A Compacting Real-Time Memory Management System

Silviu S. Craciunas
Ana Sokolova

Christoph M. Kirsch
Horst Stadler

Hannes Payer
Robert Staudinger

Department of Computer Sciences
University of Salzburg, Austria

firstname.lastname @cs.uni-salzburg.at

Abstract

We propose a real real-time memory management system
called Compact-fit that offers both time and space pre-
dictability. Compact-fit is a compacting memory man-
agement system for allocating, deallocating, and access-
ing memory in real time. The system provides pre-
dictable memory fragmentation and response times that
are constant or linear in the size of the request, inde-
pendently of the global memory state. We present two
Compact-fit implementations and compare them to es-
tablished memory management systems, which all fail to
provide predictable memory fragmentation. The exper-
iments confirm our theoretical complexity bounds and
demonstrate competitive performance. In addition, we
can control the performance versus fragmentation trade-
off via our concept of partial compaction. The sys-
tem can be parameterized with the needed level of com-
paction, improving the performance while keeping mem-
ory fragmentation predictable.

1 Introduction

We present a compacting real-time memory management
system called Compact-fit (CF) together with a moving
and a non-moving implementation. Compact-fit is an ex-
plicit memory management system for allocating, deal-
locating, and accessing memory objects. Memory frag-
mentation in CF is bounded by a compile-time param-
eter. In CF compaction may only happen upon freeing
a memory object and involves moving a single memory
object of the same size.

Memory in CF is partitioned into 16KB pages. Each
page is an instance of a so-called size-class, which par-
titions a page further into same-sized page-blocks. We
adapt the concept of pages and size-classes from [2].
A memory object is always allocated in a page of the
smallest-size size-class whose page-blocks still fit the
object. Memory objects larger than 16KB are currently

not supported. However, in a future version, arraylets [3]
may be used to handle objects of larger size with CF’s
complexity bounds.

The key idea in CF is to keep the memory size-class-
compact at all times. In other words, at most one page of
each size-class may be not-full at any time while all other
pages of the size-class are always kept full. Whenever
a memory object is freed, a memory object in the not-
full page is moved to take its place and thus maintain the
invariant. If the not-full page becomes empty, it can be
reused in any size-class. Using several list and bitmap
data structures, free space can be found in constant time,
upon an allocation request.

The moving CF implementation maps page-blocks di-
rectly to physically contiguous pieces of memory, and
therefore requires moving memory objects for com-
paction. Allocation takes constant time in the moving
implementation, whereas deallocation takes linear time
if compaction occurs. Dereferencing requires an addi-
tional pointer indirection and takes constant time.

The non-moving CF implementation uses a block ta-
ble (effectively creating a virtual memory) to map page-
blocks into physical block-frames that can be located
anywhere in memory. In this case, compaction merely
requires re-programming the block table rather than
moving memory objects. However, although compaction
may be faster, deallocation still takes linear time in the
size of the object due to the block table administration.
For the same reason allocation also takes linear time in
the non-moving implementation. Our experiments show
that deallocation is faster in the non-moving implementa-
tion for configurations in which block-frames are at least
80B. Dereferencing requires two additional pointer indi-
rection and takes constant time.

A pointer in CF is an address and an offset. The
CF system therefore supports offset-based rather than
address-based pointer arithmetics, which we elaborate on
later in the paper. Note that, in principle, the moving
implementation may also support address-based pointer

USENIX Association

USENIX ’08: 2008 USENIX Annual Technical Conference

arithmetics since each memory object is allocated in a
single physically contiguous piece, that may however
move during compaction.

In both implementations we can relax the always-
compact-requirement allowing for more than one not-
full page per size-class. As a result deallocation takes
less time: it reduces up to constant time. This way we
formalize, control, and implement the trade-off between
temporal performance and memory fragmentation.

We present the results of benchmarking both im-
plementations, as well as implementations of non-
compacting real-time memory management systems
(Half-fit [11] and TLSF [10]) and traditional (non-real-
time) memory management systems (First-fit [7], Best-
fit [7], and Doug Lea’s allocator [8]) using synthetic
workloads.

The contributions of this paper are: the CF system,
the moving and non-moving implementations, and the
experimental results on bare metal and Linux.

The rest of the paper is organized as follows: Section 2
discusses the principles behind the design of the com-
pacting real-time memory management system. The im-
plementation details and the complexity issues are pre-
sented in Section 3. We discuss related work in Section 4,
and present the experiments, results and comparisons in
Section 5. Section 6 wraps up with discussion and con-
clusion.

2 Principles of Compact-Fit

We start by introducing the goals of memory manage-
ment in general and the requirements for real-time per-
formance in particular. Having the basis set, we present
our proposal for a compacting memory management sys-
tem that meets the real-time requirements. We focus on
the conceptual issues in this section and on the technical
details in the following section.

2.1 Basics of Memory Management

By memory management we mean dynamic memory
management. Applications use the dynamic memory
management system to allocate and free (deallocate)
memory blocks of arbitrary size in arbitrary order. In
addition, applications can use the memory management
system for accessing already allocated memory, derefer-
encing. Memory deallocation can lead to memory holes,
which can not be reused for future allocation requests,
if they are too small: this is the fragmentation problem.
The complexity of allocation and deallocation depends
on the fragmentation. A way to fight fragmentation is by
performing compaction or defragmentation: a process of
rearranging the used memory space so that larger con-
tiguous pieces of memory become available.

There are two types of dynamic memory management
systems:

e explicit, in which an application has to explicitly
invoke the corresponding procedures of the dy-
namic memory management system for allocating
and deallocating memory, and

e implicit, in which memory deallocation is no longer
explicit, i.e., allocated memory that is not used any-
more is detected and freed automatically. Such sys-
tems are called garbage collectors.

In this paper we propose an explicit dynamic memory
management system.

2.2 Real-Time Requirements

Traditional dynamic memory management strategies are
typically non-deterministic and have thus been avoided
in the real-time domain. The memory used by real-time
programs is usually allocated statically, which used to
be a sufficient solution in many real-time applications.
Nowadays increasing complexity demands greater flexi-
bility of memory allocation, so there is a need of design-
ing dynamic real-time memory management systems.
Even in soft real-time systems and general purpose oper-
ating systems there exist time-critical components such
as device drivers that operate on limited amount of mem-
ory because of resource and/or security constraints and
may require predictable memory management.

In an ideal dynamic real-time memory management
system each unit operation (memory allocation, deallo-
cation, and dereferencing) takes constant time. We re-
fer to this time as the response time of the operation of
the memory management. If constant response times can
not be achieved, then bounded response times are also
acceptable. However, the response times have to be pre-
dictable, i.e., bounded by the size of the actual request
and not by the global state of the memory.

More precisely, real-time systems should exhibit pre-
dictability of response times and of available resources.

