𝜙,𝑤,𝑇 ⟩𝑞 for each queue 𝑞 ∈ 𝑝.𝑄𝑆𝑇 in an output port 𝑝 ,
with the window offset 𝜙 , window length𝑤 and window period 𝑇 .

3.3 Application Model
The traffic class we focus on in this paper is scheduled traffic (ST),
also called time-sensitive traffic. ST traffic is defined as having re-
quirements on the bounded end-to-end latency and/or minimal
jitter [9]. Communication requirements of ST traffic itself are mod-
eled with the concept of flows (also called streams), representing
a communication from one sender (talker) to one or multiple re-
ceivers (listeners). We define the set of ST flows in the network as
F . A flow 𝑓 ∈ F is expressed as the tuple ⟨𝑙,𝑇 , 𝑃, 𝐷⟩𝑓 , including
the frame size, the flow period in the source ES, the priority of the
flow, and the required deadline representing the upper bound on
the end-to-end delay of the flow.

The route for each flow is statically defined as an ordered
sequence of directed links,e.g., a flow 𝑓 ∈ 𝐹 sending from a
source ES 𝑣1 to another destination ES 𝑣𝑛 has the route 𝑟 =

[[𝑣1, 𝑣2], ..., [𝑣𝑛−1, 𝑣𝑛]]. Without loss of generality, the notation is
simplified by limiting the number of destination ES to one, i.e.,
unicast communication. Please note that the model can be easily ex-
tended to multicast communication by adding each sender-receiver
pair as a stand-alone flow with additional constraints between
them on the common path. In this way, a multicast flow consumes
the bandwidth as all sender-receiver pairs of the stand-alone flow
do. Furthermore, it is more likely that the multicast flow misses
deadline for some sender-receiver pairs.

3.4 Problem Formulation
Given (1) a set of flows F with statically defined routes R, and (2)
a network graph 𝐺 , we are interested in determining GCLs, which
is equivalent to determining (i) the offset of windows 𝑞.𝜙 , (ii) the
length of windows𝑞.𝑤 , and (iii) the period of windows𝑞.𝑇 such that
the deadlines of all flows are satisfied and the overall bandwidth
utilization (c.f. Sect. 4.1) is minimized.

We remind the reader that with flexible window-based sched-
uling we do not know the arrival times of frames, and frames of
different ST flows may interfere with each other. Frames that arrive
earlier will delay frames that arrive later; also, a frame may need
to wait until a gate is open, or arrive at a time just before a gate
closure and cannot fit in the interval that remains for transmission.
To better understand the importance of determining optimized win-
dows we refer the reader to the motivational example described in
Section 4 of the technical report version of this work [2].

4 OPTIMIZATION STRATEGY
The problem presented in the previous section is intractable. The
decision problem associated with the scheduling problem has been
proved to be (NP)-complete in the strong sense [39]. Hence, we



Real-Time Traffic Guarantees in Heterogeneous Time-sensitive Networks RTNS ’22, June 7–8, 2022, Paris, France

CP solver

New solution
Variables
Domains
Constraints

Timing (pruning)
Objective function

CP model

Search traversal 
strategy: Metaheuristic

WCD Analysis
Network Calculus

Schedulable 
solutions

β

Architecture model Application model

Best solutions found

Figure 3: Overview of our CPWO optimization strategy

use an optimization strategy, called Constraint Programming-based
Window Optimization (CPWO), which is more suitable to find good
solutions in a reasonable time.

CPWO takes as the inputs the architecture and application mod-
els and outputs a set of the best solutions found during search (see
Fig. 3). We use Constraint Programming (CP) to search for solutions
(the “CP solver” box). CP performs a systematic search to assign
the values of variables to satisfy a set of constraints and optimize
an objective function, see the “CP model” box: the sets of variables
are defined in Sect. 4.2, the constraints in Sect. 4.3 and the objective
function in Sect. 4.1. A feasible solution is a valid solution that
is schedulable, i.e., the worst-case delays (WCDs) of streams are
within their deadlines. Since it is impractical to check for schedu-
lability within a CP formulation, we employ instead the Network
Calculus (NC)-based approach from [50] to determine the WCDs,
see the “WCD Analysis” box in Fig. 3. The WCD Analysis is called
every time the CP solver finds a “new solution” which is valid with
respect to the CP constraints. The “new solution” is not schedulable
if the calculated latency upper bounds are larger than the deadlines
of some critical streams.

Although CP can perform an exhaustive search and find the op-
timal solution, this is infeasible for large networks. Instead, CPWO
employs two strategies to speed up the search to find optimized
solutions in a reasonable time, at the expense of optimality.

(i) A metaheuristic search traversal strategy: CP solvers can be
configured with user-defined search strategies, which enforce a
custom order for selecting variables for assignment and for selecting
the values from the variable’s domain. Here, we use a metaheuristic
strategy based on Tabu Search [5] inspired from [3].

(ii) A timing constraint specified in the CP model that prunes the
search space: Ideally, the WCD Analysis would be called for each
new solution. However, an NC-based analysis is time-consuming,
and it would slow down the search considerably if called each time
the CP solver visits a new valid solution. Hence, we have introduced
“search pruning” constraints in the CPmodel (the “Timing (pruning)”
constraints in the “CP model” box in Fig. 3), explained in Sect. 4.4.

These timing constraints implement a crude analysis that in-
dicates if a solution may be schedulable and are solely used by
the CP solver to eliminate solutions from the search space. These
constraints may lead to both “relaxed-pruning” scenarios that are
actually unschedulable or “aggressive-pruning” scenarios that elim-
inate solutions that are schedulable. The proxy function (pruning

Table 2: Definition of terms used in CP model formulation

Term Definition

N(𝑃 ) Total number of windows assigned to priority queues
K(𝑝) Hyperperiod of the port 𝑝
L(𝑞) Maximum size of any frame from all flows assigned to 𝑞
GB(𝑞) Maximum transmission time of ST frames competing in 𝑞
R(𝑞) All flows assigned to the queue 𝑞
X(𝑞) All flows arriving from a switch and assigned to the queue 𝑞

constraint) can thus be parameterized to trade-off runtime perfor-
mance for search-space pruning in the CP-model.

The timing constraints assume that for a given stream, its frames
in a queue will be delayed by other frames in the same queue, in-
cluding a backlog of frames of the same stream. A parameter B
is used to adjust the number of frames in the backlog, tuning the
pruning level of the CP model’s timing constraints. Note that NC
still checks the actual schedulability, so it does not matter if the CP
analysis is too relaxed—this will only prune fewer solutions, slow-
ing down the search. However, using overly aggressive pruning
runs the risk of eliminating schedulable solutions of good quality.
We consider that B is given by the user, controlling how fast to
explore the search space. In the experiments, we adjusted B based
on the feedback from theWCDAnalysis and the pruning constraint.
If, during a CPWO run, the pruning constraint from Sect. 4.4 was
invoked too often, we decreased B, as it was pruning too aggres-
sively; otherwise, if the WCD analysis was invoked too often and
was reporting that the solutions were schedulable, we increased B.

