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ABSTRACT
The Embedded Machine is a virtual machine that mediates
in real time the interaction between software processes and
physical processes. It separates the compilation of embed-
ded programs into two phases. The first, platform-indepen-
dent compiler phase generates E code (code executed by
the Embedded Machine), which supervises the timing —
not the scheduling— of application tasks relative to external
events, such as clock ticks and sensor interrupts. E code is
portable and exhibits, given an input behavior, predictable
(i.e., deterministic) timing and output behavior. The sec-
ond, platform-dependent compiler phase checks the time
safety of the E code, that is, whether platform performance
(determined by the hardware) and platform utilization (de-
termined by the scheduler of the operating system) enable
its timely execution. We have used the Embedded Machine
to compile and execute high-performance control applica-
tions written in Giotto, such as the flight control system of
an autonomous model helicopter.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
Real-time systems and embedded systems
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Languages
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1. INTRODUCTION
We define a real-time execution model, called the Embedded
Machine (E machine, for short), which provides a portable
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target for the compilation of languages with hard real-time
constraints, such as Giotto [8]. E code (the code executed
by the E machine) has strong theoretical properties, in par-
ticular, its timing and behavior are predictable. These ben-
efits do not come at undue cost in performance. We have
demonstrated this by using E code to reimplement the flight
control system of an autonomous model helicopter [10].

From Platform-Centric to Requirements-
Centric Real-Time Programming
In embedded systems, there are two time lines. The interac-
tion of software processes with physical processes (sensors,
actuators, clocks) happens in environment time. Applica-
tion requirements are specified in environment time, e.g.,
“the actuator is set within 2 clock ticks of a sensor inter-
rupt.” On the other hand, the execution of software pro-
cesses on a specific platform happens in platform time. By
platform we mean the combination of hardware and real-
time operating system (RTOS). Issues of platform perfor-
mance, such as worst-case execution times (WCETs), and
platform utilization, such as distribution and scheduling,
must be addressed in terms of CPU time. The art of em-
bedded programming is to reconcile the two time lines.

The E machine proposes a paradigm shift in real-time
programming: it permits the programmer to think exclu-
sively in terms of environment time (“reactivity”), and shifts
the burden of reconciliation with platform time to the com-
piler (“schedulability”). This paradigm shift is in line with
the steady move towards higher-level programming abstrac-
tions. In fact, the E machine treats platform time as a re-
source in the way in which most high-level languages treat
memory: the programmer assumes there is enough of it; the
compiler makes sure there is enough of it (or fails to com-
pile); the runtime system throws an exception in case the
compiler was wrong (usually due to incorrect assumptions
about the platform and possible contingencies).

Programming in terms of environment time avoids the
two central drawbacks of conventional embedded code: non-
portability and unpredictability. The former is immedi-
ate: conventional embedded code is intrinsically platform-
dependent, because it directly or indirectly (say, through
priorities) refers to platform time; E code is platform-inde-
pendent, because it refers only to environment time. Pre-
dictability, both in timing and functionality, is a less im-
mediate but powerful consequence of programming in terms
of environment time. By task we mean a software process
(or a fragment thereof) without internal synchronization
points [13]. Suppose that the inputs of a task t become



available at time x (say, through a sensor interrupt), and its
outputs are required at time y (say, as an actuator setting).
The programmer and, in turn, the E machine is concerned
only with these two times: at environment time x, the inputs
are provided to t and the task is turned over to the platform,
namely, the RTOS; at environment time y, the outputs of t
are read and given to the actuator. The programmer may
assume that the task has indeed completed at time y; other-
wise the compiler (or, as last resort, the runtime system) will
complain. However, the programmer cannot know exactly
when in the interval [x, y] the task completes; in fact, she
cannot even read the outputs of t “as soon as they become
available,” as this would introduce an instant of platform
time into the program. The strict adherence to environ-
ment time allows us to design E code without race condi-
tions: for two concurrent tasks, it does not matter which
task completes first, as long as each task completes before
its outputs are read.

A computation of the E machine is time-safe if each task
completes before its outputs are read. Time safety depends,
of course, on the platform (performance, distribution, sched-
uling). A good compiler ensures time safety; in addition,
the runtime system monitors time safety. For E code that
refers only to environment time, time safety implies environ-
ment determinedness. A computation of the E machine is
environment-determined if the inputs from the environment
processes (e.g., the sensor readings) uniquely determine the
outputs of the software processes (e.g., the actuator set-
tings). While time safety captures timing predictability (the
actuators are written at predictable times), environment de-
terminedness captures, in addition, value predictability (the
actuators are given predictable values).

Based on these principles, we defined the language Giotto
for high-performance control applications [8]. Giotto sup-
ports high-level structuring principles for modern control
systems, such as periodic task invocation and multiple con-
trol modes. In compiling Giotto, we have found it useful to
have an intermediate language, with none of the high-level
concepts but the same platform-independent semantics for
mediating between the physical environment (typically, sen-
sors and actuators) and software tasks (typically, control
law computations). This intermediate language, which has
evolved into E code, offers several benefits. First, it sepa-
rates the platform-independent from the platform-dependent
parts of the Giotto compiler, thus enabling reuse. The
platform-independent part of the compiler generates E code
from a Giotto program; its main purpose is to specify the
timing of all interactions among software tasks, and be-
tween software tasks and the environment. The platform-
dependent part of the compiler checks the time safety of
the E code for a given platform with known WCETs and
known scheduling scheme (a more ambitious compiler may
attempt to synthesize a scheduling scheme that guarantees
time safety). Second, E code permits the dynamic imple-
mentation of Giotto: code can be patched at runtime, and
whenever the controller switches mode, new code can be
linked at runtime.

While E code has evolved from compiling Giotto, we have
found it of considerable independent interest, as it illustrates
the causalities between the underlying semantic principles,
and ways to generalize them. One limitation of Giotto, for
some applications, is its time-triggered nature: all Giotto
time instants are ticks of an external clock, which, in high-

performance control applications, minimizes jitter. By con-
trast, E code may refer to environment events that are not
clock ticks, such as sensor interrupts. Also, Giotto cannot
refer to the completion time of tasks. For E code, it is a
small and natural step to consider inputs not only from the
environment processes, but inputs from both the environ-
ment and the software processes. Then the completion of
a software task becomes an input event, which may influ-
ence the execution of E code. As this generalization in-
troduces E code references to platform time, environment
determinedness is sacrificed, and replaced by the weaker —
but symmetric— notion of input determinedness: the in-
puts from the environment processes (e.g., the sensor read-
ings) and from the software processes (e.g., the scheduling
scheme) together uniquely determine the outputs of the soft-
ware processes (e.g., the actuator settings). It is the study of
concepts such as time safety and environment/input deter-
minedness that elevates the E machine from an intermediate
language for compiling embedded code to a framework for
evaluating embedded programming paradigms.

An Overview of the E Machine
The E machine is a mediator between physical processes and
software processes: it interpretes E code, which supervises
the execution of software processes (written in, say, C) in
relation to physical events, such as clock ticks, and physical
states, such as sensor values. The E machine has two input
interfaces and one output interface.

Environment inputs The physical processes communicate
information to the E machine through environment
ports, such as clocks and sensors.

Software inputs The application software processes, called
tasks, communicate information through task ports to
the E machine.

Outputs The E machine communicates information to the
physical processes and to the tasks by calling system
processes, called drivers, which write to driver ports.

