
JMOCHA: A Model Checking Tool that Exploits Design Structure

R. Alur† L. de Alfaro∗ R. Grosu‡ T.A. Henzinger∗ M. Kang† C.M. Kirsch∗

R. Majumdar∗ F. Mang∗ B.Y. Wang†

∗ Department of Electrical Engineering and Computer Science, University of California, Berkeley
†Department of Computer and Information Science, University of Pennsylvania
‡Department of Computer Science, State University of New York, Stony Brook

1 Introduction
Model checking is emerging as a practical tool for automated
debugging of embedded software [6, 10, 7]. In model check-
ing, a high-level description of a system is compared against
a logical correctness requirement to discover inconsisten-
cies. Since model checking is based on exhaustive state-
space exploration, and the size of the state space of a design
grows exponentially with the size of the description, scala-
bility remains a challenge. The goal of our research is to
develop techniques for exploiting modular design structure
during model checking, and the model checker JMOCHA is
based on this theme. Instead of manipulating unstructured
state-transition graphs, it supports the hierarchical modeling
framework of Reactive Modules [3]. JMOCHA is a growing
interactive software environment for speci£cation, simula-
tion, and veri£cation, and is intended as a vehicle for the
development of new veri£cation algorithms and approaches.
It is written in Java and uses native C-code BDD libraries
from VIS [5]. JMOCHA offers: (1) A graphical user inter-
face that looks familiar to Windows/Java users. (2) A simu-
lator that displays traces in a message sequence chart fash-
ion. (3) Requirement veri£cation both by symbolic and enu-
merative model checking. (4) Implementation veri£cation
by checking trace containment. (5) A proof manager that
aids compositional and assume-guarantee reasoning [9]. (6)
A scripting language called SLANG for the rapid and struc-
tured development of new veri£cation algorithms. jMocha is
available publicly at http://www.eecs.berleley.edu/∼mocha.
It is a successor and extension of the original Mocha tool
[2], that was entirely written in C.

2 The Modeling Language
The language REACTIVE MODULES [3] is a modeling and
analysis language for heterogeneous concurrent systems
with synchronous and asynchronous components. As a mod-
eling language it supports high-level, partial system descrip-
tions, rapid prototyping, and simulation. As a language for
concurrent systems, it allows a modular description of the in-
teractions among the components of a system. As an analysis
language it allows the speci£cation of requirements either in
temporal logic [4] or as abstract modules.

3 The Graphical User Interface
As in modern Windows or Java tools, the interaction between

the user and JMOCHA is controlled by a graphical user inter-
face. One may use JMOCHA as a syntax-directed editor for
the REACTIVE MODULES language. Once one has edited and
saved a tree of £les, JMOCHA may generate a proof context
(or state) in a separate Project window provided there are
no syntactic errors. The context is shown in a convenient tree
notation. A selected node in the tree (module or judgment)
may be then simulated and veri£ed, respectively.

4 The Simulator
The behavior (executions) of a reactive system can be vi-
sualized in a message sequence charts (MSC) like fashion
by using the simulator. To run the simulator, the user se-
lects a module and the submodules/variables to be traced.
For each selected variable, a vertical line shows its evolu-
tion in time. The value of a variable is displayed only when
it changes. Clicking on a box, which displays a change,
shows which other variables (and values) contributed to the
change. The same format is used to display the counter-
examples generated by the model checkers during failed
veri£cation attempts. The simulator can be used either in
random-simulation or in manual-simulation mode.

5 The Invariant Checkers
JMOCHA allows the speci£cation of requirements in a rich
temporal logic called alternating temporal logic (ATL) [4].
By far the most common requirements are invariants, and
thus it is of utmost importance to implement invariant
checking ef£ciently. JMOCHA provides both £ne-tuned enu-
merative and symbolic state search routines for invariant
checking. The enumerative, state-based algorithms are
often preferable for asynchronous systems; the symbolic,
decision-diagram based algorithms, for synchronous sys-
tems. More general ATL formulas can be checked by de£n-
ing algorithms using the scripting SLANG, as shown in Sec-
tion 7. These algorithms can call on both enumerative and
symbolic search as subroutines.

Enumerative Invariant Checking
The enumerative checker uses the standard on-the-¤y algo-
rithm for detecting violations of invariants starting from the
initial states. We have implemented various features and op-
timizations in the JMOCHA enumerative search engine. For
example, as in SPIN [10], each state (excluding combina-
tional variables) is stored as bit string to save space using

1



compression. For asynchronous modules JMOCHA provides a
search heuristic called hierarchical reduction [1] that merges
several internal steps into one, and this in a hierarchical man-
ner. For well-structured architectures such as rings and trees,
this leads to signi£cant savings.

Symbolic Invariant Checking
While the enumerative checker works directly on the in-
ternal representation generated by the parser, the symbolic
checker works on a multi-valued decision diagram (MDD)
encoding provided by the VIS C-package from Berkeley [5].
The checker consists of two components: a model genera-
tor and an invariant checker. The model generator produces
an MDD representation of the transition relation and of the
set of initial states. The transition relation is partitioned in
a conjunctive form. The invariant checker uses an image
computation routine from VIS that has a very ef£cient early
quanti£cation heuristic. While most of the symbolic model
checker is written in Java, it calls the VIS MDD routines,
written in C, to construct and manipulate MDDs ef£ciently.
A main objective of the symbolic model checker is to support
bit vectors and arrays ef£ciently.