We first define the terms needed for the CP model in Table. 2.
Then, we continue with the definition of the objective function,
model variables, and constraints of the CP model.

4.1 Objective Function
The CP solver uses the objective function Ω, which minimizes the
average bandwidth usage:

∀𝑝 ∈ 𝑃,∀𝑞 ∈ 𝑝.𝑄 : Ω =

∑ 𝑞.𝑤

𝑞.𝑇

N(𝑃) . (1)

The average bandwidth usage is calculated as the sum of each
window’s utilization, i.e., the window length over its period, divided
by the total number of windows in the CPmodel. Note that solutions
found by a CP solver are guaranteed to satisfy the constraints
defined in Sect. 4.3. In addition, the schedulability is checked with
the NC-based WCD Analysis [50].

4.2 Variables
The model variables are the offset, length, and period of each win-
dow, see Sect. 3.2. For each variable, we define a domain which is a
set of finite values that can be assigned to the variable. CP decides
the values of the variables as an integer from their domain in each
visited solution during the search. The domains of offset 𝑞.𝜙 , length



RTNS ’22, June 7–8, 2022, Paris, France Mohammadreza Barzegaran, Niklas Reusch, Luxi Zhao, Silviu S. Craciunas, and Paul Pop

𝑞.𝑤 , and period 𝑞.𝑇 variables are defined, respectively, by
∀𝑝 ∈ 𝑃,∀𝑞 ∈ 𝑝.𝑄 :

0 < 𝑞.𝑇 ≤ K(𝑝)
[𝑣𝑎, 𝑣𝑏 ] .𝑚𝑡

, 0 ≤ 𝑞.𝜙 ≤ K(𝑝)
[𝑣𝑎, 𝑣𝑏 ] .𝑚𝑡

,

L(𝑞)
[𝑣𝑎, 𝑣𝑏 ] .𝑚𝑡 × [𝑣𝑎, 𝑣𝑏 ] .𝐶

+ GB(𝑞) ≤ 𝑞.𝑤 ≤ K(𝑝)
[𝑣𝑎, 𝑣𝑏 ] .𝑚𝑡

.

(2)

The domain of the window period is defined in the range from 0
to the hyperperiod of the respective port 𝑝 , i.e., the Least Common
Multiple (LCM) of all the flow periods forwarded via the port. The
window period is an integer and cannot be zero. The domain of the
window offset is defined in the range from 0 to the hyperperiod
of the respective port 𝑝 . Finally, the domain of the window length
is defined in the range from minimum accepted window length to
the hyperperiod of the respective port 𝑝 . The minimum accepted
window length is the length required to transfer the largest frame
from all flows assigned to the queue 𝑞, protected by the guard band
GB(𝑞) of the queue. A port 𝑝 is attached to only one link [𝑣𝑎, 𝑣𝑏 ];
and values and domains are scaled by the macrotick 𝑚𝑡 of the
respective link.

4.3 Constraints
The first three constraints need to be satisfied by a valid solution:
(1) the window is valid, (2) two windows in the same port do not
overlap, and (3) windows’ bandwidth is not exceeded. The last two
constraints reduce the search space by restricting the periods of
(4) queues and (5) windows to harmonic values in relation to the
hyperperiod. Harmonicity may eliminate some feasible solutions
but we use this heuristic strategy to speed up the search.
(1) The Window Validity Constraint (Eq. (3)) states that the
offset plus the length of a window should be smaller or equal to
the window’s period:

∀𝑝 ∈ 𝑃,∀𝑞 ∈ 𝑝.𝑄 : (𝑞.𝑤 + 𝑞.𝜙) ≤ 𝑞.𝑇 . (3)

(2) Non-overlapping Constraint (Eq. (4)). Since we search for
solutions in which windows of the same port do not overlap, the
opening or closing of each window on the same port (defined by
its offset and the sum of its offset and length, respectively) is not in
the range of another window, over all period instances:

∀𝑝 ∈ 𝑃,∀𝑞 ∈ 𝑝.𝑄,∀𝑞′ ∈ 𝑝.𝑄,𝑇𝑞,𝑞′ =𝑚𝑎𝑥 (𝑞.𝑇 , 𝑞′𝑇 ),
∀𝑎 ∈ [0,𝑇𝑞,𝑞′/𝑞.𝑇 ),∀𝑏 ∈ [0,𝑇𝑞,𝑞′/𝑞′.𝑇 ) :
(𝑞.𝜙 + 𝑞.𝑤 + 𝑎 × 𝑞.𝑇 ) ≤ (𝑞′.𝜙 + 𝑏 × 𝑞′.𝑇 )∨ (4)
(𝑞′.𝜙 + 𝑞′.𝑤 + 𝑏 × 𝑞′.𝑇 ) ≤ (𝑞.𝜙 + 𝑎 × 𝑞.𝑇 )

(3) The Bandwidth Constraint (Eq. (5)) ensures that all the win-
dows have enough bandwidth for the assigned flows:

∀𝑝 ∈ 𝑃,∀𝑞 ∈ 𝑝.𝑄,∀𝑓 ∈ F (𝑞) : 𝑞.𝑤
𝑞.𝑇

≥
∑︁ 𝑓 .𝑙

𝑓 .𝑇
. (5)

where F (𝑞) is the set of flows assigned to the queue 𝑞.
(4) The Port Period Constraint (Eq. (6)) imposes that the periods
of all the queues in a port should be harmonic. This constraint is
used to avoid window overlapping and to reduce the search space.

∀𝑝 ∈ 𝑃,∀𝑞 ∈ 𝑝.𝑄,∀𝑞′ ∈ 𝑝.𝑄 : (𝑞.𝑇%𝑞′.𝑇 = 0) ∨ (𝑞′.𝑇%𝑞.𝑇 = 0).
(6)

Figure 4: Example capacity for a window.

(5) The Period Limit Constraint (Eq. (7)) reduces the search space
by considering window periods 𝑞.𝑇 that are harmonic with the
hyperperiod of the port K(𝑝) (divide it):

∀𝑝 ∈ 𝑃,∀𝑞 ∈ 𝑝.𝑄 : K(𝑝)%𝑞.𝑇 = 0. (7)

4.4 Timing constraints
Asmentioned, it is infeasible to use aNetwork Calculus-basedworst-
case delay analysis to check the schedulability of each solution
visited. Thus, we have defined a Timing Constraint as a way to
prune the search space. Every solution that is not eliminated via
this timing constraint is evaluated for schedulability with the NC
WCD analysis. The timing constraint is a heuristic that prunes the
search space of (potentially unschedulable) solutions; it is not a
sufficient nor a necessary schedulability test. The timing constraint
is related to the optimality of the solution, not to its correctness in
terms of schedulability. A too aggressive pruning may eliminate

Figure 5: Example capacity and transmission demand for a
window.