Logically, the E machine does not need to distinguish be-
tween environment and task ports; they are both input
ports, while driver ports are output ports. A change of
value at an input port is called an input event. Every input
event causes an interrupt that is observed by the E machine
and may initiate the execution of E code. E code, in turn,
supervises the execution of both tasks and drivers.

Tasks A task is a piece of application-level code which typ-
ically implements a computation activity. When in-
voked with arguments, a task computes and writes the
results to task ports. The execution of a task requires
a positive amount of real time, i.e., the results can-
not be observed until at least one input event happens
(e.g., a clock tick, or a signal that indicates the com-
pletion of the task). A task can be preempted but has
no internal synchronization points.

Drivers A driver is a piece of system-level code which typ-
ically facilitates a communication activity. A driver
may provide sensor readings as arguments to a task,
or may load task results into actuators, or may pro-
vide task results as arguments to other tasks. The
execution of a driver satisfies the synchrony assump-
tion [6], that it can be performed in logical zero time,



i.e., before the next input event can be observed. In
other words, interrupts that implement input events
are disabled during the execution of a driver.

To protect IP, both tasks and drivers may be given as binary
executables; E code refers to tasks and drivers only through
symbolic references. E code is interpreted system-level code
that supervises the execution of a given set of tasks and
drivers relative to input events. For this purpose, E code
has essentially three instructions.

Call driver The call instruction initiates the execution of
a driver. As the driver is synchronous system-level
code, the E machine waits until the driver is finished
before interpreting the next instruction of E code.

Schedule task The schedule instruction hands a task to
the operating system. Typically, the task is put into
a ready queue, from which the scheduler of the oper-
ating system chooses tasks for execution according to
some scheduling scheme. The scheduler is not under
control of the E machine; like the physical environ-
ment and the underlying hardware, it is external to
the E machine and may or may not be able to sat-
isfy the real-time assumptions of E code. Runtime
real-time violations are due to a combination of fast
physical environment, slow hardware, and inefficient
scheduling; they cannot be blamed on any single one
of these factors. However, they can be ruled out by a
compiler that checks time safety.

Future E code The future instruction marks a block of
E code for execution at some future time. It has two
parameters: a trigger, which is a predicate that is eval-
uated with every input event; and the address of a
block of E code, which is executed as soon as the trig-
ger evaluates to true. In order to handle multiple ac-
tive triggers, the future instruction puts the trigger-
address pair into a trigger queue. With each input
event, all triggers in the trigger queue are evaluated,
and the first one to evaluate to true determines the
next actions of the E machine.

The E machine is a virtual machine. In an actual implemen-
tation of the E machine, E code need not be interpreted, but
may be compiled into, say, C code, or even silicon. The dif-
ference between E code and equivalent C code lies in the
programming discipline imposed by E code. In particular,
the fact that E code relates to time strictly through the
trigger queue makes time-safety analysis possible. More-
over, the overhead incurred by E code, rather than opti-
mized C code, is minimal, because for code that supervises
the timing and interaction of tasks, correctness (i.e., pre-
dictability) dwarfs performance as the critical design issue,
even in high-performance control applications. For example,
we have found that in helicopter control, the entire program
contains less than 400 instructions of E code.

A Simple Example with Two Periodic Tasks
We present a highly simplified version of the control pro-
gram for a model helicopter built at ETH Zürich [10]. Con-
sider the helicopter in hover mode m. There are two tasks,
both given in native code, possibly autogenerated from Mat-
lab/Simulink models: the control task t1, and the naviga-
tion task t2. The navigation task processes GPS input every
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Figure 1: An example with two periodic tasks

10 ms and provides the processed data to the control task.
The control task reads additional sensor data (not modeled
here), computes a control law, and writes the result to ac-
tuators (reduced here to a single port). The control task
is executed every 20 ms. The data communication requires
three drivers: a sensor driver ds, which provides the GPS
data to the navigation task; a connection driver di, which
provides the result of the navigation task to the control task;
and an actuator driver da, which loads the result of the con-
trol task into the actuator. The drivers may process the
data in simple ways (such as type conversion), as long as
their WCETs are negligible. There are two environment
ports, namely, a clock pc and the GPS sensor ps; two task
ports, one for the result of each task; and three driver ports
—the destinations of the three drivers— including the ac-
tuator pa. Figure 1 shows the topology of the program: we
denote ports by bullets, tasks by rectangles, drivers by dia-
monds, and triggers by circles. Here is a Giotto description
of the program timing:

mode m() period 20 {
actfreq 1 do pa(da);
taskfreq 1 do t1(di);
taskfreq 2 do t2(ds); }

The “actfreq 1” statement causes the actuator to be up-
dated once every 20 ms; the “taskfreq 2” statement causes
the navigation task to be invoked twice every 20 ms; etc.
Here is the E code generated by the Giotto compiler:

a1: call(da) a2: call(ds)
call(ds) schedule(t2)
call(di) future(g, a1)
schedule(t1)
schedule(t2)
future(g, a2)

The E code consists of two blocks. The block at address
a1 is executed at the beginning of a period, say, at 0 ms:
it calls the three drivers, which provide data for the tasks
and the actuator, then hands the two tasks to the scheduler,
and finally activates a trigger g with address a2. When the
block finishes, the trigger queue of the E machine contains
the trigger g bound to address a2, and the ready queue of the
scheduler contains two tasks, t1 and t2. Now the E machine
relinquishes control, only to wake up with the next input
event that causes the trigger g to evaluate to true. In the
meantime, the scheduler takes over and assigns CPU time to
the tasks in the ready queue according to some scheduling
scheme. When a task completes, the scheduler removes it
from the ready queue.

There are two kinds of input events, one for each envi-
ronment port: clock ticks, and changes in the value of the
sensor ps. The trigger g: p′

c = pc + 10 specifies that the
E code at address a2 will be executed after 10 clock ticks.



Logically, the E machine wakes up at every input event to
evaluate the trigger, finds it to be false, until at 10 ms,
the trigger is true. An efficient implementation, of course,
wakes up the E machine only when necessary, in this case
at 10 ms. The trigger g is now removed from the trigger
queue, and the associated a2 block is executed. It calls the
sensor driver, which updates a port read by task t2. There
are two possible scenarios: the earlier invocation of task t2
may already have completed, and is therefore no longer in
the ready queue when the a2 block is executed. In this case,
the E code proceeds to put another invocation of t2 into the
ready queue, and to trigger the a1 block in another 10 ms, at
20 ms. In this way, the entire process repeats every 20 ms.
The other scenario at 10 ms has the earlier invocation of task
t2 still incomplete, i.e., in the ready queue. In this case, the
attempt by the sensor driver to overwrite a port read by t2
causes a runtime exception, called time-safety violation. At
20 ms, when ports read by both tasks t1 and t2 are updated,
and ports written by both t1 and t2 are read, a time-safety
violation occurs unless both tasks have completed, i.e., the
ready queue must be empty. In other words, an execution
of the program is time-safe if the scheduler ensures the fol-
lowing: (1) each invocation of task t1 at 20n ms, for n ≥ 0,
completes by 20n + 20 ms; (2) each invocation of task t2 at
20n ms completes by 20n+10 ms; and (3) each invocation of
task t2 at 20n+10 ms completes by 20n+20 ms. Therefore,
a necessary requirement for time safety is δ1 + 2δ2 < 20,
where δ1 is the WCET of task t1, and δ2 is the WCET of t2.
If this requirement is satisfied, then a scheduler that gives
priority to t2 over t1 guarantees time safety.

