
Distributed Queues in Shared Memory

Multicore Performance and Scalability through Quantitative Relaxation

Andreas Haas
University of Salzburg

ahaas@cs.uni-
salzburg.at

Thomas A. Henzinger
IST Austria

tah@ist.ac.at

Christoph M. Kirsch
University of Salzburg

ck@cs.uni-salzburg.at

Michael Lippautz
University of Salzburg
mlippautz@cs.uni-

salzburg.at

Hannes Payer
Google

hpayer@google.com

Ali Sezgin
IST Austria

asezgin@ist.ac.at

Ana Sokolova
University of Salzburg

anas@cs.uni-salzburg.at

ABSTRACT
A prominent remedy to multicore scalability issues in concurrent
data structure implementations is to relax the sequential specifi-
cation of the data structure. We present distributed queues (DQ),
a new family of relaxed concurrent queue implementations. DQs
implement relaxed queues with linearizable emptiness check and
either configurable or bounded out-of-order behavior or pool be-
havior. Our experiments show that DQs outperform and outscale in
micro- and macrobenchmarks all strict and relaxed queue as well
as pool implementations that we considered.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming—
parallel programming

General Terms
Algorithms, Measurement, Performance

Keywords
Inexact computing, load balancing, LRU

1. INTRODUCTION
A concurrent data structure implementation is desired to be cor-

rect, fast, and scalable. Correctness, specified as a consistency con-
dition such as linearizability [10], constrains the set of allowed be-
haviors. A mapping from a sequence of concurrent method calls
and returns to a set of sequences in which methods are assumed
to execute sequentially defines allowed behaviors. Scalability, on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’13, May 14–16, 2013, Ischia, Italy.
Copyright 2013 ACM 978-1-4503-2053-5 ...$15.00.

the other hand, is the ability to increase throughput as the number
of concurrent threads increases. An ideally scalable implementa-
tion would increase the throughput n-fold on a data structure as the
number of cores and threads using the data structure increases n
times.

Recent results [4] dictate that correctness and scalability conflict,
especially so for ordered data structures such as queues or stacks.
This is due to the impossibility of having a truly distributed update
mechanism for the logical state of a data structure. For instance,
all threads trying to enqueue an element into a shared queue have
to, in some form or another, acquire the ownership of the tail of
the queue and update it accordingly. As the number of concurrent
threads trying to enqueue increases, all threads progressing in their
own tasks becomes less likely, resulting in poor scalability.

In order to obtain scalability, recent research has focused on ex-
panding the set of allowed behaviors, e.g. by relaxing the sequential
specification of a data structure, but mostly implicitly and qual-
itatively, such as replacing a queue with a pool. With the work
on quantitative relaxation [9], one can now define and implement
new data structures which are k-relaxed, for any k≥ 0, relative to a
given data structure. For instance, a 1-relaxed queue behaves like a
queue with the exception that a dequeue is allowed to return either
the oldest or the second oldest element of the queue. Quantitative
relaxation of queues and other data structures is an example of a
recent trend towards inexact computing [13].

Our new, relaxed queue implementations are instances of a dis-
tributed queue (DQ) which consists of multiple FIFO queues, called
partial queues, whose operations are derived from the Michael-
Scott queue [18]. There are two DQ subfamilies depending on
the way of controlling the access to the partial queues: (1) DQs
that use load balancers to decide, upon an enqueue or a dequeue
call, in which partial queue the element should be enqueued or de-
queued, and (2) least-recently-used DQs where ABA counters are
used to make that decision. The least-recently-used DQs imple-
ment k-relaxed queues for configurable k. For the load-balanced
DQs k cannot be configured but in some cases still be bounded in
the number of threads. The DQs for which k cannot be bounded
effectively implement pool semantics. However, despite being re-
laxed, all DQs provide a linearizable emptiness check, i.e., return
empty if and only if all partial queues are empty.

In a number of experiments, we analyze a broad range of DQs,

both via different load balancers and ABA counters, and compare
them with a large variety of existing queue and pool implementa-
tions. In our micro- and macrobenchmarks DQs provide better per-
formance and scalability than any of the queue or pool implemen-
tations we considered. We also measure the degree of relaxation
that actually happens when running different implementations on a
given workload. Interestingly, the actual behavior of some imple-
mentations stays well below their relaxation bounds.

The structure of the paper is as follows. In Section 2 we infor-
mally recall the definitions of pool and k-relaxed queue semantics.
In Section 3 we present DQs and their algorithms and design de-
tails, and demonstrate correctness. In Section 4 we discuss related
work and introduce existing pools and queues that are then evalu-
ated against the DQs in Section 5. Section 6 concludes the paper.

2. POOLS AND K-RELAXED QUEUES
We informally recall the sequential specifications of a pool and

a k-relaxed queue to facilitate the correctness proofs in Section 3.3
where DQs are shown to be linearizable with respect to pool se-
mantics and, in the case of some load-balanced DQs and the least-
recently-used DQs, k-relaxed queue semantics.

The sequential specification of a pool is informally defined as
follows. A pool has a put and a get operation which we call enqueue
and dequeue here for simplicity. The enqueue operation inserts an
element into the pool. The dequeue operation removes and returns
previously inserted elements in no particular order and returns null
when the pool is empty.

A k-relaxed queue is a restricted out-of-order k-relaxation of a
FIFO queue as defined in the framework for quantitative relaxation
of concurrent data structures [9]. We informally discuss the se-
quential specification of a k-relaxed queue.

Let Σ bet the set of queue methods including their input and out-
put values defined as

Σ = {enq(x),deq(x) | x ∈ D}∪{deq(null)}

where D is the set of elements that can be enqueued in and de-
queued from the queue and deq(null) represents a dequeue re-
turning empty. We refer to sequences in Σ∗ as queue sequences.