Real-Time Traffic Guarantees in Heterogeneous Time-sensitive Networks RTNS ’22, June 7–8, 2022, Paris, France

good quality solutions, and too little pruning will slow down the
search because the NC WCD analysis is invoked too often.

The challenge is that the min+ algebra used by NC cannot be
directly expressed in first-order formulation of CP. However, the
NC formulation from [50] has inspired us in defining the CP timing
constraints. The Timing Constraint is defined in Eq. (8) and uses
the concepts of window capacity W𝐶 and transmission demand
W𝐷 to direct the CP solver to visit only those solutions where
the capacity of each window, i.e., the amount of time available
to transmit frames assigned to its queue, is greater than or equal
to its transmission demand, i.e., the amount of transmission time
required by the frames in the queue. A window capacity larger than
the transmission demand indicates that a solution has high chances
to be schedulable:

∀𝑝 ∈ 𝑃,∀𝑞 ∈ 𝑝.𝑄 : W𝐷 ≤ W𝐶 . (8)

Thus, we first calculate the capacity W𝐶 of each window within
the hyperperiod. This capacity is similar to the NC concept of a
service curve, and its calculation is similar to the service curves
proposed in the literature [46] for resources that use Time-Division
Multiple Access (TDMA), which is how our windows behave. For
e.g., a window with a period of 10 𝜇s, a length of 4 𝜇s, and an offset
of 3 𝜇s; forwards 150 bytes over a 100 Mbps link in a hyperperiod of
30 𝜇s. In Fig. 4, the capacity of such a window is depicted where the
blue line shows the throughput of the window for transferring data.
The capacity increases when the window opens (the rising slopes
of the curve). The effect of window offset on the capacity (the area
under the curve) can be observed in the figure. The functionW𝐶

calculates the area under the curve to characterize the amount of
capacity for a window in a hyperperiod, defined in Eq. (9), where the
link [𝑣𝑎, 𝑣𝑏 ] is attached to the port 𝑝 and assigned to the queue 𝑞;
and function Y captures the transmission time of a single byte
through link [𝑣𝑎, 𝑣𝑏 ].

To calculate the area under the curve, we consider 3 terms that
are 𝑆1, 𝑆2, and 𝑆3. They represent the total area under the curve
caused by the window length, the window closure in the remainder
of the window period, and the window period, respectively. The
W𝐶 value of the example in Fig. 4 is 2,250 𝐵𝑦𝑡𝑒𝑠 × 𝜇𝑠 , where the 𝑆
terms are shown.

∀𝑝 ∈ 𝑃,∀𝑞 ∈ 𝑝.𝑄 :

𝐼 =
K(𝑝)
𝑞.𝑇

, 𝐽 =
(𝑞.𝑤 − GB(𝑞)) × Y([𝑣𝑎, 𝑣𝑏 ])

[𝑣𝑎, 𝑣𝑏 ] .𝐶
,

𝑆1 = 𝐼 × 𝑞.𝑤 × 𝐽

2
, 𝑆2 = 𝐼 × (𝑞.𝑇 − 𝑞.𝑤 . − 𝑞.𝜙) × 𝐽 ,

𝑆3 =
𝐼 × (𝐼 − 1)

2
× 𝑞.𝑇 × 𝐽 , W𝐶 = 𝑆1 + 𝑆2 + 𝑆3

(9)

Secondly, we calculate the transmission demand W𝐷 using
Eq. (10), where R(𝑞) captures all the flows that are assigned to
the queue 𝑞. The transmission demand is inspired by the arrival
curves of NC. These are carefully determined in NC considering
that the flows pass via switches and may change their arrival pat-
terns [50]. In our case, we have made the following simplifying
assumptions to be able to express the “transmission demand” in
CP. We assume that all flows are strictly periodic and arrive at
the beginning of their respective periods. This is “optimistic” with
respect to NC in the sense that NC may determine that some of

the flows have a bursty behavior when they reach our window. To
compensate for this, we consider that those flows that arrive from
a switch may be bursty and thus have a backlog B of frames that
have accumulated; flows that arrive from ESs do not accumulate a
backlog. Fig. 5 shows three flows, 𝑓1 to 𝑓3, and only 𝑓3 arrives from
a switch and hence will have a backlog of frames captured by the
flow denoted with 𝑓 ′3 (we consider a B of 1 in the example). We
also assume that the backlog 𝑓 ′3 will not arrive at the same time as
the original flow 𝑓3, and instead, it is delayed by a period. Again,
this is a heuristic used for pruning, and the actual schedulability
check is done with the NC analysis. So, the definition of the “trans-
mission demand” does not impact correctness, but, as discussed, it
will impact our algorithm’s ability to search for solutions.

Since, in our case, the deadlines can be larger than the periods,
we also need to consider, for each flow, bursts of frames coming
from SWs and an additional frame for each flow coming from ESs
(the ES periods are not synchronized with the SWs GCLs). Since
we do not perform a worst-case analysis, we instead use a backlog
parameter B, capturing the possible number of delayed frames in
a burst within a flow forwarded from another SW. Note that as
explained in the overview at the beginning of Sect. 4, B is a user-
defined parameter that controls the “pruning level” of our timing
constraint, i.e., how aggressively it eliminates candidates from the
search space.

We give an example in Fig. 5 where the flows 𝑓1 < 50, 5, 0, 5 >

and 𝑓2 < 60, 6, 0, 6 > have been received from an ES and the
flow 𝑓3 < 100, 15, 0, 15 > has been received from a SW. For the
flow 𝑓3 forwarded from a previous switch, we consider that one
instance of the flow (determined by the backlog parameter B = 1),
let us call it 𝑓 ′3 , may have been delayed and received together with
the current instance 𝑓3. This would cause a delay in the reception
of the flows in the current node. The reception curve in Fig. 5 is the
sum of curves for each stream separately in a hyperperiod of 30 𝜇s.

We give the general definition of the transmission demand value
W𝐷 as the area under the curve for the accumulated data amount
of received flows and backlogs of the flows arrived from switches
in a hyperperiod. For calculating the transmission demand W𝐷 ,
we consider 2 terms that are 𝐴1 and 𝐴2. The term 𝐴1 calculates the
area under the curve for the accumulated data of all flows assigned
to the queue 𝑞 captured by R(𝑞), in a hyperperiod. Any frames of
all flows R(𝑞) have arrived at the beginning of their period. The
term 𝐴2 calculates the area under the curve for the accumulated
backlog data of the flows arrived from a switch captured by X(𝑞).
The backlog data of the flows X(𝑞) are delayed for a period and
controlled by B, which captures the number of backlogs. The func-
tionW𝐷 returns 16,650 𝐵𝑦𝑡𝑒𝑠 × 𝜇𝑠 in our example, see also Fig. 5
for the values of the terms 𝐴1 and 𝐴2.