The fragmentation problem affects the predictability
of the response times. For example, if moving objects in
order to create enough contiguous space is done upon an
allocation request, then the response time of allocation
may depend on the global state of the memory.

Predictability of available memory means that the
number of the actual allocations together with their sizes
determines how many more allocations of a given size
will succeed before running out of memory, indepen-
dently of the allocation and deallocation history. In a
predictable system also the amount of fragmentation is
predictable and depends only on the actual allocated ob-
jects. In addition to predictability, fragmentation should

USENIX ’08: 2008 USENIX Annual Technical Conference

USENIX Association

be minimized for better utilization of the available mem-
ory.

Most of the established explicit dynamic memory
management systems [8, 7] are optimized to offer excel-
lent best-case and average-case response times, but in the
worst-case they are unbounded, i.e., they depend on the
global state of the memory. Hence these systems do not
meet the above mentioned requirement on predictability
of response times.

Moreover, to the best of our knowledge, none of the
established explicit dynamic memory management sys-
tems meets the memory predictability requirement since
fragmentation depends on the allocation and deallocation
history.

The memory management system that we propose of-
fers bounded response times (constant or linear in the
size of the request) and predictable memory fragmenta-
tion, which is achieved via compaction.

Performing compaction operations could be done in
either event- or time-triggered manner. As the names
suggest, event-triggered compaction is initiated upon
the occurrence of a significant event, whereas time-
triggered compaction happens at predetermined points in
time. Our compaction algorithm is event-triggered, com-
paction may be invoked upon deallocation.

2.3 Abstract and Concrete Address Space

We now describe the compacting real-time memory man-
agement system. At first, we focus on the management
of memory addresses. Conceptually, there are two mem-
ory layers: the abstract address space and the concrete
address space. Allocated objects are placed in contigu-
ous portions of the concrete address space. For each al-
located object, there is exactly one abstract address in
the abstract address space. No direct references from ap-
plications to the concrete address space are possible: an
application references the abstract address of an object,
which furthermore uniquely determines the object in the
concrete space. Therefore the applications and the mem-
ory objects (in the concrete space) are decoupled. All
memory operations operate on abstract addresses. We
start by defining the needed notions and notations.

The abstract address space is a finite set of integers
denoted by A. An abstract address a is an element of the
abstract address space, a € A.

The concrete address space is a finite interval of inte-
gers denoted by C. Note that, since it is an interval, C is
contiguous. Moreover, both the concrete and the abstract
address spaces are linearly ordered by the standard order-
ing of the integers. A concrete address c is an element of
the concrete address space, ¢ € C.

A memory object m is a subinterval of the concrete
address space, m € Z(C). For each memory object, two

concrete addresses ¢y, co € C, such that ¢; < cs , define
its range, i.e., we have m = [c1,¢2] = {2 |1 <z <
62}.

As mentioned above, a used abstract address refers to
a unique range of concrete addresses, which represents
a memory object. Vice versa, the concrete addresses of
an allocated memory object are assigned to a unique ab-
stract address. To express this formally, we define a par-
tial map that assigns to an abstract address the interval of
concrete addresses that it refers to. The abstract address
partial map

address : A — Z(C)

maps abstract addresses to memory objects. We say that
an abstract address a is in use if address(a) is defined.
The abstract address map is injective, i.e., different ab-
stract addresses are mapped to different subintervals, and
moreover for all abstract addresses a1, as € A that are in
use, if a; # ag, then address(aq) N address(az) = 0.

Accessing a specific element in the concrete address
space C requires two pieces of information: the abstract
address a and an offset o, pointing out which element in
the memory object m = address(a) is desired. There-
fore the next definition: An abstract pointer denoted by
ay is a pair a, = (a, 0), where a is an abstract address in
use (!) and o is an offset, 0 € {0, ..., |address(a)| — 1}.
By |.| we denote the cardinality of a set. The abstract
pointer space is the set of all abstract pointers a,, and it
is denoted by A,,. There is a one-to-one correspondence
between A, and the allocated subset of C. Each abstract
pointer a,, refers to a unique concrete address c via the
abstract pointer mapping

pointer : A, — C.

It maps an abstract pointer a, = (a,0) to the concrete
address of the memory object m = address(a) that is at
position o with respect to the order on address(a).

Let A = {1,2,3} and C = {1,2,...,10}. As-
sume that three memory objects of different size are
allocated: address(1) = [2,3], address(2) = [6,7]
and address(3) = [8,10]. The abstract addresses to-
gether with their offsets create abstract pointers, which
are mapped to C. For example, pointer(1,1) = 3 and
pointer(3,1) = 9. Figure 1 depicts this situation.

We now elaborate the benefits of using an abstract
memory space. All references are redirected via the ab-
stract memory space. An application points to a concrete
memory location via an abstract pointer, cf. Figure 2(a).

Large data-structures often consist of a number of al-
located memory objects connected via references (e.g.
linked lists or trees) that depict the dependencies between
the objects. These dependencies are handled via abstract
pointers as well. This situation is also shown in Fig-
ure 2(a).

USENIX Association

USENIX ’08: 2008 USENIX Annual Technical Conference

Abstract Address Offsets Concrete Address

Space Space

2 10

1 9

0 8

= 7
2 1 ? 6
1 0 : 5
4

1 — 3

0 > 2

1

Figure 1: Abstract address and pointer mapping

Indirect referencing facilitates predictability of refer-
ence updates during compaction. If fragmentation oc-
curs, the concrete address space C gets compacted and
the references from the abstract address space A to the
concrete address space C are updated, as shown in Fig-
ure 2. Hence, objects are moved in C and references
are updated in A. The number of reference updates is
bounded: movement of one memory object in C leads
to exactly one reference update in A. In contrast, direct
referencing (related to object dependencies) would im-
ply unpredictable number of reference updates. This is
why we chose for an abstract address space design. How-
ever, note that the abstract address space is only required
for predictable reference updating during compaction but
otherwise completely orthogonal to the compaction algo-
rithm and its moving and non-moving implementations
described below.

The CF system provides three explicit memory opera-
tions (whose implementation we discuss in Section 3):

e malloc (size) is used to create a memory object
of a given size. It takes an integer size > 0 as ar-
gument and returns an abstract pointer a, = (a,0),
where a is an abstract address that references to the
allocated memory object and the offset o is set to 0,
the beginning of the memory object.

e free (a) takes an abstract address a as argument
and frees the memory object that belongs to this ab-
stract address. The abstract address mapping is re-
leased.

e dereference (a,) returns the concrete address ¢
of an abstract pointer a, = (a,0), where a is the
abstract address of a memory object and the offset
o points to the actual position within the memory
object.