The sequential specification of a FIFO queue is the set S ⊆ Σ∗

that contains all valid FIFO queue sequences. Informally, valid
FIFO queue sequences are sequences where elements are dequeued
in the same order as they are enqueued. Furthermore, a deq(null)
only happens if the queue is empty at the time of deq(null), i.e.,
every element which gets enqueued before deq(null) also gets de-
queued before deq(null). For example, the queue sequence

enq(a)enq(b)deq(a)enq(c)deq(b)deq(c)

belongs to S whereas

enq(a)enq(b)deq(b)enq(c)deq(a)deq(c)

does not.
A restricted out-of-order k-relaxation of a FIFO queue is the set

Sk ⊆ Σ∗ containing all sequences with a distance of at most k to the
sequential specification S of the queue. Informally, the distance is
the number of elements overtaking each other in the queue, i.e., an
element e may overtake at most k elements and may be overtaken
by at most k other elements before it is dequeued. A 0-relaxed
FIFO queue thus corresponds to a regular FIFO queue. The above
example sequences are therefore within the specifications of a reg-
ular FIFO queue and a 1-relaxed FIFO queue, respectively. We call
k the relaxation bound of a k-relaxed queue.

3. DISTRIBUTED QUEUES
We introduce two distributed queue (DQ) algorithms called load-

balanced DQ and least-recently-used (LRU) DQ. Both algorithms
implement a shared array of p ≥ 1 so-called partial queues whose
implementation is based on Michael-Scott (MS) FIFO queues [18].
Upon an enqueue or dequeue operation one out of the p partial
queues is selected for performing the actual operation without any
further coordination with the other p−1 partial queues. Selection
is done either by a load balancer, hence load-balanced DQ, or by
an LRU-style algorithm that uses the ABA counters in the head
and tail pointers of the partial queues (for dequeue and enqueue,
respectively) to identify the less recently used partial queues. For
dequeueing, both algorithms implement an emptiness check that
checks all partial queues up to two times before returning empty.
If all queues are found to be empty during the first pass the queues
are checked again. If no queues are found that have performed an
enqueue operation since the beginning of the first pass, recognized
by the ABA counters in their tail pointers, the algorithms correctly
return empty.

The concept of distributing access to different queues is not new.
Scal Queues [15, 14] already use (special cases of) the load bal-
ancers we discuss here but do not implement an emptiness check,
neither do Multilane Multisets [8]. As a consequence, applications
with termination conditions based on emptiness may be impossible
to implement using Scal Queues or Multilane Multisets.

Similar to other algorithms such as MS, we use a double-word
compare-and-swap (CAS) 1 instruction to change a pointer and its
ABA counter atomically. Whenever we speak of a pointer below
we therefore mean the pointer together with its ABA counter. Note
that using double-word CAS does not limit the generality of DQ
since ABA counters can alternatively be embedded into the pointer
itself (although with less precision). However, embedding ABA
counters requires knowledge of the memory allocation boundaries
since the ABA counter has to reside in a part of the pointer that is
not needed for addressing.

3.1 Load-balanced DQ Algorithm
Listing 1 shows the pseudo code of the load-balanced DQ algo-

rithm. The enqueue method (line 1) calls the load balancer using
the method load_balancer (line 2) which determines the partial
queue at index in the shared DQ array of partial queues for the ac-
tual enqueue operation (line 3).

Similarly, the dequeue method (line 5) also calls the load bal-
ancer using load_balancer (line 6) to obtain an initial index start.
The method then searches DQ for a non-empty partial queue begin-
ning at start and wrapping around at p− 1. Using the MS algo-
rithm the MS_dequeue method retrieves the oldest element from the
partial queue at index if the queue is not empty (line 10). In this
case, dequeue returns the element (line 14). The MS_dequeue
method is slightly different from the standard MS dequeue oper-
ation since it also returns the current_tail pointer of the par-
tial queue, which is saved in a thread-local array of size p called
tail_old when the partial queue is empty (line 12). If all partial
queues have been found to be empty, the second pass of the empti-
ness check begins (line 16–21). If a partial queue is found to have
a tail pointer that differs from the tail pointer saved in tail_old
(line 17) at least one new element has been enqueued into that
queue. In this case, dequeue retries to find a non-empty partial

1compare-and-swap is a CPU instruction that atomically swaps
the value stored in some memory location if that location contains
an expected value. The operation also returns whether it was suc-
cessful or not.

Listing 1: Lock-free load-balanced distributed queue algorithm
1 enqueue(element):
2 index = load_balancer();
3 DQ[index].MS_enqueue(element);
4
5 dequeue():
6 start = load_balancer();
7 whi le true:
8 f o r i in 0 to p-1:
9 index = (start + i) % p;

10 element , current_tail = DQ[index].MS_dequeue();
11 i f element == null:
12 tail_old[index] = current_tail;
13 e l s e :
14 re turn element;
15
16 f o r i in 0 to p-1:
17 i f DQ[i].get_tail() != tail_old[i]:
18 start = i;
19 break;
20 i f i == p-1:
21 re turn null;

queue starting with that queue (line 18–19). Otherwise, dequeue
returns null (line 21).

Load Balancers
We use two load balancers in our experiments called d-RA and b-
RR. The d-RA load balancer randomly selects d ≥ 1 queues out of
the p partial queues and then returns (the index of) the queue with
the least elements among the d queues when called by an enqueue
operation. Symmetrically, the load balancer returns the queue with
the most elements when called by a dequeue operation. However,
for better performance, the number of elements in partial queues
is only approximated by computing the differences between ABA
counters of the queues’ head and tail pointers non-atomically. Ran-
dom numbers are generated thread-locally using thread-local seeds.
The d-RA load balancer has already been described elsewhere [15].