∀𝑝 ∈ 𝑃,∀𝑞 ∈ 𝑝.𝑄,∀𝑓 ∈ R(𝑞),∀𝑓 ′ ∈ X(𝑞) :

𝐼 =
K(𝑝)
𝑓 .𝑇

, 𝐼 ′ =
K(𝑝)
𝑓 ′.𝑇

𝐴1 =
𝐼 × (𝐼 + 1)

2
× 𝑓 .𝑇 × 𝑓 .𝑙,

𝐴2 =
𝐼 ′ × (𝐼 ′ + 1 − 2 × B)

2
× 𝑓 ′.𝑇 × 𝑓 ′.𝑙,

W𝐷 = 𝐴1 +𝐴2

(10)



RTNS ’22, June 7–8, 2022, Paris, France Mohammadreza Barzegaran, Niklas Reusch, Luxi Zhao, Silviu S. Craciunas, and Paul Pop

Please note that the correctness of the constraints (Eq. (3), (4),
(5)) follows from the implicit hardware constraints of 802.1Q(bv)
(see the discussion in [9, 37]) while other constraints (Eq. (6), (7))
are used to limit the placement of GCL windows and are not related
to the fundamental schedule correctness, but are used to improve
the runtime of the search by limiting the window placements. Since
the transmission of frames is decoupled from the GCL windows,
the schedule’s correctness concerning the end-to-end latency of
streams is always guaranteed due to the NC analysis, which is
intertwined in the main scheduling step.

5 EVALUATION
In this section, we give details of our setup and test cases in Sect. 5.1
and evaluate our windows optimization solution CPWO for our
Flexible Window-based approach (FWND) on synthetic and real-
world test cases on Sect. 5.2 and Sect. 5.3, respectively. We also
compare the CPWO results for FWND with the related work and
validate the generated GCLs with OMNET++ in Sect. 5.4.

The related work on ST scheduling using 802.1Qbv consists of:
(i) zero-jitter GCL (0GCL) [9, 33], (ii) Frame-to-Window-based GCL
(FGCL) [37], and (iii) Window-based GCL (WND) [34].

We summarize the requirements of the ST scheduling approaches
from the related work and our FWND approach in the first column
of Table 3. The first three requirements refer to the device capa-
bilities needed for the different approaches, and the next seven
rows summarize which constraints and isolation requirements are
needed by which approach. The last two rows present the require-
ments of the complexity of the optimization problem that needs to
be solved to provide a solution for the respective approach. The Link
Constraint specifies that frames routed on the same physical link
cannot overlap in the time domain, also named “Ordered Windows
Constraint” in [37] and the Flow Transmission Constraint specifies
that the propagation of frames of a flow follows the sequential order
along the path of the flow, also named “Stream Constraint” in [37].
We refer the reader to the supplementary material included in the
technical report version of this work [2] for a reiteration of the
relevant scheduling constraints for creating correct TSN schedules
when using frame- and window-based methods.

Comparing the existing approaches with the one proposed in this
paper, we see that the choice of schedulingmechanism is, on the one
hand, highly use-case specific and, on the other hand, is constrained
by the available TSN hardware capabilities in the network nodes.
While the frame- and window-based methods from related work
result in precise schedules that emulate either a 0- or constrained-
jitter approach (e.g., like in TTEthernet), they require end systems
to not only be synchronized to the network time but also the end
devices to have 802.1Qbv capabilities, i.e., to be scheduled. This
limitation might be too restrictive for many real-world systems
relying on off-the-shelf sensors, processing, and actuating nodes.
While our FWNDmethod overcomes this limitation, it does require a
worst-case end-to-end analysis that introduces a level of pessimism
into the timing bounds, thereby reducing the schedulability space
for some use cases. However, as seen in Table 3, ourmethod does not
require many of the constraints imposed on the flows and scheduled
devices from previous work, thereby reducing the complexity of
the schedule synthesis.

5.1 Test Cases and Setup
We implemented our FWND approach using the Java version of the
Google OR-Tools [18] and the Java kernel of the RTC toolbox [48].
The tests were run on an i9 CPU (3.6 GHz) with 32 GB of memory.
The timeout is set to 10 to 90 minutes, depending on the size of the
test case. The macrotick and B parameters are set to 1 𝜇s and 1,
respectively, in all the test cases.

We have generated 15 synthetic test cases that have different
network topologies (three test cases for each topology in Fig. 6)
inspired by industrial and automotive application requirements.
Similar to [52], the network topologies are small ring &mesh (SRM),
medium ring (MR), mediummesh (MM), small tree-depth 1 (ST), and
medium tree-depth 2 (MT). The message sizes of flows are randomly
chosen between 64 bytes and 1518 bytes, while their periods are se-
lected from the set 𝑃 = {1,500, 2,500, 3,500, 5,000, 7,500, 10,000}𝜇s.
The physical link speed is set for 100 Mbps. The details of the syn-
thetic test cases are in Table 4 where the second column shows the
topology of the test cases, and the number of switches, end systems,
and flows are shown in columns 3 to 6.

We have also used two realistic test cases: an automotive case
from General Motors (GM) and an aerospace case, the Orion Crew
Exploration Vehicle (CEV). The GM case consists of 27 flows varying
in size between 100 and 1,500 bytes, with periods between 1𝑚𝑠

and 40𝑚𝑠 and deadlines smaller or equal to the respective periods.
The CEV case is larger, consisting of 137 flows, with sizes ranging
from 87 to 1,527 bytes, periods between 4 𝑚𝑠 and 375 𝑚𝑠 , and
deadlines smaller or equal to the respective periods. The physical
link speed is set for 1000 Mbps. More information can be found in
the corresponding columns in Table 6. The test cases use the same
topologies as in [17] and [50], and we consider that all flows belong
to the ST traffic class.

5.2 Evaluation on synthetic test cases
We have evaluated our CPWO solution for FWND on synthetic
test cases. The results are depicted in Table 5 where we show the
objective function value (average bandwidth Ω from Eq. (1)) and the
mean WCDs. For a quantitative comparison, we have also reported
the results for the three other ST scheduling approaches: 0GCL,
FGCL,WND. 0GCL and FGCL were implemented by us with a CP
formulation using the constraints from [9] and [37], respectively.
The WND method has been implemented with the heuristic pre-
sented in [34], but instead of using the WCD analysis from [49],
we extend it to use the analysis from [50] instead, in order not to
unfairly disadvantage WND over our CPWO solution. Note that
the respective mean worst-case end-to-end delays in the table are
obtained over all the flows in a test case, from a single run of the
algorithms, since the output of the algorithms is deterministic based
on worst-case analyses, not based on simulations. Please note that
NA in the results means an out of memory error and Ω values are
multiplied by 1000.