Note that the abstract address of an allocated memory
object never changes until the object gets freed. The ab-
stract address can therefore be used for sharing objects.
The concrete address(es) of an allocated memory object
may change due to compaction. To this end, we point out
another difference between the abstract and the concrete

address space. Over time, they may both get fragmented.
The fragmentation of the concrete space presents a prob-
lem since upon an allocation request the memory man-
agement system must provide a sufficiently large con-
tiguous memory range. In the case of the abstract address
space, a single address is used per memory object, inde-
pendently of its size. Hence, upon an allocation request,
the memory management system needs to find only a sin-
gle unused abstract address. We can achieve this within
a constant-time bound, without keeping the abstract ad-
dress space compact.

2.4 Size-Classes

For administration of the concrete address space, we
adopt the approach set for Metronome [2, 3, 1].

The following ingredients describe the organization of
the concrete address space.

e Pages: The memory is divided into units of a fixed
size P, called pages. For example, in our imple-
mentation each page has a size P = 16KB.

e Page-blocks: Each used page is subdivided into
page-blocks. All page-blocks in one page have the
same size. In total, there are n predefined page-
block sizes S1,...,S, where S§; < S; fori < j.
Hence the maximal page-block size is .S,,.

e Size-classes: Pages are grouped into size-classes.
There are n size-classes (just as there are n page-
block sizes). Let 1 < ¢ < n. Each page with page-
blocks of size S; belongs to the i-th size-class. Fur-
thermore, each size-class is organized as a doubly-
circularly-linked list.

Every allocation request is handled by a single page-
block. When an allocation request malloc (size) ar-
rives, CF determines the best fitting page-block size .5;
and inserts the object into a page-block in a page that
belongs to size-class 7. The best fitting page-block size
is the unique page-block size S; that satisfies S;—1 <
size < S;.

If a used page becomes free upon deallocation, then
the page is removed from its size-class and can be reused
in any possible size-class.

Figure 3 shows an exemplary view of the organiza-
tion of the concrete address space: There are three size-
classes: in one of them there are two pages, in the other
two there is a single page per class.

2.5 Fragmentation

The size-classes approach is exposed to several types
of fragmentation: page-block-internal fragmentation,

USENIX ’08: 2008 USENIX Annual Technical Conference

USENIX Association

Abstract Space
Proxy Table

Concrete Space
Memory

Application

==

(a) Before: fragmented concrete space

Abstract Space
Proxy Table

Concrete Space
Memory

Application

=

(b) After: compact concrete space

Figure 2: Compaction

| Size-Class 1 I | Size-Class 2 I | Size-Class 3 I

!

il

O free range

O used space

@ page-block-internal fragmentation
m page-internal fragmentation

Figure 3: Size-classes

page-internal fragmentation, and size-external fragmen-
tation [2]. We will briefly discuss each of them and
the impact they have on our design decisions. Figure 3
shows the different types of fragmentation as well.

2.5.1 Page-Block-Internal Fragmentation

Page-block-internal fragmentation is the unused space
at the end of a page-block. Given a page p in size
class ¢ (the page-blocks in p have size S;), let b; for
j =1,..., By be the page-blocks appearing in the page
p, where B, = P div .S;. For a page-block b; we define
used(b;) = 1if b; is in use, and used(b;) = 0 otherwise.
We also write data(b;) for the amount of memory of b;
that is allocated. The page-block-internal fragmentation
for the page p is calculated as

By
Fg(p) =Y _used(b;) - (S; — data(b;)).
j=1

One can also calculate the total page-block-internal frag-
mentation in the memory by summing up the page-block-
internal fragmentation for each page.

The total page-block-internal fragmentation can be
bounded by a factor f if the page-block sizes are chosen
carefully. Namely, Berger et al. [4] suggest the following
ratio between adjacent page-block sizes:

Sk = [Sk—1(1+ f)] M

for k = 2,..,n. The size of the smallest page-blocks S;
and the parameter f can be chosen program-specifically.
Bacon et al. [2] propose a value for the parameter f =
1/8, which leads to minor size differences for smaller
size-classes and major size differences for larger size-
classes.

2.5.2 Page-Internal Fragmentation

Page-internal fragmentation is the unused space at the
end of a page. If all possible page-block sizes S1, . .., S,
are divisors of the page size P, then there is no page-
internal fragmentation in the system. However, if one
uses Equation (1) for the choice of page-block sizes, then
one also has to acknowledge the page-internal fragmen-
tation. For a page p in size-class 4, it is defined as

Fp(p) = P mod S;.

The total page-internal fragmentation is the sum of
Fp(p) taken over all used pages p.

2.5.3 Size-External Fragmentation

Size-external fragmentation measures the unused space
in a used page. This space is considered fragmented or
“wasted” because it can only be used for allocation re-
quests in the given size-class. For example, let p be a
page in size-class ¢ with S; = 32B. If only one page-
block of p is allocated, then there is P— 32B unused
memory in this page. If no more allocation requests
arrive for this size-class, then this unused memory can
never be used again. In such a situation an object of size

USENIX Association

USENIX ’08: 2008 USENIX Annual Technical Conference

32B consumes the whole page. The size-external frag-
mentation of a page p in size-class 7 is bounded by

The total size-external fragmentation in the system is
bounded by the sum of Fis(p), over all pages.

The more size-classes there are in the system, the
less page-block-internal fragmentation occurs, but there-
fore the size-external fragmentation may grow. Hence,
there is a trade-off between page-block-internal and size-
external fragmentation, which must be considered when
defining the size-classes.

2.6 The Compaction Algorithm

The compaction algorithm of CF behaves as follows.
Compaction is performed after deallocation in the size-
class affected by the deallocation request. It implies
movement of only one memory object in the affected
size-class. Before presenting the algorithm, we state
two invariants and two rules that are related to our com-
paction strategy. Recall that each size-class is a doubly-
circularly-linked list.

INVARIANT 1. In each size-class there exists at most
one page which is not full.

INVARIANT 2. In each size-class, if there is a not-full
page, then this is the last page in the size-class list.

The compaction algorithm acts according to the fol-
lowing two rules.

RULE 1. If a memory object of a full page p in a size-
class gets freed, and there exists no not-full page, then p
becomes the not-full page of its size-class and it is placed
at the end of the size-class list.

RULE 2. If a memory object of a full page p in a size-
class gets freed, and there exists a not-full page p,, in the
size-class, then one memory object of p, moves to p. If
D, becomes empty, then it is removed from the size-class.

Not every deallocation request requires moving of a
memory object. The cases when no moving is necessary
are:

e The deallocated memory object is in the unique not-
full page of the size-class. This case imposes no
work except when the deallocated memory object is
the only memory object in the page. Then the page
is removed from the size-class.

e There is no not-full page in the size-class where
deallocation happened. In this case only a fixed
number of list-reference updates is needed in order
that the affected page becomes the last page in the
size-class list.

1void compaction(size_class, affected_page) {
if (affected_page != last_page) {

if (is_full (last_page)) {

set_last (affected_page) ;

else {
move (object, last_page, affected_page);

2
3
4
5 }
6
7
8 abstract_address_space_update (object) ;

Listing 1: The compaction algorithm

Next Page

Previous Page

Size-Class

2-Dimensional
Page-Block
Bitmap

Data

Figure 4: Page layout

Note that when a memory object moves from one page
to another, then we need to perform a reference update
in the abstract address space, in order that the abstract
address of a memory object points to its new location.