The b-RR load balancer maintains b ≥ 1 pairs of shared round-
robin counters that are associated with threads such that each thread
is permanently assigned to exactly one pair and all pairs have ap-
proximately the same number of threads assigned. If b is equal to
(or greater than) the number of threads, the pairs are thus thread-
local. In this case, we call the load balancer TL-RR. The counters
in a pair keep track of which partial queue was selected for the most
recent enqueue and dequeue operation, respectively, called by any
of the threads assigned to the pair. Upon an enqueue or dequeue
operation the respective counter is atomically incremented and re-
turned by a fetch-and-add 2 instruction identifying in round-
robin fashion (the index of) the partial queue to be used for the
operation.

Note that the d-RA DQs do not provide relaxation bounds but
the b-RR DQs do as shown in Section 3.3.

3.2 Least-recently-used DQ Algorithm
Listing 2 shows the pseudo code of the least-recently-used DQ

algorithm. The key invariant maintained by the algorithm is that
the maximum difference of the ABA counters of the head pointers

2fetch-and-add is a CPU instruction that atomically increments
the value of a memory location and returns the old value.

of the p partial queues is at most one. The same holds for the ABA
counters of the tail pointers. Moreover, the algorithm always en-
queues into a partial queue whose tail pointer has an ABA counter
with the lowest value among the ABA counters of the tail point-
ers of all partial queues. Similarly, the algorithm always dequeues
from a partial queue whose head pointer has an ABA counter with
the lowest value. Note that the ABA counters of the head/tail point-
ers may only differ by one but we anyway speak of the lowest value
here.

The enqueue method (line 1) starts by calling a random num-
ber generator that returns the index start of one of the p partial
queues (line 2). Then, by calling the lowest_aba_tail method,
the partial queues are checked, beginning at start and wrapping
around at p−1, for a queue whose tail pointer has an ABA counter
with the lowest value among the ABA counters in the tail point-
ers of all partial queues. The lowest_aba_tail method returns
the index of such a queue and the ABA counter of its tail pointer
which are then stored in aba_index and aba_count, respectively
(line 4). Note that as soon as two different ABA counters are found
the search may stop since the ABA counter with the lower value is
guaranteed to contain the lowest value because of the algorithm’s
invariant. After finding aba_count the algorithm again iterates
over all partial queues starting at aba_index (lines 5–6). Since
there may be multiple queues whose tail pointers have ABA coun-
ters with the same value as aba_count, all such queues are can-
didates for enqueueing the element (lines 7-8). Using the MS al-
gorithm the try_MS_enqueue method enqueues the element into
the queue at index if the tail pointer of the queue is still equal to
current_tail (line 9). In this case, the enqueue method returns
(line 10). If in the meantime some other thread successfully en-
queued an element, however, and thus changed the tail pointer of
the queue, try_MS_enqueue fails causing the algorithm to look for
another partial queue for enqueueing whose tail pointer is equal to
aba_count. If there are none, the algorithm retries (back to line 3).

The dequeue method (line 12) begins like the enqueue method
except that it looks for a partial queue whose head pointer has the
lowest ABA counter among the head pointers of all partial queues.

Listing 2: Lock-free least-recently-used distributed queue algorithm
1 enqueue(element):
2 start = random();
3 whi le true:
4 aba_index , aba_count = lowest_aba_tail(start);
5 f o r i in 0 to p-1:
6 index = (aba_index + i) % p;
7 current_tail = DQ[index].get_tail();
8 i f current_tail.aba == aba_count &&
9 DQ[index].try_MS_enqueue(element , current_tail):

10 re turn ;
11
12 dequeue():
13 start = random();
14 whi le true:
15 aba_index , aba_count = lowest_aba_head(start);
16 empty_count = 0;
17 f o r i in 0 to p-1:
18 index = (aba_index + i) % p;
19 current_head = DQ[index].get_head();
20 i f current_head.aba == aba_count:
21 element , current_tail =
22 DQ[index].try_MS_dequeue(current_head);
23 i f element == null:
24 tail_old[index] = current_tail;
25 empty_count++;
26 e l s e i f element != FAILED:
27 re turn element;
28
29 i f empty_count == p:
30 f o r i in 0 to p-1:
31 i f DQ[i].get_tail() != tail_old[i]:
32 start = i;
33 break;
34 i f i == p-1:
35 re turn null;

Then the method initializes a thread-local counter empty_count to
zero (line 16). The purpose of the counter is explained below. Next,
the method works like the enqueue method except that it calls the
try_MS_dequeue method, which is again using the MS algorithm,
to dequeue an element from a partial queue whose head pointer has
the lowest ABA counter (lines 17–22). If an element is success-
fully dequeued it is returned (line 27). Similar to the load-balanced
DQ algorithm, if the try_MS_dequeue method returns null the
algorithm saves the tail pointer (line 24) for checking in the sec-
ond pass of the emptiness check whether new elements were en-
queued in the meantime (lines 30–35). The only difference is that
empty_count is incremented (line 25), making sure that it even-
tually reaches the value of p if all partial queues are found to be
empty. Lastly, if the try_MS_dequeue method failed, which hap-
pens when in the meantime another thread dequeued an element
from the same queue, the for-loop over the partial queues contin-
ues (line 17). Note that in this case empty_count will not reach the
value of p thus preventing the second pass of the emptiness check
(line 29) and have the algorithm eventually retry (back to line 14) in
case no element could be dequeued. This is necessary because par-
tial queues on which dequeueing failed may still contain elements,
which the second pass would nevertheless not detect since it only
checks if new elements were enqueued in the meantime.

Note that overflows of ABA counters need to be handled in the
lowest_aba_tail, get_tail, lowest_aba_head, and get_head
methods. Whenever some but not all ABA counters have over-
flowed we consider temporarily decremented and thus not-over-
flowed copies of all ABA counters in arithmetic comparisons.

3.3 Correctness
PROPOSITION 3.1. The load-balanced and least-recently-used

DQs are linearizable with respect to the sequential specification of
a pool.

PROOF. Without loss of generality we assume that enqueued el-
ements are unique. We begin by identifying the linearization points
of each method and then show that the sequential history obtained
from a concurrent history by ordering methods according to their
linearization points is in the specification of a pool. Note that the
load balancers of a load-balanced DQ do not have an effect on lin-
earizability as long as they identify any of the partial queues.