It is important to note that 0GCL and FGCL are presented here as
a means to evaluate CPWO; however, they are not producing valid
solutions for our problem, which considers unscheduled end sys-
tems, see Table 3 for the requirements of each method. As expected,
when end systems are scheduled and synchronized with the rest
of the network as is considered in 0GCL and FGCL, we obtain the



Real-Time Traffic Guarantees in Heterogeneous Time-sensitive Networks RTNS ’22, June 7–8, 2022, Paris, France

Figure 6: Network topologies used in the test cases [52]

Table 3: Scheduling Approaches in TSN

Requirements 0GCL
[9][33]

FGCL
[37]

WND
[34] FWND

Device Capabilities 802.1Qbv 802.1Qbv 802.1Qbv 802.1Qbv
ES Capabilities scheduled scheduled non-scheduled non-scheduled
SW Capabilities scheduled scheduled scheduled scheduled
Frame Constraint Yes Yes Yes Yes
Link Constraint Yes Yes No No
Bandwidth Constraint No No No Yes
Flow Transmission Constraint Yes Yes No No
Frame-to-Window Assignment No Yes No No
Window Size Constraint No Yes Yes Yes
Flow/Frame Isolation Yes Yes No No
End-to-end Constraint Yes Yes Yes Yes
Schedule synthesis Yes (intractable) Yes (intractable) No (only windows) No (only windows)
Timing analysis required No No Yes Yes

best results in terms of bandwidth usage (Ω) and WCDs, noting
that 0GCL may further reduce the WCDs compared to FGCL.

The only other approach that has similar assumptions to our
FWND is WND from [34]. As we can see from Table 5, in compari-
son toWND, our CPWO solution can slightly reduce the bandwidth
usage. The most important result is that CPWO significantly re-
duces the WCDs compared toWND, with an average of 104% and

Table 4: Details of the synthetic test cases

No. Network Total No. Total No. Total No. Hyperperiod
Topology of SWs of ESs of Flows (𝜇s)

1 SRM 2 3 9 15,000
2 SRM 3 3 11 70,000
3 SRM 3 4 15 70,000
4 MR 4 6 15 30,000
5 MR 4 8 21 210,000
6 MR 5 11 27 210,000
7 MM 4 5 13 15,000
8 MM 6 12 30 210,000
9 MM 7 13 35 210,000
10 ST 3 4 7 15,000
11 ST 3 6 12 15,000
12 ST 3 7 16 105,000
13 MT 7 8 18 105,000
14 MT 7 8 25 105,000
15 MT 7 12 32 210,000

up to 437% for some test cases such as TC13. Hence, we are able to
obtain schedulable solutions in more cases compared to the work
in [34]. Also, when comparing the WCDs obtained by our FWND
approach with the case when the end systems are scheduled, i.e.,
0GCL and FGCL, we can see that the increase in WCDs is not dra-
matic. This means that for many classes of applications, which can
tolerate a slight increase in latency, we can use our CPWO approach
to provide solutions for more types of network implementations,
including those that have unscheduled and/or unsynchronized end
systems. In addition, due to the complexity of their CP model, it
takes a long runtime to obtain solutions for 0GCL and FGCL, and
the CP-model for FGCL run out of memory for some of the test
cases (the NA in the table). As shown in the last two columns
of Table 5, where we present the runtimes of 0GCL and FWND,
FWND reduces the runtime significantly. The reason for reduced
runtime with FWND is that the CP model has to determine values
for fewer variables compared to 0GCL. As shown in the table, the
runtime increases with the size of test cases in all four solutions and
grows exponentially since the problem is proved to be NP-complete
(c.f. [9, 15]). FWND introduces 3 variables (offset, period and length)
for each window (queue) in the network, whereas 0GCL introduces
a variable for each frame of each flow. The number of variables in
the 0GCL model depends on the hyperperiod, the number of flows,
and the flow periods, whereas the number of variables in the FWND
model depends on the number of switches and used queues.



RTNS ’22, June 7–8, 2022, Paris, France Mohammadreza Barzegaran, Niklas Reusch, Luxi Zhao, Silviu S. Craciunas, and Paul Pop

Table 5: Evaluation results on synthetic test cases

No. Ω Ω Ω Ω Mean worst-case Mean worst-case Mean worst-case Mean worst-case Mean Runtime Mean Runtime
for for for for e2e-delay for e2e-delay for e2e-delay for e2e-delay for for for

0GCL FGCL WND FWND 0GCL (𝜇s) FGCL(𝜇s) WND (𝜇s) FWND (𝜇s) 0GCL (ms) FWND (ms)
1 35 35 614 510 192 126 1838 1556 215 8
2 25 22 640 528 246 151 2461 1806 895 12
3 15 15 549 495 175 486 1964 1384 1518 22
4 13 13 330 285 160 776 2925 1832 525 16
5 14 NA 295 285 131 NA 2838 2347 5187 16
6 13 NA 275 205 129 NA 2953 1976 6291 17
7 12 12 238 204 125 764 2913 1561 1152 35
8 13 NA 238 202 114 NA 2878 1725 7603 36
9 12 NA 217 191 122 NA 3074 1927 9171 56
10 8 8 329 265 136 2284 4397 4327 2611 165
11 10 10 381 302 159 984 3047 2057 2840 231
12 11 NA 516 321 187 NA 2543 1326 4650 260
13 10 10 401 302 101 561 2529 471 978 130
14 9 9 611 402 120 785 2254 628 1256 162
15 9 NA 544 413 114 NA 2680 713 6116 163

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TC numbers

0

500

1000

1500

2000

2500

3000

3500

4000

4500

M
e
a
n

 W
C

D
s
 (

s
)

CPWO

OMNET++

(a) Mean WCDs vs. simulated delays for FWND

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Flow Identifiers

0

500

1000

1500

2000

2500

3000

3500

4000

4500

M
e
a
n

 W
C

D
s
 (

s
)

Worst Case

Simulated

(b) Mean WCDs comparison for the flows of TC12

Figure 7: WCD vs. simulated delays

5.3 Evaluation on realistic test cases
We have used two realistic test cases to investigate the scalability of
CPWO and its ability to produce schedulable solutions for real-life
applications. The results of the evaluation are presented in Table 6
where the mean WCDs, objective value Ω, and runtime for the
two test cases are given. As we can see, CPWO has successfully
scheduled all the flows in both test cases. Note that once all flows
are schedulable, CPWO aims at minimizing the bandwidth. This

Table 6: CPWO for FWND results on realistic test cases

ORION (CEV) GM
ES 31 20
SW 15 20
Flows 137 27
Mean WCDs (𝜇s) 10,376 1,981
Ω (×1000) 435 84
Runtime (s) 891 17

means that CPWOmay be able to achieve even smaller WCD values
at the expense of bandwidth usage. In terms of runtime, the CEV
test case takes longer since it has 864 variables, whereas GM has
only 102 variables in the CP models.

