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Programming the Ubiquitous World
• In networked mobile systems (e.g. teams of robots, smartphones,

etc.) the location and connectivity of “machines” may vary during
the execution of its “programs” (computation specifications)

• We investigate models for bridging “programs” and “machines”
with dynamic structure (location and connectivity)

• BigActors [PKSBdS13, PPKS13, PS13] are actors [Agh86] hosted by
entities of the physical structure denoted as bigraph nodes [Mil09]

E. Pereira, C. M. Kirsch, R. Sengupta, and J. B. de Sousa, “Bigactors - A Model for
Structure-aware Computation,” in ACM/IEEE 4th International Conference on Cyber-Physical
Systems, 2013, pp. 199-208.



Case study: Oil spill monitoring scenario

• “Bilge dumping” is an environmental problem of great relevance for
countries with large area of jurisdictional waters

• EC created the European Maritime Safety Agency to “...prevent and
respond to pollution by ships within the EU”

• How to use networked robotics to monitor and take evidences of
“bilge dumping”

Figure: Portuguese Jurisdiction waters and evidences of “Bilge dumping”.



Vehicles and sensors living in the physical world
• Network of vehicles and sensors collaborating to monitor an oil spill

caused by a tanker

• UAVs use their optical sensors to detect the oil spill and collects AIS
information of vessels and drifters

• A vessel deploys AIS/GPS drifters to forecast the oil spill dynamics

• A submarine collects samples of the oil spill
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Vehicles and sensors living in the physical world
• How to model vehicles and sensors embedded in the physical world

in a logical abstraction?

• How to program computing entities living and interacting in this
logical world?
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E. Pereira, C. Potiron, C. M. Kirsch, and R. Sengupta, “Modeling and controlling the structure of
heterogeneous mobile robotic systems: A bigactor approach,” in 2013 IEEE International Systems
Conference (SysCon), 2013, pp. 442-447.



Nesting locations as a forest

uav0

uav1

uav2

vessel

auv
tanker

drifter0..3

oilSpill

GSC0

GSC1

GSC2

landsea

underwater

uav0 uav1

uav2vessel

oilSpill
landsea

GSC0 GSC1 GSC2
tanker drifter0 drifter1

drifter2 drifter3auv

Abstraction to a logical world



Connectivity as an hypergraph
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Programming the logical world

• BigActor program that keeps sending the UAV to the oil spill
location:

"gotoOil" hosted_at "uav0" with_behavior{
loop{

MOVE_HOST_TO oilSpill
}

}

• This program would be interpreted to a series of physical UAV
commands:

autopilotWaypointCtr(Lat0,Long0,Alt0,radius)
autopilotWaypointCtr(Lat1,Long1,Alt1,radius)
autopilotWaypointCtr(Lat2,Long2,Alt2,radius)
autopilotWaypointCtr(Lat3,Long3,Alt3,radius)
...

• Logical space programming focuses on “what” you want to do
rather than “how” to do it



Video: Networked vehicles and sensors demonstration

https://vimeo.com/72699388


BigActor Runtime Environment for Networked Robotics
• BigActor implementation for networked robotics is comprised of two

major software components:
• BigActor Domain Specific Language using Scala Actors
• BigActor Runtime Environment implemented over the Robot

Operating System (ROS) - a widely used middleware for robotics



Distributed Bigraph Estimation

• Each robot observes the world locally as a bigraph

• Local observations are shared amongst robots over the internet

• Each robot calculates a bigraph estimate of the overall system

• When a robot receives a distributed bigraph estimate (DBigraph), it
fuses it with its own estimate, using a bigraph fuser:
bigraphFuser:: (DBigraph,DBigraph) => DBigraph



Example: handover of UAV control authority

"handover" hosted_at "GCS0" with_behavior{
HANDOVER uav0 TO GCS1

}
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Programming models with space as first-class citizen

• Ambient Calculus models bounded locations where computation may
occur [CG98]

• Borcea et al. introduce Spatial Programming (SP) - a space-aware
programming model for outdoor distributed computing. In SP,
physical spaces are abstracted as circular regions that circumscribes
the physical space [BIK+04]

• Gaia [RC00] is a software infrastructure that supports Active Spaces
- a model that maps the abstract perception of space into a
first-class software citizen. Active spaces store location information
and define their behaviour

• Bigraphs [Mil09] provide a rich model that entails both location and
connectivity.

• In contrast with SP and Active Spaces, Bigraph provides a nested
location model.

• Bigraphs do not explicitly represent intersection of spaces (Shared
Bigraphs introduce this concept).



Comparison with other spatial programming models

• BigActors combine a widely known model of concurrency combined
with a bigraph abstraction of the world

• SP is based on Smart Messages (SMs) model of concurrency while
the BigActor model uses Actors.

• SM model is based on migration of computing units between entities
a shared memory infrastructure

• Actors are based on asynchronous message-passing

• In the Gaia framework, Active Spaces encapsulate themselves state
and behaviour of the physical spaces

• The BigActor Model specifies the physical space in the bigraph and
the computing entities as actors. This provides a separation of
concerns between the physical space and what actually changes it.



Conclusions

• Robots live in a physical world

• We explore BigActors as a model for logically program networked
robotics

• Programming at a logical level reduces operational complexity
• spatial programming example
• hand-over manoeuvre example

• We introduce a BigActor Runtime Environment that runs over ROS
and Scala Actors

• The model and the implementation was successfully demonstrated
over the summer specifying missions of networked vehicles
performing an environmental monitoring scenario.



“We can only see a short distance ahead, but we can see plenty there
that needs to be done.” Alan Turing [Tur50]

“I was concerned... to ask what the limits of computation may be. This
interaction business began to seem to me to be breaking the mould...”
Robin Milner [Berger interview]

Thank You!
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