For the load-balanced DQ (Listing 1) the linearization point of
the enqueue method is the linearization point of the MS_enqueue
method of the MS queue (line 3). Similarly, the linearization point
of the dequeue method is the linearization point of the MS_dequeue
method of the MS queue (line 10) if it returns an element. The lin-
earization point of a null-returning dequeue method is the last

null-returning MS_dequeue method of the MS queue (line 10) af-
ter observing all other p− 1 partial queues to be empty and if the
subsequent tail consistency checks do not find any changed tail
pointers (lines 16–21).

For the LRU DQ (Listing 2) the linearization point of the enqueue
method is the linearization point of the try_MS_enqueue method
which is based on MS but only tries to enqueue once (line 9). The
linearization point of the dequeue method, if it returns an element,
is the linearization point of the try_MS_dequeue method which is
also based on MS and tries to dequeue only once (line 22). Analo-
gous to the load-balanced DQs the linearization point of a null-
returning dequeue method is the try_MS_dequeue method that
last returns null (line 22) before all other partial queues are still
found to be empty by the tail consistency checks (lines 30–35).

1. An element is enqueued exactly once. This is a consequence
of the assumption that elements are unique and the fact that
the enqueue method directly passes an element to a partial
queue, which is an MS queue that enqueues the element ex-
actly once [18].

2. An element is dequeued at most once. Similar to the previous
argument this is a consequence of the fact that an MS queue
dequeues an element at most once [18].

3. If a dequeue method returns empty, then during its execution
there must exist a point in time in which there are no ele-
ments in the DQ. Since returning null is without any side-
effect on the DQ, it suffices to prove the existence of a point
in time which corresponds to a logically empty queue. The
second pass over all partial queues (lines 16–21) makes sure
that after observing an empty partial queue for the first time
no other thread enqueued an element. If the tail pointers,
including their ABA counters, of all partial queues did not
change (line 17), then the DQ was indeed empty after the
first pass (lines 8–14).

Similarly, 1. through 3. also hold for the LRU DQ because its
partial queues are also implemented by MS queues which only try
to enqueue and dequeue once.

PROPOSITION 3.2. The b-RR DQs are linearizable with respect
to the sequential specification of a k-relaxed queue with k bounded
in the number of round-robin counters b, the number of partial
queues p, and the number of threads n.

PROOF. Given a b-RR DQ, the maximum difference of how
many times any two partial queues Q1 and Q2 of the DQ may have
been selected for an operation by a single round-robin counter is
one. This is true even if Q1 is selected for a dequeue operation that
finds Q1 to be empty and then the emptiness check selects and finds
Q2 to be non-empty instead, and thus actually dequeues from Q2.
In this case, we are safe to pretend that the operation dequeued from
Q1 since the emptiness check also searches partial queues in round-
robin fashion which implies that Q2 has been selected exactly one
time less often than Q1.

With b round-robin counters for enqueue operations and another
b round-robin counters for dequeue operations the maximum dif-
ference of how many times any two partial queues may have been
selected for any operation is therefore 2b. Since threads may block
after selection before performing the actual operation, the maxi-
mum imbalance among all partial queues, i.e., the maximum dif-
ference in the number of elements in any two partial queues, may
be at most 2b+n where n is the number of threads.

Let m be (2b+ n)× (p− 1) elements where p is the number of
partial queues.

1. An element e may overtake at most 3m other elements. Sup-
pose e is enqueued in a partial queue Q that contains q el-
ements before enqueueing e. The DQ may thus contain at
most p×q+m older elements in total before e is enqueued.
To dequeue e the q elements need to be dequeued from Q
first which requires dequeueing a total of p× q− 2m ele-
ments from the DQ leaving 3m elements in the DQ when e
may be dequeued.

2. An element e may be overtaken by at most 3m other elements.
Suppose again e is enqueued in a partial queue Q that con-
tains q elements before enqueueing e. The DQ may thus con-
tain at least p×q−m older elements in total before e is en-
queued. The element e will then be dequeued after at most
p×q+2m elements have been dequeued before e, provided
that at least 3m younger elements have been enqueued after
e was enqueued.

Thus k = 3m holds.

PROPOSITION 3.3. The LRU DQs are linearizable with respect
to the sequential specification of a k-relaxed queue with k = p−1
where p is the number of partial queues.

PROOF. With the LRU DQ a partial queue Q is selected after
at most p− 1 operations on other partial queues when Q becomes
the least-recently-used queue. If the thread that selected Q blocks
before performing the actual operation and thus not incrementing
an ABA counter of Q, any other threads that have not yet selected a
partial queue will also select Q. Thus p−1 is the maximum number
of enqueue or dequeue operations that may be performed on all
but one partial queue Q before an enqueue or dequeue operation,
respectively, must be performed on Q.

1. An element e may overtake at most p− 1 other elements.
Suppose e is enqueued in a partial queue Q that contains q
elements before enqueueing e. The DQ may thus contain at
most p× q+(p− 1) older elements in total before e is en-
queued. To dequeue e the q elements need to be dequeued
from Q first which requires dequeueing a total of p× q ele-
ments from the DQ leaving at most p−1 elements in the DQ
when e may be dequeued.

2. An element e may be overtaken by at most p− 1 other el-
ements. Suppose again e is enqueued in a partial queue Q
that contains q elements before enqueueing e. The DQ may
thus contain p× q− (p− x) older elements in total before e
is enqueued for some 0 < x ≤ p. The element e will then
be dequeued after at most p× q+ x− 1 elements have been
dequeued before e, provided that at least p− 1 younger ele-
ments have been enqueued after e was enqueued.

Thus k = p−1 holds.

PROPOSITION 3.4. The load-balanced and least-recently-used
DQ algorithms are lock-free provided the underlying partial queues
are lock-free.