5.4 Evaluating the solutions with OMNET++
We have used the OMNET++ simulator with the TSN NeSTiNg ex-
tension [16] to validate the generated GCLs. Thus, we have synthe-
sized the GCLs for all approaches on all synthetic test cases, and we
have observed that the GCLs are correct and the simulation behaves
as expected. The mean WCDs of CPWO for the synthetic test cases
and the worst-case latency observed during multiple OMNET++
simulations (with the windows from CPWO) are depicted in Fig. 7a.
As expected, the latency values reported by OMNET++ are smaller
than the WCDs, as reported by the WCD Analysis from [50]. This is
because a simulation cannot easily uncover the worst-case behavior.
However, the simulation indicates the average behavior, and small
delays mean that even for unscheduled/unsynchronized end sys-
tems, we are able to obtain solutions that are not only schedulable



Real-Time Traffic Guarantees in Heterogeneous Time-sensitive Networks RTNS ’22, June 7–8, 2022, Paris, France

Table 7: Scalability evaluation of CPWO

No. Total No. Total No. Total No. Mean WCDs Largest deadline Ω
of Flows of ESs of SWs 𝜇s 𝜇s (×1000)

TC1 100 50 35 3,226 4,000 249
TC2 150 55 40 3,521 4,000 366
TC3 200 60 40 4,387 5,000 396
TC4 300 65 40 4,911 6,000 468
TC5 400 70 45 5,210 6,000 498
TC6 500 75 45 4,399 5,000 511

(WCDs are smaller than the deadlines) but also have good average
behavior, where most of the time the delays are reasonable, even
smaller than the static schedules obtained by 0GCL and FWND for
scheduled and synchronized ESs. The pessimism result of the WCD
analysis is unavoidable in systems with un-synchronized and/or
unscheduled end-systems; in practice, however, simulated delays
are much smaller, as can be seen in Fig. 7a and Fig. 7b. We also show
in Fig. 7b the simulated delays and WCDs for all flows of TC12. All
the flows are schedulable, and, as expected, the simulated delays
are smaller than the WCDs, calculated with the worst-case delay
analysis derived in the work from [50].

5.5 Scalability Evaluation
We have investigated the scalability of CPWO on 6 larger test cases
(TC1 to TC6) inspired from industrial applications, that have up to
120 devices (75 ESs and 45 SWs) and 500 flows. The results and the
details of the test cases are presented in Table 7, where columns
2, 3, and 4 show the number of flows, end-systems, and switches,
respectively. Columns 5, 6, and 7 show the mean WCD of flows in
𝜇s, the largest deadline of all flows in 𝜇s, and the objective value Ω,
related to bandwidth, see Eq. (1). Although CPWO was able to
generate schedulable solutions in all cases, CPWO can not guaran-
tee finding solutions for larger test cases with the problem being
NP-complete. Furthermore, CPWO can optimize the schedules for
minimum bandwidth usage and has generated solutions that, be-
sides being schedulable, have mean WCDs on average 14% smaller
than the respective deadlines in all test cases.

6 CONCLUSIONS
We have presented a novel, more flexible heuristic schedule syn-
thesis approach for TSN networks, which decouples the frame
scheduling from the generation of time-aware shaper (TAS) win-
dows. Our method eliminates the often-unrealistic constraint that
end systems are scheduled and synchronized (i.e., they have TSN
capabilities) required by previous methods to provide real-time
guarantees for critical traffic in IEEE 802.1Qbv TSN networks. Our
approach intertwines an existing worst-case delay analysis method
with a CP-solver into a novel and scalable heuristic approach that
uses a Tabu Search metaheuristic search strategy in the CP-solver.
Furthermore, to improve scalability, we have proposed a novel
proxy function which can be parametrized to trade-off runtime per-
formance for search-space pruning in the CP-model. The tuning
of the proxy function’s parameters is left for the future work. We
evaluated our approach using synthetic and real-world test cases,
comparing it with existing mechanisms and validated the generated
schedules using OMNET++.

REFERENCES
[1] Mohammad Ashjaei, Lucia Lo Bello, Masoud Daneshtalab, Gaetano Patti, Sergio

Saponara, and Saad Mubeen. 2021. Time-Sensitive Networking in automotive
embedded systems: State of the art and research opportunities. JSA 117 (2021),
102137. https://doi.org/10.1016/j.sysarc.2021.102137

[2] Mohammadreza Barzegaran, Niklas Reusch, Luxi Zhao, Silviu S. Craciunas, and
Paul Pop. 2021. Real-Time Guarantees for Critical Traffic in IEEE 802.1Qbv
TSN Networks with Unscheduled and Unsynchronized End-Systems. CoRR
abs/2105.01641 (2021). https://arxiv.org/pdf/2105.01641.

[3] Mohammadreza Barzegaran, Bahram Zarrin, and Paul Pop. 2020. Quality-of-
control-aware scheduling of communication in TSN-based fog computing plat-
forms using constraint programming. In 2nd Workshop on Fog Computing and
the IoT (Fog-IoT 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[4] Marc Boyer, Hugo Daigmorte, N. Navet, and Jorn Migge. 2016. Performance
impact of the interactions between time-triggered and rate-constrained trans-
missions in TTEthernet. In Proc. ERTS.

[5] Edmund K. Burke and Graham Kendall. 2005. Search methodologies. Springer.
[6] Martin Böhm and Diederich Wermser. 2021. Multi-Domain Time-Sensitive Net-

works—Control Plane Mechanisms for Dynamic Inter-Domain Stream Configu-
ration. Electronics 10, 20 (2021). https://doi.org/10.3390/electronics10202477

[7] Silviu S. Craciunas and Ramon Serna Oliver. 2016. Combined Task- and Network-
level Scheduling for Distributed Time-Triggered Systems. Journal of Real-Time
Systems 52, 2 (2016), 161–200.

[8] Silviu S. Craciunas and Ramon Serna Oliver. 2017. An Overview of Scheduling
Mechanisms for Time-sensitive Networks. Technical report, Real-time summer
school L’École d’Été Temps Réel (ETR).

[9] Silviu S. Craciunas, Ramon Serna Oliver, Martin Chmelik, and Wilfried Steiner.
2016. Scheduling Real-Time Communication in IEEE 802.1Qbv Time Sensitive
Networks. In Proc. RTNS. 183–192.

[10] Dinh-Khanh Dang and Ahlem Mifdaoui. 2014. Timing Analysis of TDMA-based
Networks using Network Calculus and Integer Linear Programming. In Proc.
MASCOTS. 21–30.

[11] Joan Adrià Ruiz De Azua and Marc Boyer. 2014. Complete Modelling of AVB in
Network Calculus Framework. In Proc. RTNS. 55–64.

[12] Jonas Diemer, Daniel Thiele, and Rolf Ernst. 2012. Formal worst-case timing
analysis of Ethernet topologies with strict-priority and AVB switching. In Proc.
SIES. 1–10.