The compaction algorithm is presented in Listing 1.

3 Details and Complexity

In this section we elaborate on the implementation de-
tails of CF. We start by discussing the details of the con-
crete address space management, i.e., administration of
the page-blocks, pages, and size-classes. Next we de-
scribe the implementation and the complexity results for
both the moving and the non-moving version of CF. At
the end of this section we also explain the concept of
partial compaction.

3.1 Managing Size-Classes

As mentioned above, we use pages of size 16KB. If
needed, the page size can be modified for specific appli-
cations. The minimal page-block size S; in our bench-
marks is 32B, but it can also be reduced to a smaller size.
Successive page-block sizes are determined by Equa-
tion (1) taking f = 1/8.

In addition to the 16KB storage space, each page has a
header with additional information used for the memory
management. The layout of a page with all administra-
tive information is illustrated in Figure 4.

USENIX ’08: 2008 USENIX Annual Technical Conference

USENIX Association

The fields Next Page and Previous Page contain refer-
ences to the next and the previous page within the size-
class, respectively. These two references build the size-
class list. The field Size-Class refers to the size-class
instance of the page, which further refers to the head of
the size-class list. Hence, we can directly access the head
and therefore also the tail of the size-class list from any
page, which is important for compaction.

A page consists of page-blocks, some of which are in
use and some are free. For memory object allocation, we
must find a free page-block in a page in constant time and
for compaction, we must find a used page-block in a page
in constant time. Therefore, the state of the page (the sta-
tus of all page-blocks) is recorded in a two-dimensional
bitmap, as shown in Figure 4. A bitmap of size 16 x 32
is enough to record the status of the page-blocks since
we have at most 512 page-blocks per page. In addition,
we need 16 more bits to record if at least one bit is set for
each row of the bitmap. This additional bitstring is essen-
tial for constant-time access to a used page-block within
the page and it is used to determine whether a page is
full or not in constant time (one comparison). There are
CPU instructions that find a set bit in a bitstring in con-
stant time. These instructions are limited to bitstrings of
length 32 (on a 32-bit CPU), which is the reason why
we use such a two-dimensional bitmap. In order to get
a used (respectively free) page-block we first find a set
bit in the additional bitstring, and then get a set bit in the
corresponding row of the bitmap.

The free pages are organized in a special LIFO list.
Since all pages are arranged contiguously in memory, no
list initialization is necessary. If the LIFO list is empty
and a free element is required, the next unused element
of the contiguous space is returned (if such an element
exists). We refer to this list construction as free-list.

Note that the administrative information of a page, as
shown in Figure 4, takes 78B out of the 16KB page mem-
ory. Hence, the memory overhead is less than 0.47%.

3.2 Moving Implementation

In this version, memory objects are moved in physical
memory during compaction.

The abstract address space is implemented in a con-
tiguous piece of memory. The free entries of the abstract
address space are organized in a free-list.

The concrete address space is organized as described
in Section 3.1. Each page is implemented as a contigu-
ous piece of memory as well. Moreover, each page-block
contains an explicit reference to its abstract address in
the abstract address space. This reference is located at
the end of the page-block. In the worst case, it occu-
pies 12.5% of the page-block size. These backward ref-
erences allow us to find in constant time the abstract ad-

1void xxcfm_malloc (size) {

2 page = get_page_of_size_class(size);

3 page_block = get_free_page_block (page);

4 return create_abstract_address (page_block) ;
5}

Listing 2: Allocation - moving version

dress of a memory object of which we only know its con-
crete address. Therefore they are essential for constant-
time update of the abstract address space during com-
paction.

We next present the allocation, deallocation, and
dereferencing algorithms and discuss their complexity.
The algorithm for allocation cfm_malloc is presented
in Listing 2. The function get_page_of_size_class
returns a page of the corresponding size-class in con-
stant time: if all pages in the size-class are full, then
with help of the free-list of free pages, we get a new
page; otherwise the not-full page of the size-class is
returned. Hence this function needs constant time.
The function get_free_page_block takes constant
time, using the inverse of the two-dimensional bitmap
of a page. Declaring a page-block used is just a
bit-set operation. As mentioned above, the free ab-
stract addresses are organized in a free-list, so the func-
tion create_abstract_address takes constant time.
As a result, cfm_malloc takes constant time, i.e.,
O(cfm_malloc (size)) = O(1).

The deallocation algorithm cfm_free is shown in
Listing 3. The function get_page_block takes con-
stant time, since it only accesses the memory loca-
tion to which the abstract address refers. The func-
tion get_page takes several arithmetic operations, i.e.,
constant time. Namely, pages are linearly aligned
in memory so for a given page-block we can calcu-
late the starting address of its page. The function
get_size_class is executed in constant time, since
every page contains a field Size-Class. The function
set_free_page_block changes the value of a single
bit in the bitmap, so it also requires constant time and
add_free_abstract_address amounts to adding a
new element to the corresponding free-list, which is done
in constant time too. Removing a page from a size-class
remove_page requires also constant time: first a page
is removed from the size-class list; then it is added to
the free-list of empty pages. Therefore, the complexity
of cfm_free equals the complexity of the compaction
algorithm.

The complexity of the compaction algorithm,
compaction, is linear in the size of the page-blocks in
the corresponding size-class since it involves moving a
memory object. Note that the complexity of the abstract
address space update is constant, due to the direct

USENIX Association

USENIX ’08: 2008 USENIX Annual Technical Conference

1void cfm_free (abs_address) {

2 page_block = get_page_block (abs_address) ;
3 page = get_page (page_block);

4 size_class = get_size_class (page);

5 set_free_page_block (page, page_block);
6 add_free_abstract_address (abs_address) ;
7 1f (page == empty) {

8 remove_page (size_class, page);

I

0 else {

11 compaction(size_class, page);

12 }

Listing 3: Deallocation - moving version

reference from page-blocks to abstract addresses.

Hence, the worst-case complexity of cfm_free
is linear in the size of the page-block:
O(cfm_free (abs_address)) = O(s) for s be-
ing the size of page-blocks in the size-class where
abs_address refers to. Thus, for a fixed size-class, we
have constant complexity.

In this moving implementation, the physical location
of a memory object is accessed by dereferencing an ab-
stract pointer. The dereferencing contains a single line of
code « (rabs_address + offset); given an abstract
pointer (abs_address, offset).

To conclude, the only source of non-constant (linear)
complexity in the moving implementation is the mov-
ing of objects during compaction. In an attempt to lower
this bound by a constant factor, we implement the non-
moving version.

3.3 Non-Moving Implementation

We call this implementation non-moving, since memory
objects do not change their location in physical mem-
ory throughout their lifetime, even if compaction is per-
formed.