Lock-freedom can be shown by arguing that whenever an opera-
tion of the queue loops, another concurrent operation of the queue
makes progress, an argument already used for the same purpose
elsewhere [18].

4. RELATED WORK
Implementing concurrent data structures requires expensive syn-

chronization mechanisms which may prevent multicore scalability
in high contention scenarios [4]. A way to improve scalability is
relaxing the sequential specification of data structures [19] quanti-
tatively [9].

The concept of distributing concurrent access across multiple
queues is not new. There exist algorithms for concurrent multilane
multisets [8] and for load balancing multiple queues [15]. While
both approaches share the concept of partial queues with DQs, only
DQs provide a linearizable emptiness check and that without neg-
ative impact on performance and scalability. Furthermore the LRU
DQ algorithm is, to the best of our knowledge, the first algorithm
using multiple queues that provides a configurable bound for out-
of-order behavior independent of the number of threads.

We relate our DQ algorithms to existing strict and relaxed queue
as well as pool algorithms, which we have implemented and evalu-
ated as well. We introduce these algorithms in detail to prepare for
the experiments in Section 5.

The following algorithms implement strict FIFO queues: a lock-
based queue (LB), the lock-free Michael-Scott queue (MS) [18],
the flat-combining queue (FC) [11], and a wait-free extension (WF)
of MS [16]. LB uses a single lock for each data structure operation.
With MS each thread needs at least two CAS operations to insert an
element into the queue and at least one CAS operation to remove
an element from the queue. FC is based on the idea of helping,
where a single thread performs the queue operations of multiple
other threads by locking the whole queue, collecting operations,
and applying them to the queue in a sequential manner. WF ex-
tends MS to a wait-free algorithm. This is done by dividing an
operation into single steps that can be performed concurrently by
multiple threads. The state of an operation is stored in a so-called
descriptor. Each descriptor receives a unique priority and is pub-
lished in a descriptor table. All threads can see all descriptors and
work together by processing them one-by-one, highest priority first.

The lock-free bounded-size FIFO queue (BS) [7] is based on an
array of fixed size where elements get inserted and removed circu-
larly and enqueue operations fail when the queue is full, i.e., each
array slot contains an element.

Existing relaxed queues are the unbounded-size and bounded-
size k-FIFO queues (BS and US k-FIFO) [12], the segment queue
(SQ) [3] and the random dequeue queue (RD) [3]. Both the US and
BS k-FIFO queues implement a queue of segments of size k. In the
bounded case the underlying queue is a fixed-size array. Elements
get inserted in the head segment and removed from the tail segment
at random positions, thus elements may overtake each other within
a segment. Both algorithms provide a linearizable emptiness check
(and full check in the bounded-size case) and are linearizable with
respect to a (k− 1)-relaxed queue. These algorithms perform and
scale very well in general. SQ is closely related to the US k-FIFO
queue, logically they both implement the same algorithm: a queue
of segments. However, the implementations are significantly dif-
ferent. In the dequeue operation SQ eagerly tries to dequeue at all
positions in the oldest segment using a CAS operation. SQ has bet-
ter peak performance than strict queues, but does not scale better
than MS [3]. Compared to k-FIFO, its performance and scalabil-
ity is significantly worse. Also, SQ does not provide a linearizable
emptiness check. RD is based on MS where the dequeue opera-
tion was modified in a way that, given a configurable integer r, a
random number in [0,r− 1] determines which element is returned
starting from the oldest element. Although RD does perform better
than MS, it does not scale better than MS in experiments reported
on elsewhere [3].

As any queue is also a pool, we compare to state-of-the-art pool
implementations as well. The lock-free linearizable pool (BAG) [20]
is based on thread-local lists of blocks of elements. Each block is
capable of storing up to a constant number of elements. A thread
performing an enqueue operation inserts an element into the first
block of its thread-local list. Once the block is full, a new block
is inserted at the head of the list. A thread performing a dequeue
operation tries to find an element in the thread- local blocks first.
If the thread-local list is empty, work-stealing from other threads’
lists is used to find an element. The algorithm implements a lin-
earizable emptiness check by repeatedly scanning all threads’ lists
for elements and marking already scanned blocks. These marks are
cleared upon inserting an element, making the change visible to all
scanning threads. The algorithm works only for a fixed number of
threads.

The lock-free elimination-diffraction pool (ED) [2] uses strict
FIFO queues to store elements. Access to these queues is bal-
anced using elimination arrays and a diffraction tree. While the
diffraction tree acts as a distributed counter balancing access to the
queues, elimination arrays in each node of the counting tree in-
crease disjoint-access parallelism. Operations hitting the same in-
dex in an elimination array can either directly exchange their data
(enqueue meets dequeue), or avoid hitting the counter in the node
that contains the array (enqueue meets enqueue or dequeue meets
dequeue). If based on non-blocking FIFO queues, the presented
algorithm lacks a linearizable emptiness check. If based on block-
ing queues, there is no emptiness state at all. Parameters such as
elimination waiting time, number of retries, array size, tree depth,
number of queues, and queue polling time need to be configured to
adjust ED to different workloads.

The synchronous rendezvousing pool (RP) [1] implements a sin-
gle elimination array using a ring buffer. Both enqueue and de-
queue operations are synchronous. A dequeue operation marks a
slot identified by its thread identifier and waits for an enqueue op-
eration to insert an element. An enqueue operation traverses the
ring buffer to find a waiting dequeue operation. As soon as it finds
a dequeue operation they exchange values and return. There exist
adaptive and non-adaptive versions of the pool, where in the former
case the ring buffer size is adapted to the workload.

5. EXPERIMENTS
We evaluate performance and scalability of the DQ algorithms,

described in Section 3, and the LB, MS, FC, WF queue algorithms,
the BS k-FIFO, US k-FIFO, SQ, RD relaxed queue algorithms, and
the ED, BAG, and RP pool algorithms, described in Section 4.