[13] Aellison Cassimiro T. dos Santos, Ben Schneider, and Vivek Nigam. 2019.
TSNSCHED: Automated Schedule Generation for Time Sensitive Networking. In
Proc. FMCAD. https://doi.org/10.23919/FMCAD.2019.8894249

[14] Frank Dürr and Naresh Ganesh Nayak. 2016. No-wait Packet Scheduling for
IEEE Time-sensitive Networks (TSN). In Proc. RTNS. ACM.

[15] Jonathan Falk, Frank Dürr, and Kurt Rothermel. 2018. Exploring Practical Limi-
tations of Joint Routing and Scheduling for TSN with ILP. In Proc. RTCSA.

[16] Jonathan Falk, David Hellmanns, Ben Carabelli, Naresh Nayak, Frank Dürr,
Stephan Kehrer, and Kurt Rothermel. 2019. NeSTiNg: Simulating IEEE Time-
sensitive Networking (TSN) in OMNeT++. In Proc. NetSys. 1–8.

[17] Voica Gavrilut, Bahram Zarrin, Paul Pop, and Soheil Samii. 2017. Fault-Tolerant
Topology and Routing Synthesis for IEEE Time-Sensitive Networking. In Proc.
RTNS. ACM.

[18] Google. Accessed on Oct 2020. Google OR-Tools. https://developers.google.com/
optimization.

[19] Florian Heilmann and Gerhard Fohler. 2019. Size-Based Queuing: An Approach
to Improve Bandwidth Utilization in TSN Networks. SIGBED Rev. 16, 1 (2019),
9–14.

[20] David Hellmanns, Jonathan Falk, Alexander Glavackij, René Hummen, Stephan
Kehrer, and Frank ü. 2020. On the Performance of Stream-based, Class-based
Time-aware Shaping and Frame Preemption in TSN. In Proc. ICIT. 298–303.

[21] D. Hellmanns, A. Glavackij, J. Falk, F. Duerr, R. Hummen, and S. Kehrer. 2020.
Scaling TSN Scheduling for Factory Automation Networks. In Proc. WFCS. 1–8.

[22] Institute of Electrical and Electronics Engineers, Inc. 2011. 802.1BA—Audio
Video Bridging (AVB) Systems. http://www:ieee802:org/1/pages/802:1ba:html.
Accessed: 23.10.2020.

[23] Institute of Electrical and Electronics Engineers, Inc. 2016. 802.1Qbv - Enhance-
ments for Scheduled Traffic. http://www.ieee802.org/1/pages/802.1bv.html. Draft
3.1, Accessed: 23.10.2020.

[24] Institute of Electrical and Electronics Engineers, Inc. 2016. Official Website of
the 802.1 Time-Sensitive Networking Task Group. http://www.ieee802.org/1/
pages/tsn.html. Accessed: 23.10.2020.

[25] Institute of Electrical and Electronics Engineers, Inc. 2017. 802.1AS-Rev - Timing
and Synchronization for Time-Sensitive Applications. http://www.ieee802.org/1/
pages/802.1AS-rev.html. Accessed: 23.10.2020.

[26] Issuing Committee: As-2d2 Deterministic Ethernet And Unified Networking.
2011. SAE AS6802 Time-Triggered Ethernet. http://standards.sae.org/as6802/.
Accessed: 23.10.2020.

[27] Ana Larrañaga, M. Carmen Lucas-Estañ, Imanol Martinez, Iñaki Val, and Javier
Gozalvez. 2020. Analysis of 5G-TSN Integration to Support Industry 4.0. In Proc.

https://doi.org/10.1016/j.sysarc.2021.102137
https://arxiv.org/pdf/2105.01641
https://doi.org/10.3390/electronics10202477
https://doi.org/10.23919/FMCAD.2019.8894249
https://developers.google.com/optimization
https://developers.google.com/optimization
http://www:ieee802:org/1/pages/802:1ba:html
http://www.ieee802.org/1/pages/802.1bv.html
http://www.ieee802.org/1/pages/tsn.html
http://www.ieee802.org/1/pages/tsn.html
http://www.ieee802.org/1/pages/802.1AS-rev.html
http://www.ieee802.org/1/pages/802.1AS-rev.html
http://standards.sae.org/as6802/


RTNS ’22, June 7–8, 2022, Paris, France Mohammadreza Barzegaran, Niklas Reusch, Luxi Zhao, Silviu S. Craciunas, and Paul Pop

ETFA. https://doi.org/10.1109/ETFA46521.2020.9212141
[28] Rouhollah Mahfouzi, Amir Aminifar, Soheil Samii, Ahmed Rezine, Petru Eles, and

Zebo Peng. 2018. Stability-aware integrated routing and scheduling for control
applications in Ethernet networks. In Proc. DATE.

[29] Daniel Bujosa Mateu, Mohammad Ashjaei, Alessandro V. Papadopoulos, Julian
Proenza, and Thomas Nolte. 2021. LETRA: Mapping Legacy Ethernet-Based
Traffic into TSN Traffic Classes. In Proc. ETFA. https://doi.org/10.1109/ETFA45728.
2021.9613637

[30] Naresh Ganesh Nayak, Frank Dürr, and Kurt Rothermel. 2018. Incremental Flow
Scheduling and Routing in Time-Sensitive Software-Defined Networks. IEEE
Trans Industr Inform 14, 5 (2018).

[31] Maryam Pahlevan and Roman Obermaisser. 2018. Genetic Algorithm for
Scheduling Time-Triggered Traffic in Time-Sensitive Networks. In Proc. ETFA.
https://doi.org/10.1109/ETFA.2018.8502515

[32] Maryam Pahlevan, Nadra Tabassam, and Roman Obermaisser. 2019. Heuristic
List Scheduler for Time Triggered Traffic in Time Sensitive Networks. SIGBED
Rev. 16, 1 (2019), 15–20.

[33] Paul Pop, Michael L. Raagaard, Silviu S. Craciunas, and Wilfried Steiner. 2016.
Design Optimization of Cyber-Physical Distributed Systems using IEEE Time-
Sensitive Networks (TSN). IET Cyber-Physical Systems: Theory and Applications
1, 1 (2016), 86–94.

[34] Niklas Reusch, Luxi Zhao, Silviu S. Craciunas, and Paul Pop. 2020. Window-Based
Schedule Synthesis for Industrial IEEE 802.1Qbv TSN Networks. In Proc. WFCS.

[35] Jens Schmitt, Paul Hurley, Matthias Hollick, and Ralf Steinmetz. 2003. Per-flow
guarantees under class-based priority queueing. In IEEE Global Telecommunica-
tions Conference. 4169–4174.