The E code implements the Giotto program correctly only
if it is time-safe: during a time-safe execution, the navigation
task is executed every 10 ms, the control task every 20 ms,
and the dataflow follows Figure 1. Thus the Giotto compiler
needs to ensure time safety when producing E code. In or-
der to ensure this, the compiler needs to know the WCETs
of all tasks and drivers (cf., for example, [5]), as well as the
scheduling scheme used by the operating system. With this
information, time safety for E code produced from Giotto
can be checked. However, for arbitrary E code and plat-
forms, such a check may be difficult, and the programmer
may have to rely on runtime exception handling.

The time-safe executions of the E code example have an
important property: assuming the two tasks compute deter-
ministic results, for given sensor values that are read at the
input port ps at times 0, 10, 20, . . . ms, the actuator values
that are written at the output port pa at these times are de-
termined, i.e., independent of the scheduling scheme. This
is because each invocation of the control task t1 at 20n ms
operates on an argument provided by the invocation of the
navigation task t2 at 20n − 10 ms, whether or not the sub-
sequent invocation of t2, at 20n ms, has completed before
the control task obtains the CPU. Time safety, therefore,
ensures not only deterministic output timing, but also de-
terministic output values; it guarantees predictable, repro-
ducible real-time code. This is made precise in Section 3.

The helicopter may change mode, say, from hover to de-
scend, and in doing so, apply a different control law. In this
case, the control task t1 needs to be replaced by another
task t′1. In Section 4, we show how to implement different
modes of operation using E code with control flow instruc-
tions, and how E code can be changed dynamically, at run-
time, still guaranteeing determinism if no time-safety viola-

tions occur. This capability enables the real-time program-
ming of embedded devices that upload code on demand, of
code that migrates between hosts, and of code patches.

Let us summarize how the programming of the helicopter
using Giotto and the implementation using E code differs
from conventional real-time software design. All executions
of E code happen at predefined instants of environment time,
as specified by the control model and, therefore, the Giotto
program: the sensor is read every 10 ms, the result of the
control task is written to the actuator port every 20 ms,
etc. The compiler, by checking time safety, ensures that the
program can be executed; that is, the compiler matches en-
vironment time against platform time. If time safety holds,
then deterministic timing and output behavior is guaran-
teed. Otherwise, platform performance (WCETs) or plat-
form utilization (scheduling) must be improved. Recompi-
lation supports code reuse on upgraded and different plat-
forms. Conventional real-time software design proceeds in
the opposite direction: the programmer’s model is the plat-
form (e.g., priority-preemptive scheduling). For example,
the actuator ports are typically written whenever the con-
trol task completes, which is an instant of platform time.
Then, code validation is necessary to gain confidence that
the application requirements are met (e.g., that the actuator
port is updated at least every 20 ms), and that the output
jitter is acceptable. Code validation, however, is usually
difficult, first, because the code exhibits nondeterministic
timing and output behavior, and second, because the ap-
plication requirements are, unlike time safety, nonuniform.
If the application requirements are not satisfied, platform
performance or utilization needs to be improved. So pro-
gramming “the platform” does not necessarily guarantee a
better success rate, but at the same time makes platform
upgrades and code reuse cumbersome.

2. DEFINITION OF THE E MACHINE
The E machine mediates the timing and interaction between
environment and software processes. The software processes
fall into three categories: drivers, tasks, and triggers. The
processes communicate via ports. Given a set P of ports, a
P state is a function that maps each port in P to a value.
The set P is partitioned into three disjoint sets: a set PE of
environment ports, a set PT of task ports, and a set PD of
driver ports. The read/write access of processes to ports is
as follows:

Environment Task Driver
Ports Ports Ports

Environment RW – R
Tasks – RW R
Drivers R R RW
Triggers R R R
Input triggers R R –
Environment triggers R – –

The environment, task, and driver ports are updated by the
physical environment, by tasks, and by drivers, respectively.
All information between the environment and the tasks flows
through drivers: environment ports cannot be read by tasks,
and task ports cannot be read by the environment. For
example, a driver may read an environment port, such as
a sensor or a clock, and load the value into a driver port
that is read by a task; another driver may read a task port



and load the value into a driver port, such as an actuator,
which is read by the environment. An event is a change of
value at a port, say, at a sensor ps, which is observed by the
E machine through an interrupt. Such an event interrupt
can be characterized by a predicate, namely, p′

s �= ps, where
p′

s refers to the current sensor reading, and ps refers to the
most recent previous sensor reading.

Definition 1. A program of the embedded machine con-
sists of (1) a set P of program ports, (2) a set of drivers, a
set of tasks, and a set of triggers, and (3) a set of addresses,
and for each address, a finite sequence of instructions.

The instructions, discussed below, call drivers, apply schedul-
ing services of the operating system to tasks, and handle
interrupts through triggers. We do not prescribe any spe-
cific control flow instructions, but rather view part (3) —
the E code— of a program abstractly as a set of blocks,
each with an address and a finite sequence of instructions.
We use a function Next(a) that returns for an instruction
at address a the address of the next instruction; if there is
no next instruction, then the function returns bottom. This
convention is consistent with any control flow instructions,
structured or unstructured, whose choice is of practical im-
portance but entirely orthogonal to the issues discussed here.
The instructions of E code do not manipulate data; all data
is handled by drivers, tasks, and triggers, which can be im-
plemented in an arbitrary programming language, such as C.
Abstractly, drivers and tasks are functions from ports to
ports, and triggers are boolean functions (i.e., predicates)
on ports.

Definition 2. A driver d consists of (1) a set P [d] ⊆ PD of
driver ports, and a set I[d] ⊆ (PE ∪PT ) of read environment
and task ports, and (2) a function f [d] from the P [d] ∪ I[d]
states to the P [d] states. A task t consists of (1) a set
P [t] ⊆ PT of task ports, and a set I[t] ⊆ PD of read driver
ports, and (2) a function f [t] from the P [t] ∪ I[t] states to
the P [t] states.

A driver computes on driver ports and may read from envi-
ronment and task ports; a task computes on task ports and
may read from driver ports. Communication to and from
a task, like communication to and from the environment, is
only possible through drivers. There is a fundamental dif-
ference between drivers and tasks. A driver is nonpreempt-
able, atomic, single-threaded code; a task is single-threaded
code that is operationally preemptable but logically atomic,
without internal synchronization points. Logically, a driver
is assumed to execute instantaneously in zero time whereas
the execution of a task takes time. Computation in zero time
is called synchronous computation; computation that takes
time is called scheduled computation. Operationally, syn-
chronous computation is performed in kernel context with
event interrupts disabled. The WCET of synchronous com-
putation (i.e., drivers) must be included in the administra-
tive overhead for an accurate schedulability analysis. Sched-
uled computation happens in user context with event inter-
rupts enabled. In order to validate the real-time behavior
of E code through schedulability analysis, it is necessary to
know the WCETs of scheduled computation (i.e., tasks).

Definition 3. A trigger g consists of (1) a set P [g] ⊆ P
of monitored ports, and (2) a predicate p[g] on pairs of P [g]

states, which evaluates to true or false over each pair (s, s′) of
P [g] states s and s′. We require that p[g] evaluates to false if
s = s′. The trigger g is an input trigger if P [g] ⊆ (PE ∪PT );
an environment trigger, if P [g] ⊆ PE .