All algorithms as well as the benchmarking code were imple-
mented from scratch by us in C/C++ and compiled with gcc 4.4.3
and -O3 optimizations. The experiments ran on an Intel-based
server machine with four 10-core 2.0GHz Intel Xeon processors
(40 cores, 2 hyper-threads per core), 24MB shared L3-cache, and
128GB of memory running Linux 2.6.39. We exercised the sys-
tem with up to 80 benchmarking threads (40 cores times 2 hyper-
threads) using the Linux round-robin scheduler with priorities. The
priority of the benchmarking threads was set to just below the pri-
ority of kernel interrupts and the CPU governor was disabled. For
heap management we implemented our own allocator based on
thread-local allocation buffers [6] that initializes each benchmark-
ing thread with a private pool of hot pages and guarantees that all
allocated memory is page- and cache-aligned, all at the expense
of memory fragmentation which may not be tolerable in stock al-
locators but is irrelevant here. We profiled our time and memory
management not to introduce any scheduling, locking, paging, and

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

2 10 20 30 40 50 60 70 80

o
p

e
ra

ti
o

n
s
 p

e
r

m
s
 (

m
o

re
 i
s
 b

e
tt

e
r)

number of threads

LB
MS
FC
WF

RD (r=80)
SQ (s=80)

BS k-FIFO (k=80)
US k-FIFO (k=80)

ED
BAG

RP
LRU DQ (p=80)

1-RR DQ (p=80)
2-RR DQ (p=80)

TL-RR DQ (p=80)
1-RA DQ (p=80)
2-RA DQ (p=80)

(a) High contention producer-consumer microbenchmark (c = 250)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

2 10 20 30 40 50 60 70 80

o
p

e
ra

ti
o

n
s
 p

e
r

m
s
 (

m
o

re
 i
s
 b

e
tt

e
r)

number of threads

LB
MS
FC
WF

RD (r=80)
SQ (s=80)

BS k-FIFO (k=80)
US k-FIFO (k=80)

ED
BAG

RP
LRU DQ (p=80)

1-RR DQ (p=80)
2-RR DQ (p=80)

TL-RR DQ (p=80)
1-RA DQ (p=80)
2-RA DQ (p=80)

(b) Low contention producer-consumer microbenchmark (c = 2000)
Figure 1: Performance and scalability of producer-consumer microbenchmarks with an increasing number of threads on a 40-core (2 hyper-
threads per core) server machine

caching artifacts into the data that are unrelated to the benchmarked
implementations.

The algorithms are configured as follows. With d-RA we only
evaluated d = 1 and d = 2 since in our benchmarks any value
greater than two results in worse performance. With b-RR we eval-
uated b = 1 and b = 2 as well as the fully thread-local configuration
TL-RR where b is set to the number of benchmarking threads. In
our benchmarks 1-RR and TL-RR result in worst and best perfor-
mance, respectively. Values for b greater than one and smaller than
the number of benchmarking threads result in performance in be-
tween. We included 2-RR to demonstrate that but omitted other
values not to overload the figures. The RD, SQ, k-FIFO, and DQ
implementations are configured to r = s = k = p = 80 (see Sec-
tions 3 and 4), enabling up to 80 parallel enqueues and 80 paral-
lel dequeues. We determined experimentally that 80 is the lowest
value that results in overall best performance and scalability of the
involved implementations in all our benchmarks.

5.1 Microbenchmarking Performance and
Scalability

For measuring and comparing performance and scalability we
designed a microbenchmark that emulates a multi-threaded producer-
consumer workload where half of the threads are producers and
the other half are consumers. Each thread performs one million
queue or pool operations. We evaluate high and low contention
scenarios by having each thread compute π iteratively between any
two consecutive operations in c = 250 iterations (high contention)
and c = 2000 iterations (low contention), respectively. As refer-
ence, c = 1000 iterations take on average 2.3 microseconds on the
server machine. Higher contention with computational load down
to c = 0 exposes machine-related artifacts resulting in meaningless
data. The presented data is averaged over five runs. Note that we
use this microbenchmark again in Section 5.3 to study the out-of-
order behavior of all considered queue and pool algorithms.

Figures 1a and 1b show performance in operations per millisec-
ond and scalability with an increasing number of threads for the
high and low contention scenarios, respectively. The key observa-
tion when comparing high and low contention is that all implemen-
tations perform and scale better under low contention but still per-
form and scale similarly in relative terms in both scenarios. Overall
1-RA performs and scales best, followed by the other DQ imple-

mentations, which all outperform and outscale the other implemen-
tations including the pool implementations. Under high contention
all implementations except TL-RR, 1-RA, and 2-RA scale nega-
tively beyond 20 threads. The performance of 2-RR is in between
the performance of 1-RR and TL-RR.

5.2 Macrobenchmarking Performance and
Scalability

We evaluate performance and scalability with three macrobench-
marks based on spanning tree and transitive closure graph algo-
rithms [5], and a Mandelbrot algorithm [17]. All presented data is
averaged over ten runs.

Spanning Tree and Transitive Closure Benchmarks
We ran the spanning tree and transitive closure graph algorithms on
graphs consisting of a hundred thousand vertices and ten million
randomly generated unique edges. Both algorithms use a shared
queue or pool of vertices to distribute work among multiple threads.
Initially, the shared queue or pool is prefilled with 160 randomly
determined vertices. Each thread dequeues a vertex and then iter-
ates over its immediate neighbors to process them (transitive clo-
sure or spanning tree operation). If a neighboring vertex already
got processed by a different thread then the vertex is ignored. Oth-
erwise, the vertex is processed and then enqueued. When a thread
processed all neighbors it dequeues another vertex. The algorithms
terminate when the shared queue or pool is empty.