6 The Re£nement Checkers
Re£nement checking gives users the possibility to verify if
a module P (the implementation) re£nes another more ab-
stract module P ′ (the speci£cation). Formally, P re£nes P ′

if the traces of P are contained in the set of traces of P ′.
Due to the high computational complexity of checking trace
containment, the re£nement checkers in JMOCHA check if
the speci£cation module simulates the implementation mod-
ule assuming that (1) the speci£cation contains no private
variables, and (2) all variables of the speci£cation appear in
the implementation as well. In this case, simulation check-
ing reduces to checking a transition invariant: £rst, each ini-
tial state of the implementation must be an initial state of
the speci£cation, and second, each reachable transition of
the implementation must satisfy the transition relation of the
speci£cation [9]. This can be done ef£ciently using either
enumerative or symbolic search.

Compositional and Assume-Guarantee Reasoning
JMOCHA supports compositional rules that allow to decom-
pose the proof of re£nement between composite modules to
the proof of re£nement between their submodules (in the
most general context). For the more complex cases in that
a module re£nes another module only in a particular con-
text (e.g. the speci£cation context) JMOCHA also provides
assume/guarantee rules [3, 9] . Given a re£nement judg-
ment, the proof manager (or prover) of JMOCHA suggests
all decompositions that are possible according to a built-in
database of proof rules, which includes the compositional
and assume-guarantee rules. Once a rule is selected, the
premises are added to the proof manager as new proof goals,
and they are displayed in the judgment browser. The user can
then apply either further decomposition rules or discharge
each proof obligation by invoking the re£nement checker.

7 The Scripting Language SLANG

SLANG is a Scripting LANGuage for the veri£cation of
REACTIVE MODULES, designed with the goals of rapid proto-
typing of veri£cation algorithms and automation of veri£ca-
tion tasks. In addition to the usual datatypes, SLANG provides
access to the datatypes speci£c to JMOCHA, including mod-
ule expressions, logical expressions, MDDs, and module vari-
ables. It also provides several prede£ned functions that im-
plement various model-checking tasks (e.g. pre, post, init).
This functionality of SLANG is suf£cient to model check
all ATL and µ-calculus requirements and to compute state
equivalences such as bisimilarity, over £nite-state as well as
in£nite-state systems (in the latter case, a SLANG script may
not terminate) [8].

Acknowledgements
We thank Himyanshu Anand, Ben Horowitz, Franjo Ivan-
cic, Michael McDougall, Marius Minea, Oliver Moeller,
Shaz Qadeer, Sriram Rajamani, and Jean-Francois Raskin
for their assistance in the development of JMOCHA. The
MOCHA project is funded in part by the DARPA grant NAG2-
1214, the NSF CAREER awards CCR95-01708 and CCR97-
34115, the NSF grant CCR99-70925, the NSF ITR grant
CCR0085949, the MARCO grant 98-DT-660, and the SRC
contracts 99-TJ-683.003 and 99-TJ-688.

REFERENCES

[1] R. Alur, R. Grosu, and B.-Y. Wang. Automated re£nement
checking for asynchronous processes. In Proc. 3rd FMCAD,
LNCS. Springer-Verlag, 2000.

[2] R. Alur, T.A. Henzinger, F. Mang, S. Qadeer, S. Rajamani,
and S. Tasiran. MOCHA: Modularity in model checking. In
Proc. 10th CAV, LNCS 1427, pages 516–520, 1998.

[3] R. Alur and T.A. Henzinger. Reactive modules. Formal Meth-
ods in System Design, 15(1):7–48, 1999.

[4] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time
temporal logic. In Proc. 38th FOCS, pages 100–109, 1997.

[5] R. Brayton et al. VIS: A system for veri£cation and synthesis.
In Proc. 8th CAV, LNCS 1102, pages 428–432, 1996.

[6] E.M. Clarke and O. Grumberg and D.A. Peled. Model Check-
ing. The MIT Press, 1999.

[7] J.C. Corbett, M.B. Dwyer, J. Hatcliff, S. Laubach, C.S.
Pasareanu, Robby, and H. Zheng. Bandera: Extracting £nite-
state models from Java source code. In Proc. 22nd ICSE,
pages 439–448, 2000.

[8] T.A. Henzinger and R. Majumdar. A classi£cation of sym-
bolic transition systems. In Proc. 17th TACS, LNCS 1770,
pages 13–34, 2000.

[9] T.A. Henzinger, S. Qadeer, and S. Rajamani. You assume, we
guarantee: Methodology and case studies. In Proc. 10th CAV,
LNCS 1427, pages 521–525, 1998.

[10] G.J. Holzmann. The model checker SPIN. IEEE Trans. Soft-
ware Engineering, 23(5):279–295, 1997.