The state s is the state of the ports at the time instant
when the trigger is activated. The state s′ is the state of
the ports at the time instant when the trigger is evalu-
ated. We assume that all active triggers are evaluated at
least at the rate of observed events. An active trigger that
evaluates to true may cause a reaction of the E machine.
As drivers are executed in logical zero time, a trigger that
reads driver ports can evaluate to true at the same logical
time instant at which the trigger is activated; such trig-
gers make possible synchronous reactive communication be-
tween drivers [6]. Synchronous self-triggering is not possible
with input triggers, which read only environment and task
ports, nor with environment triggers, which read only envi-
ronment ports. A program is input-triggered if all triggers
are input triggers; environment-triggered, if all triggers are
environment triggers. While input-triggered programs can
react to software events such as the completion of tasks,
environment-triggered programs can react only to environ-
ment events. An important special case of environment-
triggered programs are the time-triggered programs, whose
triggers read only an external clock. For example, every
program obtained from a Giotto source is time-triggered.

A program configuration tracks, besides the values of all
ports, also the active triggers, and the tasks in the ready
queue of the operating system. The active triggers are kept
in a FIFO queue, called trigger queue, according to their
activation order. An active trigger stays in the trigger queue
until it evaluates to true, at which point it is removed from
the queue. The tasks under OS control are kept in a set,
called task set, as the organization of the ready queue (e.g.,
as a priority queue) is unknown to the E machine. A task
enters the task set when it is released (i.e., handed over to
the OS), and leaves the task set when it completes.

Definition 4. A program configuration consists of (1) a P
state s′, called program state; (2) a queue of trigger bindings
(g, a, s), called trigger queue, where g is a trigger, a is an
address, and s is a P [g] state; and (3) a set of pairs (t, s),
called task set, where t is a task and s is a P [t] ∪ I[t] state.
A trigger binding (g, a, s) is enabled if the trigger predicate
p[g] evaluates to true over the pair (s, s′) of P [g] states. The
configuration c is input-enabling if the trigger queue contains
no enabled trigger bindings; otherwise, c is input-disabling.

An E machine instruction is similar to a machine code in-
struction. It has a unique opcode and a finite number of
arguments, all of which can be represented by integers. Us-
ing integers as arguments supports the portability of E code.
There are only three fundamental instructions of the E ma-
chine. The control flow effect of these three instructions is
trivial: after executing any of the three instructions, the
E machine proceeds to the next instruction in the program.
Similar to the execution of drivers, E code interpretation
happens logically in zero time: E code interpretation is syn-
chronous computation, which takes place in kernel context.

Definition 5. An E machine instruction is one of the fol-
lowing: call(d), for a driver d; schedule(t), for a task t; or
future(g, a), for a trigger g and an address a.
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Figure 2: Earliest-deadline-first (EDF) vs. time-slice scheduling of the tasks from Figure 1

The call(d) instruction invokes the binary code of the driv-
er d. The E machine waits until the execution of d is finished,
and then proceeds to the next instruction. The schedule(t)
instruction marks the binary code of the task t for execution
by inserting it into the task set. Then the E machine imme-
diately proceeds to the next instruction. The future(g, a)
instruction marks the E code at address a for (possible) ex-
ecution at the future time when the trigger g next evaluates
to true. Operationally, the E machine appends the trigger
binding (g, a, s) to the trigger queue, where s is the current
program state (this is necessary for evaluating the trigger in
the future), and then proceeds to the next instruction. If
there is no next instruction, then the E machine gives up
control of the CPU and wakes up with each event, to eval-
uate all triggers in the trigger queue. If the trigger binding
(g, a, s) is enabled, then it is removed from the trigger queue
and the E code at address a is executed. If several trig-
ger bindings are enabled, then the corresponding blocks of
E code are executed consistent with the order of the trigger
queue. In other words, the future(g, a) instruction is sim-
ilar to binding an interrupt handler to an interrupt, where
the trigger g defines the interrupt, and the E code at address
a defines the interrupt handler.

The Two-Task Example Revisited
Consider Figure 2, which shows the execution of the E code
from the example in Section 1. We assume that the ini-
tial configuration consists of a state s that sets the clock pc

to −10 ms, a trigger queue with the single trigger binding
(g, a1, s), and an empty task set. When the clock pc reaches
0 ms, the trigger g evaluates to true, the enabled trigger
binding is removed from the trigger queue, and the E ma-
chine starts executing the E code at a1. The first three call
instructions execute drivers. The schedule(t1[20]) instruc-
tion schedules task t1 by inserting it into the task set. The
term [20] is an example of an E machine annotation, which
is handed to the scheduler along with the task. E machine
annotations describe information that may be provided by
the programmer, or by the compiler of a high-level language
such as Giotto, to the system scheduler. For the E machine,
annotations have no meaning, but the scheduler may in-
terpret annotations. In particular, an earliest-deadline-first
(EDF) scheduler interpretes the term [20] as the relative
deadline of task t1 with respect to the clock pc. The sub-

sequent schedule(t2[10]) instruction inserts task t2 into the
task set. The EDF scheduler assigns a priority to t2 which is
higher than the priority of t1, because t2 has the earlier rel-
ative deadline of 10 ms. The last instruction, future(g, a2),
ensures that the E code at a2 will be executed at 10 ms. The
execution of the E code at a1 is now finished. The result is
a new configuration, which consists of a state s′ with new
values for task and driver ports, the single trigger binding
(g, a2, s

′) in the trigger queue, and tasks t1 and t2 in the
task set. Finally, the E machine enables all interrupts and
leaves the kernel context.

Now the scheduler, which is independent of the E ma-
chine, takes over. The upper half of Figure 2 shows the
resulting timeline. The scheduler invokes task t2, which is
the highest-priority task. Task t2 executes in user context
and completes after, say, 4 ms, when it is removed from the
task set. Then task t1 executes. If task t1 executes for,
say, 10 ms, it is preempted after 6 ms by the trigger g. At
10 ms, the E machine disables event interrupts and executes
the E code at a2 by first calling driver ds to provide a new
value from the sensor port ps to task t2. Calling the drivers
da or di at this time would result in a time-safety violation,
because both drivers access ports that are read or written
by task t1, which has not yet completed; see Section 3. The
schedule(t2[10]) instruction inserts task t2 into the task set.
Since the deadlines of both tasks in the task set are equal,
the EDF scheduler may assign a priority to t2 that is lower
or higher than the priority of t1. In the figure, we assume
the priority of t2 to be lower than the priority of t1. The
final future(g, a1) instruction marks the E code at a1 for
execution at 20 ms. The new E machine configuration has
the single trigger binding (g, a1, s

′′), where s′′ is the new
state, and tasks t1 and t2 in the task set. Now the sched-
uler resumes the execution of task t1, because it has a higher
priority than t2. Task t1 executes for another 4 ms and com-
pletes. Then task t2 executes, say, this time only for 3 ms.
Then the system is idle for the next 3 ms. At 20 ms, the
E machine executes again the E code at a1, thus closing an
infinite loop of periodic invocations of both tasks.

Now consider the timeline of the scheduled computation
in the lower half of Figure 2. This shows the task execu-
tion according to a time-slice scheduler instead of an EDF
scheduler. The purpose of this example is to demonstrate
that the E machine is independent of the scheduling scheme.



The E code is executed exactly the same way as before. The
only difference is how the tasks are executed between the
synchronous blocks of E code. The time-slice scheduler ig-
nores the annotations. Each task gets a time slice of 4 ms,
and tasks are executed in the order of their insertion into
the task set in a round-robin fashion. Note that the second
slice of task t1 is preempted by a trigger. Also note that for
given sensor readings at 0 ms and 10 ms, the value loaded
by the actuator driver into pa at 20 ms is the same no mat-
ter which scheduler is used; that is, the output behavior of
the program is deterministic. This is the main property of
E code; see Section 3.