Figures 2a and 2b show performance in terms of total execution
time in milliseconds and scalability with an increasing number of
threads. In both benchmarks, the DQ implementations perform and
scale best. While most implementations are on par with DQ up to
ten threads, only the BS and US k-FIFO queue implementations
scale as much as DQ. Despite its thread-local storage BAG scales
negatively because the connectivity of the graph makes it likely to
hit already processed nodes and thus requires work-stealing. Note
that RP is not shown because RP, due to its synchronous behavior,
cannot handle a workload where producers are also consumers.

Mandelbrot Benchmark
The Mandelbrot benchmark renders an image by dividing it into
blocks of 4x4 pixels that are distributed by producer threads through
a shared queue or pool to consumer threads for parallel process-

 10

 100

 1000

1 10 20 30 40 50 60 70 80

e
x
e

c
u

ti
o

n
 t

im
e

 i
n

 m
s

(l
o

g
s
c
a

le
,

le
s
s
 i
s
 b

e
tt

e
r)

number of threads

LB
MS
FC
WF

RD (r=80)
SQ (s=80)

BS k-FIFO (k=80)
US k-FIFO (k=80)

ED
BAG

LRU DQ (p=80)
1-RR DQ (p=80)

2-RR DQ (p=80)
TL-RR DQ (p=80)

1-RA DQ (p=80)
2-RA DQ (p=80)

(a) Spanning tree benchmark

 10

 100

 1000

1 10 20 30 40 50 60 70 80

e
x
e

c
u

ti
o

n
 t

im
e

 i
n

 m
s

(l
o

g
s
c
a

le
,

le
s
s
 i
s
 b

e
tt

e
r)

number of threads

LB
MS
FC
WF

RD (r=80)
SQ (s=80)

BS k-FIFO (k=80)
US k-FIFO (k=80)

ED
BAG

LRU DQ (p=80)
1-RR DQ (p=80)

2-RR DQ (p=80)
TL-RR DQ (p=80)

1-RA DQ (p=80)
2-RA DQ (p=80)

(b) Transitive closure benchmark

 100

 1000

 10000

100000

5 20 40 60 80

e
x
e

c
u

ti
o

n
 t

im
e

 i
n

 m
s
 (

lo
g

s
c
a

le
,

le
s
s
 i
s
 b

e
tt

e
r)

number of threads

LB
MS
FC
WF

RD (r=80)
SQ (s=80)

BS k-FIFO (k=80)
US k-FIFO (k=80)

ED
BAG

RP
LRU DQ (p=80)

1-RR DQ (p=80)
2-RR DQ (p=80)

TL-RR DQ (p=80)
1-RA DQ (p=80)
2-RA DQ (p=80)

(c) Mandelbrot benchmark with low computational load

 1000

 10000

100000

5 20 40 60 80

e
x
e

c
u

ti
o

n
 t

im
e

 i
n

 m
s
 (

lo
g

s
c
a

le
,

le
s
s
 i
s
 b

e
tt

e
r)

number of threads

LB
MS
FC
WF

RD (r=80)
SQ (s=80)

BS k-FIFO (k=80)
US k-FIFO (k=80)

ED
BAG

RP
LRU DQ (p=80)

1-RR DQ (p=80)
2-RR DQ (p=80)

TL-RR DQ (p=80)
1-RA DQ (p=80)
2-RA DQ (p=80)

(d) Mandelbrot benchmark with high computational load
Figure 2: Macrobenchmarks for performance and scalability with an increasing number of threads on a 40-core (2 hyper-threads per core)
server machine

ing. For each producer there are four consumers. We distinguish
low and high computational load scenarios by using images whose
blocks are mostly rendered either relatively fast or relatively slow,
respectively.

Figures 2c and 2d show performance in terms of total execution
time in milliseconds and scalability with an increasing number of
threads. Best performance and scalability is achieved by TL-RR
and 1-RA followed by the remaining DQ and the BS and US k-
FIFO implementations. In the high computational load scenario all
DQ implementations show identical performance and scalability.
The BS and US k-FIFO implementations also perform and scale
competitively.

5.3 Analyzing Relaxation
The results in Section 5.1 and Section 5.2 show that DQs out-

perform and outscale all strict and relaxed queues as well as pools
we considered. In this section we analyze the out-of-order behav-
ior of DQs and the other queues and pools in the high contention
producer-consumer benchmark.

We instrumented all implementations such that the linearization
points of all queue and pool operations are time-stamped using the
globally synchronized TSC register of x86 processors which may
be read with low overhead. Note that time-stamping linearization
points may only be approximative but still close enough for our
purposes. We record the timestamps of the linearization points to-

gether with the type and parameter of the operations and then com-
pute the linearization of the run. We then compute for each element
e the number of elements it overtakes in the linearization, called
the relaxation distance of e. Finally, we compute the average relax-
ation distance of all elements in linearizations of runs of the high
contention producer-consumer benchmark for all queue and pool
implementations with an increasing number of threads. Figure 3
shows the highest average relaxation distance among five runs of
the same configuration.

To improve the readability of Figure 3 we limit the y-axis to the
relaxation distance of 100. The TL-RR DQ, the 1-RA DQ, the ED
pool, and the BAG pool have higher average relaxation distances
than 100 so that their lines are not always visible in the figure. The
TL-RR DQ shows values up to 216, the 1-RA DQ up to 1288, the
ED pool up to 4787, and the BAG pool up to 92671.

With LB, MS, FC, and WF elements do not overtake each other
as these implementations are linearizable with respect to strict FIFO
queue semantics. Their relaxation distance is therefore always zero
in all configurations except when time-stamping was inaccurate.