In the non-moving implementation, the abstract ad-
dress space is still a contiguous piece of memory. How-
ever, we no longer use the free-list for administrating
free abstract addresses, since now there is an implicit
mapping from the memory objects to the abstract ad-
dresses. We will elaborate on this in the next paragraph.
The implicit references (from memory objects to abstract
addresses) are used for constant-time updates of the ab-
stract address space.

First, let us explain the difference in the implemen-
tation of the concrete address space. The concrete ad-
dress space is managed by a virtual memory. The vir-
tual memory consists of blocks of equal size. The phys-
ical memory is contiguous and correspondingly divided
into block-frames of equal size. For further reference we

denote this size by s,. These blocks and block-frames
must not be confused with the page-blocks: they are
global, for the whole memory, above the page concept.
Therefore, each block-frame is directly accessible by its
ordinal number. The free block-frames are also orga-
nized in a free-list. The abstract address space is pre-
allocated, and contains as many potential abstract ad-
dresses as there are block-frames. A unique abstract ad-
dress corresponds to a memory object m: the abstract
address at position k in the abstract address space, where
k is the ordinal number of the first block-frame of m in
the physical memory. This way, we do not need an ex-
plicit reference stored in each page-block, thus we avoid
the space overhead characteristic to the moving imple-
mentation. Moreover, getting a free abstract address is
immediate, as long as we can allocate a block-frame in
physical memory.

A block table records the mapping from virtual mem-
ory blocks to memory block-frames. In our implementa-
tion, the block table is distributed over the pages, which
simplifies the page-specific operations. The organization
of the memory in this implementation is shown in Fig-
ure 5.

Objects are allocated in contiguous virtual memory
ranges, but actually stored in arbitrarily distributed phys-
ical memory block-frames. We still use the concepts of
pages, size-classes and page-blocks, with some differ-
ences. A page is now a virtual page: It does not contain
any data; in its Data segment it contains the part of the
block table that points to the actual data in the physi-
cal memory. Moreover, for administration purposes all
page-block sizes are multiples of the unique block size.
Hence, each page-block consists of an integer number of
blocks. This implies that we can not directly use Equa-
tion (1), we need to round-up the page-block sizes to the
next multiple of the block size.

The allocation algorithm is shown in Listing 4. In
comparison to the moving implementation, we have
now a loop that handles the allocation block-frame-wise.
Note that number_of_blocks (page_block) is con-
stant for a given size-class. Getting a free block-frame,
and creating a corresponding block-table entry, takes
constant time. Therefore, the complexity of the alloca-
tion algorithm is linear in the number of block-frames
in a page-block, i.e., O(cfnm_malloc (size))= O(n)
where n = s/s;, for s the page-block size of the size-
class. Again, this means constant complexity in the size-
class.

The function create_ abstract_address in the
non-moving implementation uses the implicit references
from memory objects to abstract addresses.

Listing 5 shows the deallocation algorithm.

In comparison to the moving implementation, we have
to free each block-frame in the memory occupied by

USENIX ’08: 2008 USENIX Annual Technical Conference

USENIX Association

1
2
3
4

Abstract Space
Proxy Table

Application

Virtual Space

Concrete Space
Physical Space

Block Table Block-Frames

Implicit Reference

Figure 5: Memory layout of the non-moving implementation

voild **cfnm_malloc (size) {

page = get_page_of_size_class(size);
page_block = get_free_page_block (page);
for (i = 1 to number_of_blocks (page_block)) {

block_frame = get_free_block_frame();
add_to_block_table (page,
page_block, block_frame);
}
return create_abstract_address (page_block);

Listing 4: Allocation - non-moving version

the freed memory object. This requires a loop with as
many iterations as there are block-frames for the mem-
ory object. As above, there are n = s/s; block-frames,
where s is the size of the size-class and s; the size of
the block-frame. Moreover, the compaction algorithm
is implemented differently: memory objects are only
virtually moved, by updating the block table. This is
still linear in the size of the size-class, but we achieve
a constant speed-up: it actually takes n updates of the
block table. As a result, the complexity of the deallo-
cation algorithm in the non-moving implementation is
O(cfnm_free)= O(n), which is again constant for a
given size-class.

Finally, we consider the dereference algorithm. It pro-
vides direct access to a memory location corresponding
to a given abstract pointer (abs_address, offset).
Dereferencing takes constant time, with several more
calculations than in the moving implementation. The al-
gorithm is shown in Listing 6. In the code, s_b stands
for the size of a block, s.

We conclude that the non-moving implementation
achieves a constant speed-up of the compaction algo-
rithm, while the complexity of the allocation algorithm
grows from constant to linear. The complexity of deallo-
cation and dereference is the same in both implementa-
tions.

1

2
3
4
5
6
7
8

1
2
3
4

voild cfnm_free (abs_address) {
page_block = get_page_block (abs_address);
page = get_page (page_block);
size_class = get_size_class (page);
for (i = 1 to number_of_blocks (page_block)) {
block_frame =
get_block_frame (page_block, 1i);
add_free_block_frame (block_frame);
}
set_free_page_block (page, page_block);
add_free_abstract_address (abs_address) ;
if (page == empty) {

remove_page (size_class, page);
}
else {

compaction(size_class, page);

}

Listing 5: Deallocation - non-moving version

vold xcfnm_dereference (abs_address, offset) {
return (*(xabs_address + (offset div s_Db))
+ (offset mod s_b));
}

Listing 6: Dereference - non-moving version

3.4 Partial Compaction

Up to now we always considered the very strong aim
of “always compact size-classes”, i.e., our invariant was
that at any moment in time in each size-class at most one
page is not full. We now relax this invariant by allowing
for a given number of not-full pages per size-class. Vary-
ing the number of allowed not-full pages per size-class,
max_nr_nf_pages, results in various levels of com-
paction. For example, max_nr_nf_pages= 1 means
always compact memory (as described above), but there-
fore larger compaction overhead, whereas high values
of max_nr_nf_ pages lead to faster memory manage-
ment, for the price of higher fragmentation. This way we
formalize, control, and implement the trade-off between
temporal performance and memory fragmentation.

USENIX Association

USENIX ’08: 2008 USENIX Annual Technical Conference

We implement this new approach as follows.
A size-class instance now consists of three fields:
head_not_full_pages, and
nr_not_full_pages. Therefore it consists of two
doubly-circularly-linked lists: one containing the full
pages and another one containing the not-full pages.
The initial value of nr_not_full_pages is zero and it
never exceeds a pre-given number, max_nr_nf_pages.
If all pages are full, then allocation produces a new not-
full page, so nr_not_full_pages is incremented. In
case a not-full page gets full after allocation, it is moved
to the list of full pages, and nr_not_full_pages is
decremented. If deallocation happens on a page-block
that is in a not-full page, no compaction is done. If
it happens on a page-block which is in a full page,
then compaction is called if nr_not_full_pages =
max_nr_nf_pages. Otherwise, no compaction is done,
the affected page is moved from the list of full pages to
the list of not-full pages, and nr_not_full_pages is
incremented.