[36] Sebastian Schriegel, Thomas Kobzan, and Jürgen Jasperneite. 2018. Investigation
on a distributed SDN control plane architecture for heterogeneous time sensitive
networks. In Proc. WFCS. https://doi.org/10.1109/WFCS.2018.8402356

[37] Ramon SernaOliver, Silviu S. Craciunas, andWilfried Steiner. 2018. IEEE 802.1Qbv
Gate Control List Synthesis using Array Theory Encoding. In Proc. RTAS.

[38] Khaled M. Shalghum, Nor Kamariah Noordin, Aduwati Sali, and Fazirulhisyam
Hashim. 2021. Network Calculus-Based Latency for Time-Triggered Traffic under
Flexible Window-Overlapping Scheduling (FWOS) in a Time-Sensitive Network
(TSN). Applied Sciences 11, 9 (2021).

[39] Oliver Sinnen. 2007. Task scheduling for parallel systems. Vol. 60. John Wiley &
Sons.

[40] Wilfried Steiner. 2010. An Evaluation of SMT-based Schedule Synthesis For
Time-Triggered Multi-Hop Networks. In Proc. RTSS. IEEE.

[41] W. Steiner, G. Bauer, B. Hall, and M. Paulitsch. 2011. TTEthernet: Time-Triggered
Ethernet. In Time-Triggered Communication, Roman Obermaisser (Ed.). CRC
Press.

[42] Marek Vlk, Kateřina Brejchová, Zdeněk Hanzálek, and Siyu Tang. 2022. Large-
scale periodic scheduling in time-sensitive networks. Computers & Operations
Research 137 (2022), 105512. https://doi.org/10.1016/j.cor.2021.105512

[43] Marek Vlk, Zdeněk Hanzálek, Kateřina Brejchová, Siyu Tang, Sushmit Bhat-
tacharjee, and Songwei Fu. 2020. Enhancing Schedulability and Throughput
of Time-Triggered Traffic in IEEE 802.1Qbv Time-Sensitive Networks. IEEE
Transactions on Communications 68, 11 (2020), 7023–7038.

[44] Marek Vlk, Zdeněk Hanzálek, and Siyu Tang. 2021. Constraint programming
approaches to joint routing and scheduling in time-sensitive networks. Computers
& Industrial Engineering 157 (2021), 107317. https://doi.org/10.1016/j.cie.2021.
107317

[45] Christian von Arnim, Mihai Drǎgan, Florian Frick, Armin Lechler, Oliver Riedel,
and Alexander Verl. 2020. TSN-based Converged Industrial Networks: Evo-
lutionary Steps and Migration Paths. In Proc. ETFA, Vol. 1. 294–301. https:
//doi.org/10.1109/ETFA46521.2020.9212057

[46] Ernesto Wandeler. 2006. Modular performance analysis and interface-based design
for embedded real-time systems. Shaker.

[47] Ernesto Wandeler and Lothar Thiele. 2006. Optimal TDMA time slot and cycle
length allocation for hard real-time systems. In Proc. ASP-DAC.

[48] Ernesto Wandeler and Lothar Thiele. 2006. Real-Time Calculus (RTC) Toolbox.
http://www.mpa.ethz.ch/Rtctoolbox. http://www.mpa.ethz.ch/Rtctoolbox
Accessed: 23.10.2020.

[49] Luxi Zhao, Paul Pop, and Silviu S. Craciunas. 2018. Worst-Case Latency Analysis
for IEEE 802.1Qbv Time Sensitive Networks Using Network Calculus. IEEE Access
6 (2018), 41803–41815. https://doi.org/10.1109/ACCESS.2018.2858767

[50] Luxi Zhao, Paul Pop, Zijie Gong, and Bingwu Fang. 2021. Improving Latency
Analysis for Flexible Window-Based GCL Scheduling in TSN Networks by Inte-
gration of Consecutive Nodes Offsets. IEEE Internet of Things Journal 8, 7 (2021),
5574–5584. https://doi.org/10.1109/JIOT.2020.3031932

[51] Luxi Zhao, Paul Pop, Qiao Li, Junyan Chen, and Huagang Xiong. 2017. Timing
analysis of rate-constrained traffic in TTEthernet using network calculus. Real-
Time Systems 52, 2 (2017), 254–287.

[52] Luxi Zhao, Paul Pop, and Sebastian Steinhorst. 2017. Quantitative Performance
Comparison of Various Traffic Shapers in Time-Sensitive Networking. CoRR
abs/2103.13424 (2017). arXiv:2103.13424 https://arxiv.org/abs/2103.13424.

[53] LuXi Zhao, Huagang Xiong, Zhong Zheng, and Qiao Li. 2014. Improving worst-
case latency analysis for rate-constrained traffic in the Time-Triggered Ethernet
network. IEEE Communications Letters 18, 11 (2014), 1927–1930.

[54] Yuanbin Zhou, Soheil Samii, Petru Eles, and Zebo Peng. 2021. ASIL-
Decomposition Based Routing and Scheduling in Safety-Critical Time-Sensitive
Networking. In Proc. RTAS. https://doi.org/10.1109/RTAS52030.2021.00023

[55] Yuanbin Zhou, Soheil Samii, Petru Eles, and Zebo Peng. 2021. Reliability-Aware
Scheduling and Routing for Messages in Time-Sensitive Networking. ACM Trans.
Embed. Comput. Syst. 20, 5, Article 41 (2021), 24 pages. https://doi.org/10.1145/
3458768

https://doi.org/10.1109/ETFA46521.2020.9212141
https://doi.org/10.1109/ETFA45728.2021.9613637
https://doi.org/10.1109/ETFA45728.2021.9613637
https://doi.org/10.1109/ETFA.2018.8502515
https://doi.org/10.1109/WFCS.2018.8402356
https://doi.org/10.1016/j.cor.2021.105512
https://doi.org/10.1016/j.cie.2021.107317
https://doi.org/10.1016/j.cie.2021.107317
https://doi.org/10.1109/ETFA46521.2020.9212057
https://doi.org/10.1109/ETFA46521.2020.9212057
http://www.mpa.ethz.ch/Rtctoolbox
https://doi.org/10.1109/ACCESS.2018.2858767
https://doi.org/10.1109/JIOT.2020.3031932
https://arxiv.org/abs/2103.13424
https://arxiv.org/abs/2103.13424
https://doi.org/10.1109/RTAS52030.2021.00023
https://doi.org/10.1145/3458768
https://doi.org/10.1145/3458768

	Abstract
	1 Introduction
	2 Related Work
	3 System Model
	3.1 Network Model
	3.2 Switch Model
	3.3 Application Model
	3.4 Problem Formulation

	4 Optimization Strategy
	4.1 Objective Function
	4.2 Variables
	4.3 Constraints
	4.4 Timing constraints

	5 Evaluation
	5.1 Test Cases and Setup
	5.2 Evaluation on synthetic test cases
	5.3 Evaluation on realistic test cases
	5.4 Evaluating the solutions with OMNET++
	5.5 Scalability Evaluation

	6 Conclusions
	References