The average relaxation distance of the 2-RA DQ is below 40 in
all but one run although it provides no relaxation bound. The 1-RR
DQ shows an average relaxation distance of at most 23 when ac-
cessed by 80 threads concurrently, and of at most 4 when accessed
only by 30 threads. The relaxation bound of the LRU DQ is config-
ured to be 79 in all benchmark executions. On average, however,

 0

 20

 40

 60

 80

 100

2 10 20 30 40 50 60 70 80

a
v
e

ra
g

e
 r

e
la

x
a
ti
o

n
 d

is
ta

n
c
e

number of threads

LB
MS
FC
WF

RD (r=80)
SQ (s=80)

BS k-FIFO (k=80)
US k-FIFO (k=80)

ED
BAG

RP
LRU DQ (p=80)

1-RR DQ (p=80)
2-RR DQ (p=80)

TL-RR DQ (p=80)
1-RA DQ (p=80)
2-RA DQ (p=80)

Figure 3: Average relaxation distance of all elements in the high
contention producer-consumer microbenchmark (c = 250)

the relaxation distance of all elements is not more than 13. The
k-FIFO queues, which have the same relaxation bound as the LRU
DQ, show an average relaxation distance of about 20.

6. CONCLUSIONS
We presented a new family of distributed queue (DQ) algorithms

that implement pools and relaxed queues via multiple strict queues.
Access to each of the strict queues is coordinated either by a load
balancer or through ABA counters that provide distributed synchro-
nization. The semantics of DQs varies accordingly, from k-relaxed
queues with configurable or bounded k to pools. All DQ algorithms
provide a linearizable emptiness check. We demonstrated in micro-
and macrobenchmarks that DQs outperform and outscale all strict
and relaxed queues as well as pools that we considered. Interesting
future work may consider the impact of replacing strict queues with
DQs in applications that tolerate relaxation by relating application
features to the degree of relaxation.

7. ACKNOWLEDGEMENTS
This work has been supported by the European Research Coun-

cil advanced grant on Quantitative Reactive Modeling (QUAREM)
and the National Research Network RiSE on Rigorous Systems En-
gineering (Austrian Science Fund S11402-N23 and S11404-N23).

8. REFERENCES
[1] Y. Afek, M. Hakimi, and A. Morrison. Fast and scalable

rendezvousing. In Proc. International Conference on
Distributed Computing (DISC), pages 16–31, Berlin,
Heidelberg, 2011. Springer-Verlag.

[2] Y. Afek, G. Korland, M. Natanzon, and N. Shavit. Scalable
producer-consumer pools based on elimination-diffraction
trees. In Proc. European Conference on Parallel Processing
(Euro-Par), pages 151–162. Springer, 2010.

[3] Y. Afek, G. Korland, and E. Yanovsky. Quasi-linearizability:
Relaxed consistency for improved concurrency. In Proc.
Conference on Principles of Distributed Systems (OPODIS),
pages 395–410. Springer, 2010.

[4] H. Attiya, R. Guerraoui, D. Hendler, P. Kuznetsov,
M. Michael, and M. Vechev. Laws of order: expensive
synchronization in concurrent algorithms cannot be
eliminated. In Proc. of Principles of Programming
Languages (POPL), pages 487–498. ACM, 2011.

[5] D. Bader and G. Cong. A fast, parallel spanning tree
algorithm for symmetric multiprocessors (smps). Journal of
Parallel and Distributed Computing, 65:994–1006, 2005.

[6] E. Berger, K. McKinley, R. Blumofe, and P. Wilson. Hoard:
a scalable memory allocator for multithreaded applications.
In Proc. Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
pages 117–128. ACM, 2000.

[7] R. Colvin and L. Groves. Formal verification of an
array-based nonblocking queue. In Proc. Conference on
Engineering of Complex Computer Systems (ICECCS), pages
507–516. IEEE, 2005.

[8] D. Dice and O. Otenko. Brief announcement: multilane - a
concurrent blocking multiset. In Proc. Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages
313–314. ACM, 2011.

[9] T. Henzinger, C. Kirsch, H. Payer, A. Sezgin, and
A. Sokolova. Quantitative relaxation of concurrent data
structures. In Proc. Symposium on Principles of
Programming Languages (POPL). ACM, 2013.

[10] M. Herlihy and J. Wing. Linearizability: a correctness
condition for concurrent objects. ACM Transactions on
Programming Languages and Systems (TOPLAS),
12(3):463–492, 1990.

[11] D. H. I. Incze, N. Shavit, and M. Tzafrir. Flat combining and
the synchronization-parallelism tradeoff. In Proc.
Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 355–364. ACM, 2010.

[12] C. Kirsch, M. Lippautz, and H. Payer. Fast and scalable
k-fifo queues. Technical Report 2012-04, Department of
Computer Sciences, University of Salzburg, June 2012.

[13] C. Kirsch and H. Payer. Incorrect systems: It’s not the
problem, it’s the solution. In Proc. Design Automation
Conference (DAC). ACM, 2012.

[14] C. Kirsch, H. Payer, H. Röck, and A. Sokolova. Brief
announcement: Scalability versus semantics of concurrent
FIFO queues. In Proc. Symposium on Principles of
Distributed Computing (PODC). ACM, 2011.

[15] C. Kirsch, H. Payer, H. Röck, and A. Sokolova.
Performance, scalability, and semantics of concurrent FIFO
queues. In Proc. International Conference on Algorithms and
Architectures for Parallel Processing (ICA3PP), LNCS.
Springer, 2012.

[16] A. Kogan and E. Petrank. Wait-free queues with multiple
enqueuers and dequeuers. In Proc. Symposium on Principles
and Practice of Parallel Programming (PPoPP), pages
223–234. ACM, 2011.

[17] B. Mandelbrot. Fractal aspects of the iteration of
z→ λz(1− z) for complex λ and z. Annals of the New York
Academy of Sciences, 357:249–259, Dec. 1980.

[18] M. Michael and M. Scott. Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms. In
Proc. Symposium on Principles of Distributed Computing
(PODC), pages 267–275. ACM, 1996.

[19] N. Shavit. Data structures in the multicore age.
Communications ACM, 54:76–84, March 2011.

[20] H. Sundell, A. Gidenstam, M. Papatriantafilou, and P. Tsigas.
A lock-free algorithm for concurrent bags. In Proc.
Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 335–344, New York, NY, USA, 2011. ACM.