For better average-case temporal and spatial perfor-
mance, we keep pages that are more than half-full at the
end of the not-full list, and pages that are at most half-
full at the head of the list. Allocation is served by the last
page of the not-full list, which may increase the chances
that this page gets full. Used page-blocks that need to
be moved because of compaction are taken from the first
page of the not-full list, which might increase the chances
that this page gets empty. Note that, for the best possi-
ble spatial performance, it would be better to keep the
not-full list sorted according to the number of free page-
blocks in each non-full page. However, inserting a page
in a sorted list is too time-consuming for our purposes
and can not be done in constant time.

It should be clear that each deallocation when
nr_not_full_ pages takes
constant time, i.e., involves no compaction. However,
this guarantee is not very useful in practice: given a mu-
tator we can not find out (at compile time) the maximal
number of not-full pages it produces. Therefore we de-
scribe another guarantee.

Given a size-class, let ny count deallocations for
which no subsequent allocation was done. Initially, ny =
0. Whenever deallocation happens, n is incremented.
Whenever allocation happens, n ¢ is decremented, unless
it is already zero. We can now state the following guar-
antee.

head_full_pages,

< max_nr_nf pages

PROPOSITION 1. Each deallocation that happens
when ny < max_nr_nf_pages—1 takes constant time
in the CF moving implementation, i.e., it involves no
compaction.

Namely, a

nr_not_full_pages

simple analysis shows that
< ny + 1 is an invari-

1int *value;
2value = malloc (40);
3value++;

4print (xvalue);

Listing 7: Standard C pointers example

1 struct abs_pointer value;
2value.abs_address = malloc (40);
3value.offset= 0;

4value.offset += 4;

sprint (dereference (value.abs_address,
6 value.offset));

Listing 8: Abstract pointers example

ant for a given size-class. It holds initially
since then nr_not_full_pages = ny = 0.
Each allocation and deallocation keeps the prop-

erty valid. Therefore, if a deallocation hap-
pens when ny < max_nr_nf_pages — 1, then
nr_not_full_pages < max_nr_nf_pages and

hence compaction is not called.

Program analysis can be used to determine the max-
imum value of ny for a given mutator at compile time.
More advanced program analysis (e.g. analysis of se-
quences of allocations and deallocations) might provide
us with a stronger guarantee than the one above. Em-
ploying program analysis is one of our future-work aims.
The effect of partial compaction can be seen in the exper-
iments in Section 5.

3.5 Pointer Arithmetic

Since we make the distinction between abstract and con-
crete address space, our malloc function returns a ref-
erence to an abstract address, instead of a reference to
a memory location. Therefore, pointer arithmetic needs
adjustment, so that it fits our model. In order to enable
standard pointer arithmetic, we need the structure of an
abstract pointer. It contains a field abs_address and a
field offset. Consider the example of C code in Listing 7.
The same is achieved in CF by the code presented in List-
ing 8.

A virtual machine (e.g. a Java VM) can encapsu-
late the abstract pointer concept. C programs which use
CF instead of a conventional memory management sys-
tem have to be translated into code that uses the abstract
pointer concept. An automatic translation tool is left for
future work.

On an Intel architecture running Linux, GCC trans-
lates a standard pointer dereference (including offset ad-
dition) to 6 assembler instructions, whereas a CFM ab-
stract pointer dereference results in 7 assembler instruc-

10

USENIX ’08: 2008 USENIX Annual Technical Conference

USENIX Association

tions (one additional pointer dereference instruction is
needed). A CFNM abstract pointer dereference results
in 11 assembler instructions. The additional 5 assembler
instructions consist of one dereference operation and 4
instructions that calculate the memory target address and
move the pointer to that address.

4 Related Work

In this section we briefly discuss existing memory man-
agement systems (mostly for real time). We distinguish
explicit and implicit memory management systems and
consider both non-compacting real-time, and non-real-
time memory management systems. Jones [6] maintains
an extensive online bibliography of memory manage-
ment publications.

4.1 Explicit Memory Management

There are several established explicit memory manage-
ment systems: First-fit [7], Best-fit [7], Doug Lea’s allo-
cator (DL) [8], Half-fit [11], and Two-level-segregated-
fit (TLSF) [10]. A detailed overview of the explicit mem-
ory management systems can be found in [9, 13].

First-fit and Best-fit are sequential fit allocators, not
suitable for real-time applications. In the worst case, they
scan almost the whole memory in order to satisfy an al-
location request. DL is a non-real-time allocator used in
many systems, e.g. in some versions of Linux.

Half-fit and TLSF offer constant response-time
bounds for allocation and deallocation. However, both
approaches may suffer from unbounded memory frag-
mentation.

None of the above mentioned algorithms perform
compaction. Instead, they attempt to fight fragmentation
by clever allocation, and therefore can not give explicit
fragmentation guarantees.

In Section 5 we present a comparison of the CF im-
plementations with First-fit, Best-fit, DL, Half-fit, and
TLSFE.

4.2 Implicit Memory Management

We elaborate on two established implicit real-time
memory management systems: Jamaica [14] and
Metronome [2].

Jamaica splits memory objects into fixed-size blocks
that can be arbitrarily located in memory and connected
in a linked list (or tree) structure. Allocation and deal-
location achieve the same bounds like our non-moving
implementation. Dereferencing in Jamaica involves go-
ing through the list of memory object blocks, therefore it
takes linear (or logarithmic) time in the size of the object.

Compaction is not needed for Jamaica, since memory ob-
jects do not occupy contiguous pieces of memory.

Metronome is a time-triggered garbage collector. As
mentioned above, we adapt some concepts like pages
and size-classes from Metronome. Compaction in
Metronome is part of the garbage collection cycles. The
time used for compaction is estimated to at most 6% of
the collection time [2].

5 Experiments and Results

In this section, we benchmark the moving (CFM) and
non-moving (CFNM) implementations as well as the par-
tial compaction strategy of CF in a number of experi-
ments. Moreover, we compare both CF implementations
with the dynamic memory management algorithms First-
fit, Best-fit, DL, Half-fit, and TLSF. The implementa-
tions of First-fit, Best-fit, Half-fit, and TLSF we borrow
from Masmano et al. [9]. We took the original imple-
mentation of DL from Doug Lea’s web page [8].

5.1 Testing Environment

We have performed processor-instruction measurements
of our algorithms on a standard Linux system, and bare-
metal execution-time measurements on a Gumstix con-
nex400 board [5] running a minimal hardware abstrac-
tion layer (HAL).

Processor-instruction measurements eliminate inter-
ferences like cache effects. For measurement purposes,
our mutators are instrumented using the ptrace [12] sys-
tem call. The processor-instruction and execution-time
measurements are almost the same except that the for-
mer are cleaner, free of side effects. For this reason, we
present the processor-instruction results only.