Operational Semantics
We define the semantics of E code operationally using a
pseudo-code description of the E machine. Algorithm 1
shows the main loop of the machine as it executes a given
program. Initially, the trigger queue contains a single trigger
binding, and the task set is empty. After entering the main
loop, the machine waits for environment and task ports to
change their values, i.e., for the occurrence of one or more
events that may enable input triggers. While the machine
waits for input events, scheduled computation may be per-
formed, i.e., the scheduler has control of the CPU. Waiting
for input events is implemented using event interrupts. The
occurrence of an input event wakes up the machine, which
immediately disables all event interrupts (thus it is still pos-
sible for low-level interrupts to preempt the machine, as long
as they do not interfere with the triggering mechanism of the
machine). After the while loop, before the machine loops
back to wait for new input events, all event interrupts are
enabled again and the scheduler is invoked. The main loop
is executed ad infinitum.

Algorithm 1 The Embedded Machine

loop
wait for input event
disable trigger-related interrupts
while there is an enabled trigger in TriggerQueue do

(g, a, s) :=
GetFirstEnabledTriggerBinding(TriggerQueue)

TriggerQueue :=
RemoveFirstEnabledTriggerBinding(TriggerQueue)

ProgramCounter := a
invoke Algorithm 2

end while
enable trigger-related interrupts
invoke system scheduler on TaskSet

end loop

The E machine runs through the while loop of Algorithm 1
as long as there are enabled trigger bindings in the trigger
queue, each time executing a block of E code that is bound
to an enabled trigger. The termination of the while loop is
guaranteed for input-triggered programs such as E code gen-
erated from Giotto. In an input-triggered program, newly
activated triggers are initially disabled and can only be en-
abled by environment or task activity. In more general pro-
grams with arbitrary triggers, it is possible that calling a
driver enables a trigger. In this case an explicit termina-
tion proof for the while loop is necessary. Synchronous self-
triggering among E code blocks corresponds to the signal-
ing mechanism of Esterel [2], or undelayed data dependency

in Lustre [7]. For synchronous reactive languages such as
Esterel and Lustre, an explicit termination proof of syn-
chronous computation is necessary (typically by ensuring
the existence of finite fixed points).

Each block of E code is interpreted by Algorithm 2. In
the while loop of Algorithm 2, the machine fetches the cur-
rent instruction from the program, decodes and executes
the instruction, and then determines the address of the next
instruction. This loop terminates, because every block of
E code is required to have only a finite number of instruc-
tions with sequential control flow. This is true despite the
fact that it is often convenient to use control flow instruc-
tions such as absolute or conditional jumps in E code, for
example, in the generation of E code from Giotto programs
with mode switching; see Section 4. Later, we will also in-
troduce additional instructions for manipulating the task set
(such as terminating a task) and trigger queue (such as re-
moving a trigger binding), but these have no fundamental
impact on the operation of the E machine.

Algorithm 2 The E Code Interpreter

while ProgramCounter �= ⊥ do
i := GetInstruction(ProgramCounter)
if call(d) = i then

ProgramState(P [d]) :=
f [d](ProgramState(P [d] ∪ I[d]))

else if schedule(t) = i then
TaskSet := TaskSet ∪ {(t, ProgramState(P [t]∪I[t]))}

else if future(g, a) = i then
TriggerQueue :=
TriggerQueue ◦ (g, a,ProgramState(P [g]))

end if
ProgramCounter := Next(ProgramCounter)

end while

The execution of an E machine program yields a trace. From
one configuration of a trace to the next, there is either an
environment event, or a software event (i.e., the completion
of a task), or the E machine executes one block of E code.
The third possibility —E code execution— has precedence
as long as there are blocks of E code with enabled triggers.

Definition 6. A program trace is an infinite sequence of
configurations such that for any two adjacent configurations
c and c′, one of the following holds:

Environment event c is input-enabling, and c′ differs from
c in the values of environment ports.

Task completion c is input-enabling, and c′ differs from
c in the values of the task ports P [t] for some task t,
and in the task set: the task set of c contains a pair
(t, s), for some state s, the task set of c′ results from c
by removing the pair (t, s), and the values of the task
ports P [t] in c′ result from applying the function f [t]
to state s.

E code execution c is input-disabling, and c′ differs from
c in the values of driver ports, in the trigger queue,
and in the task set: if (g, a, s) is the first enabled trig-
ger binding in the trigger queue of c, then c′ is ob-
tained from c by first removing (g, a, s) from the trigger
queue, and then executing Algorithm 2 with program
counter a. In this case, we say that the E code at
address a is executed at configuration c.



The input part of a program trace is the projection of the
trace to values for environment and task ports; the output
part is the projection to values for driver ports; the environ-
ment part is the projection to values for environment ports.

3. PROPERTIES OF E CODE
The benefits of using E code are due to its strong theoret-
ical properties: time safety is a condition which is satisfied
if all real-time requirements are met on a platform, and de-
terminism is a consequence which ensures that the output
behavior of E code is predictable.

Time Safety
A compiler that generates E code is not satisfied with ev-
ery trace that may result from interpreting the code using
Algorithm 2. Rather, the compiler expects sufficient perfor-
mance from the platform so that the computation of a task
always completes before drivers access (read or write) ports
that are also accessed by the task, and before another invo-
cation of the task is scheduled. A trace that satisfies these
conditions is called time-safe, because it meets all timing
requirements of the source (e.g., Giotto) program.

Definition 7. A program trace is time-safe if for every
configuration c, if the task set of c contains the pair (t, s),
then E code that is executed at configuration c must obey
the following three conditions. (1) For each call(d) in-
struction, P [d] ∩ I[t] = ∅; that is, no driver updates the
read driver ports of t. (2) For each call(d) instruction,
I[d] ∩ P [t] = ∅; that is, no driver reads the task ports of t.
(3) For each schedule(t′) instruction, P [t′]∩P [t] = ∅; that
is, no scheduled task accesses the task ports of t.

The E machine throws a runtime exception if any of the
above conditions is violated; we will discuss the exception
handling below. In order to avoid runtime exceptions, it
must be shown that the program is time-safe for the envi-
ronment and the platform, i.e., that all program traces that
can occur on the target platform in the target environment
are time-safe. Proving time safety requires a schedulability
analysis based on the WCETs of all drivers, tasks, and trig-
gers, and if the program is not time-triggered, also requires
assumptions about the frequency of input events. As an
example, recall the Giotto program from Section 1, which,
like all Giotto programs, is time-triggered. For single-CPU
platforms with EDF scheduling, the Giotto compiler shows
time safety in two steps. First, given the WCETs of all
drivers and triggers, the compiler computes the WCETs of
all E code blocks. Suppose that the a1 and a2 blocks have
a WCET of 1 ms each, including the overhead for context
switching. This leaves 18 ms CPU time per 20 ms real time
for scheduled computation. Second, given the WCETs of all
tasks, and having derived the relative deadlines for all task
invocations from the Giotto source (relative deadline 20 for
each schedule(t1) instruction, and relative deadline 10 for
each schedule(t2)), the compiler uses an EDF schedulabil-
ity test to show that all task invocations complete on time.
For instance, assuming a WCET of 10 ms for t1 and of 4 ms
for t2, the EDF schedule is feasible and achieves a theoretical
CPU utilization of 100%.