Our mutators provide synthetic workloads designed to
create worst-case and average-case scenarios. We have
not obtained standardized macrobenchmark results for
lack of an automatic code translator or virtual machine
implementation that incorporate the abstract pointer con-
cept.

5.2 Results: Incremental Tests

In this benchmark, we run a mutator with incremental
behavior: it allocates memory objects of increasing size
starting from 8B increasing by 4B until the memory gets
full at 7MB. Then, it deallocates each second object. We
measure this process in the deallocation experiments. Fi-
nally, the mutator allocates the deallocated objects once
more. We measure this process in the allocation exper-
iments. In Figure 6, the z-axes show the number of in-
voked memory operations, whereas the y-axes represent

USENIX Association

USENIX ’08: 2008 USENIX Annual Technical Conference

11

the corresponding measured number of executed instruc-
tions.
Figure 6(a) shows the number of processor instruc-

40000

20000 |- Best-fit 1

10000 -
5000

2500 |- |

1000 - Lot 4

Number of instructions

500 |-

250 [CFM
‘—,—— WITIHINHET! o
-t Half-fit

100

W
TLSF

50 L L L L L L L L
0 200 400 600 800 1000 1200 1400 1600 1800

Number of allocation operations of increasing size

First-fit TLSF
Bestfit Halfit DL ------

CFNM -+ -

(a) Allocation

5000

2500

1000

500

Number of instructions

250

100 -
TLSF
i) Half-fit
First-fi E Bestfit N
0 200 400 600 800 1000 1200 1400 1600 1800
Number of deallocation operations of increasing size

TLSF
Half-fit

First-fit
Best-fit

CFNM -

(b) Deallocation with compaction

3500 T T
LCFNM_ e

2000 |- T E

1000 |- - E

Number of instructions

100 E
TLSF
—) . Haif-fit
’ " Firstit | “Bestit
0 200 400 600 800 1000 1200 1400 1600 1800
Number of deallocation operations of increasing size

First-fit TLSF
Best-fit Half-fit DL ------

CFNM -~ -

(c) Deallocation, partial compaction

Figure 6: Incremental microbenchmark

tions for allocation. The behavior of First-fit and Best-
fit is highly unpredictable. DL appears more bounded.
Half-fit and TLSF perform allocation operations fast and
in constant time. The behavior of the CF implementa-
tions is according to our theoretical results: constant for
CFM and linear for CFNM. Note that the y-axes of the
graphs have logarithmic scale. Both CF implementations
are bounded but slower than Half-fit and TLSF due to
the additional administrative work for (potential) com-
paction. CFM is as fast as DL, and faster than First-fit
and Best-fit. The average number of instructions for al-
location with CFM is 169.61, the standard deviation is
8.63.

The deallocation benchmark, with full compaction, is
presented in Figure 6(b). All algorithms except CF per-
form deallocation in constant time by adding the deallo-
cated memory range to a data structure that keeps track
of the free memory slots. CF performs compaction upon
deallocation, and therefore takes linear time (in the size
of the memory object) for deallocation. The overhead of
performing compaction leads to longer execution time,
but both CF implementations are bounded and create pre-
dictable memory. For the given block-frame size of 32B,
CFNM does not perform better than CFM since returning
blocks to the free-list of free block-frames takes approxi-
mately the same time as moving a whole memory object.
Experiments showed that the minimum block-frame size
for which deallocation in CFNM is faster than in CFM is
80B.

Using the partial compaction strategy results in con-
stant deallocation times for CFM, as shown in Fig-
ure 6(c). Note that this graph shows the same picture
as Figure 6(b) except for CFM and CFNM where partial
compaction is applied. The compaction bounds for par-
tial compaction are set sufficiently wide to avoid com-
paction. CFNM shows a step function with tight bounds
per size-class. The average number of instructions for
deallocation with CFM and partial compaction is 185.91,
the standard deviation is 16.58.

5.3 Results: Rate-Monotonic Tests

In the rate-monotonic scheduling benchmarks, we use a
set of five periodic tasks resembling a typical scenario
found in many real-time applications. Each task allo-
cates memory objects of a given size, and deallocates
them when the task’s holding time expires. Three of the
tasks allocate larger objects and have long holding times,
the other two allocate small objects and have short hold-
ing times. The tasks have various periods and deadlines.
They are scheduled using a rate-monotonic scheduling
policy. Since the different tasks create a highly frag-
mented memory, this benchmark represents a memory
fragmentation stress test.

12

USENIX ’08: 2008 USENIX Annual Technical Conference

USENIX Association

For better readability, the y-axes of the graphs show
the cumulative number of instructions, i.e., the sum of the
number of executed instructions for all operations start-
ing from the first invoked operation up to the currently
invoked one. The z-axes show the number of invoked
operations, as before. Note that a linear function repre-
sents memory operations that take constant time.

The allocation measurements are presented in Fig-
ure 7(a). Best-fit is highly unpredictable. Half-fit and
TLSF are constant and fast. CFM is also constant, faster
than DL, but slightly slower than Half-fit and TLSF. On
average, a CFM allocation request takes 169.61 instruc-
tions with a standard deviation of 8.63.

Figure 7(b) shows the deallocation measurements.
The differences in growth of the CFM curve correspond
to compaction. During the first 550 deallocation opera-
tions CFM has to perform a lot of compaction operations
but afterwards no compaction is necessary. The total
runtime is shorter than the time needed for DL. CFNM
takes linear time in the size of the memory object even
if there is no compaction performed. The curve reflects
this property.

Applying partial compaction leads to constant-time
deallocation with CFM and makes it fast and more pre-
dictable, as shown in Figure 7(c). This graph shows the
same picture as Figure 7(b) except for CFM and CFNM
where partial compaction is applied. In order to ap-
ply partial compaction we have used the following com-
paction bounds on the 46 size-classes in the system: In
the size-classes 15-18 and 28-29, two not-full pages are
allowed. In the size-classes 19-27, we allow for three
not-full pages. All other size-classes can have at most
one not-full page. The mean number of instructions for
CFM deallocation with partial compaction is 171.61, the
standard deviation is 5.09.

5.4 Results: Fragmentation Tests

Our final experiments measure fragmentation. We com-
pare CFM (with partial compaction) with TLSF, since
the latter is considered the best existing real-time mem-
ory management system in terms of fragmentation [9].
The results are shown in Figure 8. The numbers next to
CFM, e.g. CFM 3, denote the maximal number of not-
full pages allowed in each size-class.

For the experiments we have used a mutator that al-
locates the whole memory using memory objects of size
20B-100B. Before we run the fragmentation test around
20% of the number of allocated objects is freed. The
memory holes are randomly distributed throughout the
memory. The fragmentation tests count how many ob-
jects (y-axis) of size 20B-16000B (z-axis) are still allo-
catable by each memory management system. CFM ob-
viously deals with fragmentation better than TLSF, even

1.4e+06 |- | -
1.2e+06 [~ : Best-fit -

16406 [-
: CFNM

800000 [

600000 | i

400000 [+

Cumulative number of instructions

200000

0

0 200 400 600 800 1000 1200
Number of allocation operations
First-fit TLSF CEM CFNM --=- -
Best-fit Half-fit DL ------

(a) Allocation

550000 T T T T T T
500000 [A
450000 | JER

? CFNM _

S 400000 |- 4

3 .

2

% 350000 |]

<

S gooo00 T e e

3

2 LT e

g 250000 |- e .

% 200000 [~ CFM B

E 1s0000 - T e DL B

o o e e Half-fit
100000 [TLSF e]

- First-fit e
50000 |- = Best-it _|
o Lazi= T 1 1 1 1 1
0 200 400 600 800 1000 1200
Number of deallocation operations
Firstfit TLSF CFM CFNM - --
Best-fit Halt-fit DL ------
(b) Deallocation compaction
450000 T T T T T T
400000 |- LT

» 350000 [~ CFNM, - E

2

S

2 300000 |- e

2 - L

S 250000 |-]

3 -

3 200000 [~ L e E

o . -

8§ 150000 [.

E g " CFM Half-fit

© 100000 |- .

First-fit “Bost it
50000 |-
o v g |

1 1 1 1
0 200 400 600 800 1000 1200

Number of deallocation operations
Firstfit TLSF CFM CENM -+ --
Best-fit Half-fit DL ==-=--

(c) Deallocation, partial compaction

Figure 7: Rate-monotonic microbenchmark

if we allow up to nine not-full pages in each size-class.
Moreover, the fragmentation in CFM is fully controlled
and predictable.

USENIX Association

USENIX ’08: 2008 USENIX Annual Technical Conference

13

5000 =

1000 [f 4

100 -

CFM 1
CFM 2

Number of allocatable objects

CFms CFM 3,4

CFM 6,7,8,9

TLSF

L L L
12000 14000

4 L L L
0 2000 4000 6000 8000 10000

Object size

16000

CFM1 —— CFM3

CFM7 —— CFM9 ——
CFM2 —— CFM4

CFM 5 7
CFM6 —— CFM8 —— TLSF

Figure 8: Fragmentation

6 Discussion and Conclusion

Compact-fitis an explicit real-time memory management
system that handles fragmentation through compaction
like some implicit real-time memory management Sys-
tems do. Its main new contribution is predictable re-
sponse times in combination with predictable memory
fragmentation.

We have designed and implemented two versions of
Compact-fit. Allocating an object takes constant time in
the moving implementation and linear time (in the ob-
ject’s size) in the non-moving implementation. Deallo-
cating an object takes linear time (in its size) in both
implementations. If no compaction occurs, deallocat-
ing takes constant time in the moving implementation.
Dereferencing takes constant time in both implementa-
tions.

Hence, we provide tight bounds on the response times
of memory operations. Moreover, we keep each size-
class (partially) compact, i.e., we have predictable mem-
ory. Hence, unlike the other existing real-time memory
management systems that do not fully control fragmen-
tation, our compacting real-time memory management
system is truly suitable for real-time and even safety-
critical applications.

Finally, another real-time characteristic of our mem-
ory management system is the constant initialization
time. This is achieved using the free-list concept for all
resources (abstract addresses, pages, block-frames, etc.)
that need initialization.

The experiments validate our asymptotic complexity
results. Due to more administrative work related to com-
paction, our system is slightly slower than the existing
systems with real-time response bounds.

There are several possible improvements to our de-
sign and implementation that we leave for future work.
In our present work, the abstract address space is stati-

cally pre-allocated to fit the worst case. For less memory
overhead, we could implement a dynamic abstract ad-
dress space allocation by using the pages from the con-
crete address space also for storing abstract addresses.
Moreover, the present implementation allows for mem-
ory objects of size at most 16KB, the size of a page.
Arraylets [3] can be used in order to handle objects of
larger size. Other topics for future work are concurrency
support, program analysis for determining optimal par-
tial compaction bounds and needed amount of abstract
addresses, and allocatability analysis.

Acknowledgments

This work is supported by a 2007 IBM Faculty Award,
the EU ArtistDesign Network of Excellence on Embed-
ded Systems Design, and the Austrian Science Fund No.
P18913-N15.

References

[1] BACON, D. F. Realtime garbage collection. Queue 5, 1 (2007),
40-49.

[2] BACON, D. F., CHENG, P., AND RAJAN, V. T. Controlling frag-
mentation and space consumption in the Metronome, a real-time
garbage collector for Java. In Proc. LCTES (2003), ACM Press,
pp. 81-92.

[3] BACON, D. F., CHENG, P., AND RAJAN, V. T. A real-time
garbage collector with low overhead and consistent utilization.
In Proc. POPL (2003), ACM Press, pp. 285-298.

[4] BERGER, E. D., MCKINLEY, K. S., BLUMOFE, R. D., AND
WILSON, P. R. Hoard: A scalable memory allocator for mul-
tithreaded applications. In Proc. ASPLOS (2000), ACM Press,
pp. 117-128.

[S] GUMSTIX. Gumstix inc. http://www.gumstix.org.

[6] JONES, R. The garbage collection page. http://www.cs.
ukc.ac.uk/people/staff/rej/gc.html. The defini-
tive on-line resource for garbage collection material.

[71 KNUTH, D. E. Fundamental Algorithms, second ed., vol. 1 of
The Art of Computer Programming. Addison-Wesley, 1973.

[8] LEA, D. A memory allocator. Unix/Mail/, 6/96, 1996.

[9] MASMANO, M., RIPOLL, I., AND CRESPO, A. A comparison
of memory allocators for real-time applications. In Proc. JTRES
(2006), ACM press, Vol. 177, pp. 68-76.

MASMANO, M., RIPOLL, 1., CRESPO, A., AND REAL, J.
TLSF: A new dynamic memory allocator for real-time systems.
In Proc. ECRTS (2004), IEEE Computer Society, pp. 79-86.
OGASAWARA, T. An algorithm with constant execution time
for dynamic storage allocation. In Proc. RTCSA (1995), IEEE
Computer Society, pp. 21-27.

[10]

[11]

[12] PADALA, P. Playing with ptrace, part I. Linux Journal 2002, 103

(2002), 5.

PUAUT, I. Real-time performance of dynamic memory allocation
algorithms. In Proc. ECRTS (2002), IEEE Computer Society,
pp. 41-49.

SIEBERT, F. Eliminating external fragmentation in a non-moving
garbage collector for Java. In Proc. CASES (2000), ACM Press,
pp. 9-17.

[13]

[14]

14

USENIX ’08: 2008 USENIX Annual Technical Conference

USENIX Association