In addition, as WCET assumptions may be wrong, the
Giotto compiler generates E code for handling time-safety

Algorithm 3 The E Code Interpreter with Exceptions

while ProgramCounter �= ⊥ do
i := GetInstruction(ProgramCounter); E := ∅
if call(d) = i then

E := {e | (t, , e) ∈ TaskSet :
P [d] ∩ I[t] �= ∅ ∨ I[d] ∩ P [t] �= ∅}

if E = ∅ then
ProgramState(P [d]) :=

f [d](ProgramState(P [d] ∪ I[d]))
else if schedule(t, e) = i then

E := {e′ | (t′, , e′) ∈ TaskSet : P [t] ∩ P [t′] �= ∅}
if E = ∅ then
TaskSet :=

TaskSet ∪ {(t,ProgramState(P [t] ∪ I[t]), e)}
else if future(g, a) = i then

TriggerQueue :=
TriggerQueue ◦ (g, a,ProgramState(P [g]))

end if
while E �= ∅ do

(ProgramCounter, E) := ChooseException(E)
invoke Algorithm 3

end while
ProgramCounter := Next(ProgramCounter)

end while

violations. Algorithm 3 shows the E code interpreter of Al-
gorithm 2 enhanced with exception handling. For excep-
tion handling, a second argument is added to the schedule

instruction: suppose that the task t is scheduled by the in-
struction schedule(t, e), where e is an address. The block of
E code at address e is the exception handler, and its address
is recorded in the task set. If, before t completes, the ports
read by t are updated or the ports written by t are read by a
driver or another task, then the E machine discards the in-
struction that causes the exception and jumps to address e.
The task t is not terminated, but for the case that termina-
tion is desired, we add an instruction terminate(t) to the
instruction set of the E machine, which removes t from the
task set. This may be the first instruction of the exception
handler. When the exception handler finishes, control flow
returns to the instruction that follows the instruction that
caused the exception. A single call or schedule instruction
may cause multiple exceptions, e.g., because a driver may
read ports from multiple tasks in the task set. We do not
specify how simultaneous exceptions are prioritized; this is
done by the function ChooseException. As runtime excep-
tions can occur inside an exception handler, Algorithm 3 is
invoked recursively, so as to implicitly maintain a stack of
return addresses.

In the case of Giotto, the compiler generates an exception
handler for each task. If a runtime exception is caused by
an instruction that has a conflict with task t in the task
set, then the associated exception handler terminates t and
restores the most recent valid values to the task ports of t,
that is, the values that preceded the terminated invocation
of the task. This requires additional ports and drivers. In
our example, the new driver dj , for j = 1, 2, stores the re-
sult of task tj in a new driver port pj . In case of a runtime
exception involving task tj , the exception handler, at ad-
dress ej , terminates tj and calls the new driver d′

j , which
restores the value of pj to the task port of tj before the
program proceeds. The generated E code below produces



exactly the same output behavior for time-safe traces as the
original E code from Section 1:

a1: call(d1) a2: call(d2)
call(d2) call(ds)
call(da) schedule(t2, e2)
call(ds) future(g, a1)
call(di)
schedule(t1, e1)
schedule(t2, e2)
future(g, a2)

e1: terminate(t1) e2: terminate(t2)
call(d′

1) call(d′
2)

However, if a time-safety violation occurs, then the new
E code handles the associated exception. Suppose that the
a1 block is executed when task t1 has not yet completed.
The attempt to execute d1 throws a runtime exception, which
invokes the E code at address e1. After t1 is terminated, the
driver d′

1 restores the task ports of t1, and execution pro-
ceeds with the call(d2) of the a1 block.

Determinism
Figure 2 gave an example where different scheduling schemes
(EDF and time slicing) lead to the same output behavior.
For either scheduling scheme, the program interacts with
the environment at the same constant rate of 10 ms and
produces the same actuator settings. We now show that
this is a general property of E machine programs, as long as
the platform maintains time safety (i.e., there are no runtime
exceptions). Recall that by input of the E machine, we refer
to both environment and task ports (e.g., input-triggered
means triggered by events on these ports), by environment
we refer to the environment portion of the input, and by
output, to the driver ports (which includes the actuators).

Definition 8. A program is input-determined if, whenever
two time-safe program traces agree on the initial configura-
tions and input parts, then they agree on the output parts
as well. A program is environment-determined if, whenever
two time-safe traces agree on the initial configurations and
environment parts, then they agree on the output parts.

It is easy to see that all E machine programs are input-
determined. However, input determinedness is a rather weak
property. Input-determined programs are deterministic only
with respect to a given behavior of all environment and soft-
ware processes. In order to decouple environment and soft-
ware, a program must be environment-determined, i.e., inde-
pendent of the real-time behavior of the software processes.

Fact. Every program is input-determined. Every environ-
ment-triggered program is environment-determined.

For example, being environment-triggered, the program of
Figure 2 is environment-determined, i.e., it produces the
same actuator settings independently of the execution order
of the tasks, as long as the platform maintains time safety.
In fact, as Giotto is time-triggered, all E code generated from
Giotto sources is environment-determined, and so is E code
generated from more general sources, whose triggers monitor
arbitrary environment events. On the other hand, an input-
triggered program is in general not environment-determined,
because it may trigger on the completion of a task execution.
Thus, depending on the detailed performance (WCETs) and

scheduling of the platform, such a program may exhibit very
different output behaviors.

Environment determinedness crucially depends on the task
model of the E machine. Suppose that tasks were allowed to
communicate with each other directly, without going through
drivers. In our example, this would mean that task t1 reads
the task port of t2, instead of calling the connection driver di.
Now consider the resulting timelines. In the case of EDF,
the first invocation of t1 would read the result of the invo-
cation of t2 that finishes at 4 ms. By contrast, in the case
of time slicing, t1 would start first and thus read the initial
value of the task port of t2. As a consequence, the result
of the first invocation of t1, which determines the actuator
setting at 20 ms, would be different for the two scheduling
schemes. Environment determinedness also depends on the
instruction set of the E machine. For example, instead of
having a compiler ensure time safety based on schedulabil-
ity analysis, we could obtain time safety trivially by using
the terminate(t) instruction to terminate any task t before
we interact with t. All traces of a program written in this
way are time safe, but the program, even if environment-
triggered, would not be environment-determined, because
the result of a terminated task depends on how long the
task has executed.

Time Liveness
Time safety means that all finite trace prefixes satisfy the
intended real-time constraints of E code. There still may be
undesirable infinite traces, however, where the E machine
is infinitely faster than the physical environment. This is
because, even in the absence of infinite loops inside individ-
ual blocks of E code, two different blocks of E code may
activate and enable each other without intervening input
events. A trace without such infinite zero-time behavior is
called time-live.

Definition 9. A program trace is time-live if for every con-
figuration c, if c is input-disabling, then it is followed by
some later configuration c′ that is input-enabling.

Fact. Every trace of an input-triggered program is time-
live.

Time liveness, therefore, is not an issue for E code generated
from Giotto, whose triggers monitor only clocks, nor for
E code generated from any other source whose triggers do
not look at driver ports. However, E code generation from
a synchronous reactive language such as Esterel may, like
any Esterel compilation, require nontrivial proofs of time
liveness.

The execution of a time-live program, i.e., a program whose
traces are all time-live, may require a trigger queue of un-
bounded size, which is not desirable in practice. (By con-
trast, the size of the task set is always bounded by the num-
ber of tasks.) For example, two consecutive future instruc-
tions to the same block of E code may set off a process that
doubles the size of the trigger queue with each input event.
A similar problem may arise in the presence of control flow
instructions such as for loops: while always finite, the exe-
cution of a single block of E code may take more time with
each new input event, because the block may consist of a
ever increasing number of instructions.

Definition 10. A program trace is bounded time-live if
there exists an integer k such that for every configuration c,



if c is input-disabling, then (1) c is followed by at most k
input-disabling configurations, and (2) the trigger queue of
c contains at most k entries.

Note that bounded time liveness implies time liveness. From
Giotto programs, one can always generate E code that is
bounded time-live. For E code generation from, say, Esterel,
proving bounded time liveness is necessary to ensure that
the delay of executing any synchronous reaction is shorter
than the time between any two events that can trigger a
synchronous reaction. For a fixed bound k, bounded time
liveness can be enforced at runtime by exception handling,
similar to the handling of time-safety violations. For exam-
ple, a future instruction may cause a runtime exception if
it attempts to create a new trigger binding when the trigger
queue already contains k entries.

4. E CODE GENERATION AND LINKING
Generating code from standard high-level programming lan-
guages is an optimization problem to reduce the time and
space requirements of the code. Generating E code is dif-
ferent in the sense that the time and space requirements
of E code are usually negligible compared to the efficiency
requirements of the task code, even on complex systems
such as a helicopter flight-control system. For example, we
need less than 400 instructions of E code for the ETH heli-
copter. However, it is essential to guarantee the correct in-
tegration of synchronous and scheduled computation —i.e.,
time safety— and to ensure bounded E code execution —
i.e., bounded time liveness. When generating E code from
Giotto, bounded time liveness can be guaranteed by con-
struction, but ensuring time safety requires explicit proof.
By contrast, when generating E code from synchronous re-
active languages such as Esterel or Lustre, we need only
the call and future instructions, but not the schedule in-
struction, because these languages do not explicitly support
scheduled computation. Therefore, time safety is trivial, but
achieving bounded time liveness may require proof [6]. Also,
for code generation from synchronous reactive languages,
more flexibility on the manipulation of the trigger queue
may be necessary than is offered by the presented, minimal
definition of the E machine. Useful additions to the instruc-
tion set of the E machine include the cancel(a) instruction,
which removes all trigger bindings with the address a from
the trigger queue, and the future(true, a) instruction, which
marks the E code at address a for execution after all cur-
rently enabled trigger bindings have been processed.

Compiling Giotto
A Giotto program consists of a functionality part and a
timing part. The functionality part contains port, driver,
and task declarations, which interface the Giotto program
to a functionality implementation, typically written in C.
The Giotto compiler generates so-called functionality wrap-
pers —parameter-less procedures— for each driver and task
implementation, and stores the wrappers in a table simi-
lar to a symbol table. A wrapper calls the corresponding
implementation with the proper arguments. The E code,
however, refers to the wrapper using only its table index, a
portable integer value. From the timing part of the Giotto
program the compiler generates annotated E code, where
each schedule instruction is annotated with the relative
deadline of the scheduled task.

The E code generation from multi-mode Giotto programs
illustrates the use of conditional jumps. Consider the fol-
lowing timing part of a Giotto program with two modes,
ma (representing the helicopter in hover mode) and mb (de-
scend mode):

start ma {
mode ma() period 20 {
actfreq 1 do pa(da);
exitfreq 1 do mb(cb);
taskfreq 1 do t1(di);
taskfreq 2 do t2(ds); }

mode mb() period 20 {
actfreq 1 do pa(da);
exitfreq 1 do ma(ca);
taskfreq 1 do t′1(di);
taskfreq 2 do t2(ds); }}

The program begins by executing mode ma, which is equiv-
alent to the (single) mode m of the Giotto program from
Section 1 except for the mode switch to mode mb. A mode
switch in Giotto has a frequency that determines at which
rate an exit condition is evaluated. The exit condition cb

of mode ma is evaluated once every 20 ms. If cb evaluates
to true, then the program switches to mode mb, which is
similar to mode ma except that task t′1 replaces task t1.
Task t′1 computes a different control law on the same ports
as t1. The mode switch back to ma evaluates the exit con-
dition ca also once every 20 ms. In order to express mode
switching in E code, we use a conditional branch instruction
if(c, a). The first argument c is a condition, which is a pred-
icate on some ports. The second argument a is an E code
address. The if(c, a) instruction evaluates the condition c
synchronously (i.e., in logical zero time), similar to driver
calls, and then either jumps to the E code at address a (if c
evaluates to true), or proceeds to the next instruction (if c
evaluates to false). Here is the E code that implements the
above Giotto program:

a1: call(da) a3: call(da)
call(ds) call(ds)
call(di) call(di)
schedule(t2[10], e2) schedule(t2[10], e2)
if(cb, a

′
3) if(ca, a′

1)
a′
1: schedule(t1[20], e1) a′

3: schedule(t′1[20], e
′
1)

future(g, a2) future(g, a4)

a2: call(ds) a4: call(ds)
schedule(t2[10], e2) schedule(t2[10], e2)
future(g, a1) future(g, a3)

The two E code blocks in the left column implement
mode ma; the two blocks on the right implement mb. The
exception handlers for the three tasks (e1, e′1, and e2) are
omitted. Note that, no matter which conditional branches
are taken, the execution of any block terminates within a fi-
nite number of E code instructions. This concludes the first,
platform-independent phase of the Giotto compiler.

The second, platform-dependent phase of the Giotto com-
piler performs a time-safety check for the generated E code
and a given platform. For single-CPU platforms with WCET
information and an EDF-based scheduling scheme, and for
the simple code generation strategy illustrated in the ex-
ample, the time-safety check is straightforward. For dis-
tributed platforms, complex scheduling schemes, or complex
code generation strategies, this, of course, may not be the



case. The code generation strategy has to find the right
balance between E code and E machine annotations. An
extreme choice is to generate E code that at all times main-
tains a singleton task set, which makes the scheduler’s job
trivial but E code generation difficult. The other extreme is
to schedule tasks as early as possible, with precedence an-
notations that allow the scheduler to order task execution
correctly. This moves all control over the timing of soft-
ware events from the code generator to the scheduler. In
other words, the compiler faces a trade-off between static
(E machine) scheduling and dynamic (RTOS) scheduling.
Our strategy, which schedules tasks and computes deadlines
according to the “logical semantics” of the Giotto source,
chooses a compromise that suggests itself for control appli-
cations. To achieve controller stability and maximal perfor-
mance, it is often necessary to minimize the jitter on sensor
readings and actuator updates. This is accomplished by gen-
erating separate, time-triggered blocks of E code for calling
drivers that interact with the physical environment. In this
way, the time-sensitive parts of a program are executed sep-
arately [12], and for these parts, platform time is statically
matched, at the E code level, to environment time as closely
as possible. On the other hand, for the time-insensitive parts
of a program, the scheduler is given maximal flexibility.

Dynamic Linking
Software modularization is an important concept in the non-
real-time world for improving software reusability and reduc-
ing software complexity. Software modularization requires
the use of symbolic references in executable code rather than
direct references. Resolving symbolic references at com-
pile time and runtime is called linking and dynamic linking,
respectively. Since E code uses only symbolic references,
E code (and tasks, drivers) can be linked statically as well
as dynamically.

For an example of static linking, the two columns of E code
that are generated for the two modes of the Giotto program
above can be compiled separately and then linked to a com-
plete E code executable. For dynamic linking, we leverage
the dynamic nature of the trigger queue by maintaining trig-
ger bindings to unloaded E code in the queue. This approach
requires control over the queue as provided by the cancel(a)
instruction, which removes all trigger bindings with the ad-
dress a from the trigger queue. Hence a cancel instruc-
tion may negate the effect of several future instructions.
Consider the following program (annotations and exception
handling are omitted), which implements the dynamic load-
ing and linking of the two Giotto modes ma and mb during
helicopter flight:

a1: cancel(a3) a3: cancel(a1)
call(da) call(da)
call(ds) call(ds)
call(di) call(di)
schedule(t1) schedule(t′1)
schedule(t2) schedule(t2)
future(g, a2) future(g, a4)
future(hb, a3) future(ha, a1)

a2: call(ds) a4: call(ds)
schedule(t2) schedule(t2)
future(g, a1) future(g, a3)

Suppose that only the E code in the left column is currently
loaded in the E machine. We begin by executing the a1 block

with an empty trigger queue and an empty task set. Thus
the initial cancel(a3) instruction has no effect. The final
future(hb, a3) instruction activates a new trigger hb and
binds it to the still unknown address a3. The trigger predi-
cate of hb is (p′

c = pc +20)∧ cb, that is, hb becomes enabled
at 20 ms if the condition cb evaluates to true (ha is defined
analogously using condition ca). At 10 ms, the E machine
executes the a2 block. The future(g, a1) instruction ap-
pends the trigger g to the trigger queue after the trigger hb,
which is still in the queue. At 20 ms, if cb is not true,
then hb is not enabled and thus skipped, but g is enabled,
which causes the a1 block to be executed again. Now the
first cancel(a3) instruction removes the hb trigger from the
queue. On the other hand, if cb is true, then the E machine
attempts to execute instead the a3 block. As the a3 block
is not available, the E machine starts the loader and linker
to retrieve it. This overhead needs to be taken into account
by time-safety analysis. Once the E code is available, the
E machine begins by executing the cancel(a1) instruction,
which removes the g trigger from the queue. The rest of
the E code at a3 and a4 is analogous to the E code at a1

and a2, except that task t′1 (whose code can also be loaded
and linked dynamically) replaces task t1.

Current E Machine Implementations
We have three implementations of the E machine. The sim-
plest one is written in C for Lego Mindstorm robots using
the open-source LegOS operating system. The interesting
aspect of this implementation is that it is a kernel patch,
which makes the E machine part of the kernel, rather than
the highest-priority thread outside the kernel. The E ma-
chine implementation for the ETH helicopter [10] is written
in Oberon using a custom-designed RTOS on a StrongARM
embedded processor. The interesting feature of this imple-
mentation, besides high performance, is that tasks are imple-
mented as subroutines rather than as coroutines [13]. In this
case, the E machine is an interrupt handler bound to a real-
time clock. Preemption works through reentrant interrupts.
The third implementation is in C under Linux using POSIX
threads and semaphores. The E machine and each task runs
in its own thread. Each task thread runs at a lower priority
than the E machine thread and uses a unique semaphore on
which it waits until the E machine signals the semaphore.
For example, upon executing a schedule(t) instruction, the
E machine signals the semaphore of the thread that imple-
ments task t. When t completes, the thread loops back and
waits on the semaphore for the next schedule(t) instruc-
tion. The goal of the Linux implementation is to port it
to the RTOS VxWorks, which also features POSIX threads,
however, with real-time guarantees. The Linux version also
includes a dynamic loader and linker for the binary format
of E code. Moreover, it features a distributed E machine im-
plementation that runs interacting E machines on each host
of a distributed system. The hosts communicate using the
UDP protocol on BSD sockets. The distributed version is
also supported by the Giotto compiler, which can generate
E code separately for each E machine. The goal is again to
port the implementation to a network with real-time guar-
antees, such as a time-triggered bus.

5. CONCLUSION
E code is predictable, portable, hard real-time code. E code
is hard real-time, because it relates to environment (physi-



cal) time, rather than platform (CPU) time; this simplifies
code validation at the expense of code generation. E code is
predictable, because the timing and behavior of a program
depends only on the external inputs; there are no internal
race conditions. E code is portable, because it is indepen-
dent of the platform, in particular, of the scheduler. The
combination of these attributes is made possible through
the notion of time safety: E code is time-safe if its tim-
ing requirements can be met on the chosen platform. In
some cases, such as Giotto source programs, time safety can
be checked statically, by the compiler; in other cases, time-
safety violations are handled dynamically, by the runtime
system.

The problem of real-time programming is to define ab-
stractions that capture the interaction between physical pro-
cesses and software processes. Two major research commu-
nities have approached this problem from different direc-
tions: the synchronous reactive language community has
studied zero-delay synchronous computation [6], and the
real-time systems community has focused on the theory of
scheduled computation [4] and corresponding programming
languages [3]. Both fields have had a big impact on the de-
sign of the E machine, which attempts to bring together the
concepts of synchronous and scheduled computation. Syn-
chronous computation relates software processes to physical
processes by modeling software processes as instantaneous
reactions to physical stimuli. The main challenge is to prove
the analogue of time liveness, i.e., the existence of finite re-
actions [2]. However, large blocks of synchronous computa-
tion naturally exhibit delayed reactivity, which may deteri-
orate the determinism of the synchronous model. Real-time
scheduling theory, on the other hand, relates software pro-
cesses to physical processes by imposing a constraint system
of release times and deadlines on the software processes. The
main challenge is to prove the analogue of time safety, i.e.,
the existence of a feasible schedule. However, the arrange-
ment of computation according to a schedule that depends
on the behavior of both physical and software processes leads
to an inherently nondeterministic model.

From the E machine perspective, the synchronous reac-
tive language community deals with organizing a time-live
trigger queue, and the real-time systems community wor-
ries about scheduling a time-safe task set. This can be seen
more clearly from various intermediate languages that have
been proposed for synchronous and for scheduled compu-
tation. Examples from the synchronous realm include the
automata-based portable object code [9] for Esterel and Lus-
tre, and halt point graphs [11] for Esterel. Examples from
the scheduled realm include the abstract machines JAM and
BEAM for code generation from the functional real-time
language Erlang [1]. Each of these formalisms is richer than
the E machine in some respects, as they permit more gen-
eral manipulations of the trigger queue, or of the task set,
or more general control flow and data handling. The E ma-
chine attempts to exploit and, at the same time, restrict
the possibilities in both the synchronous and the scheduled
realm by identifying a set of primitives that (1) guarantee
strong determinism properties of the code and (2) are suffi-
ciently rich to be useful in practice. An important practical
question raised by the E machine asks which parts of em-
bedded software are best modeled by synchronous compu-
tation, and which by scheduled computation. For example,
E code generated from Giotto uses synchronous computa-

tion to implement the data transport (I/O) from and to
the physical system, and between software processes, while
time-consuming data computation is implemented as sched-
uled computation. (In a distributed Giotto system, data
communication across networks with nonnegligible latency
is also implemented as scheduled computation.)

It should be noted that Wirth already emphasized in 1977
the value of separating logical programs from physical plat-
forms to obtain a discipline of real-time programming [12].
He suggested that the time-dependent program parts, i.e.,
the blocks of synchronous computation, are “few, simply
structured, and without loops with an unknown number of
repetitions” in order to maintain correctness independently
from the execution time of the non-real-time code, i.e., the
units of scheduled computation. In particular, he proposed
a “ban on the notion of interrupt” unless “interrupts can be
ignored in considerations about a system’s computational
state and can be confined to timing considerations only.”
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