
Short-term Memory for Self-collecting Mutators ∗

Martin Aigner, Andreas Haas, Christoph M. Kirsch,
Michael Lippautz, Ana Sokolova, Stephanie Stroka, Andreas Unterweger

University of Salzburg
firstname.lastname@cs.uni-salzburg.at

Abstract
We propose a new memory model called short-term memory for
managing objects on the heap. In contrast to the traditional per-
sistent memory model for heap management, objects in short-term
memory expire after a finite amount of time, which makes deallo-
cation unnecessary. Instead, expiration of objects may be extended,
if necessary, by refreshing. We have developed a concurrent, in-
cremental, and non-moving implementation of short-term memory
for explicit refreshing called self-collecting mutators that is based
on programmer-controlled time and integrated into state-of-the-art
runtimes of three programming languages: C, Java, and Go. All
memory management operations run in constant time without ac-
quiring any locks modulo the underlying allocators. Our implemen-
tation does not require any additional heap management threads,
hence the name. Expired objects may be collected anywhere be-
tween one at a time for maximal incrementality and all at once for
maximal throughput and minimal memory consumption. The inte-
grated systems are heap management hybrids with persistent mem-
ory as default and short-term memory as option. Our approach is
fully backwards compatible. Legacy code runs without any modi-
fications with negligible runtime overhead and constant per-object
space overhead. Legacy code can be modified to take advantage of
short-term memory by having some but not all objects allocated in
short-term memory and managed by explicit refreshing. We study
single- and multi-threaded use cases in all three languages macro-
benchmarking C and Java and micro-benchmarking Go. Our results
show that using short-term memory (1) simplifies heap manage-
ment in a state-of-the-art H.264 encoder written in C without ad-
ditional time and minor space overhead, and (2) improves, at the
expense of safety, memory management throughput, latency, and
space consumption by reducing the number of garbage collection
runs, often even to zero, for a number of Java and Go programs.

Categories and Subject Descriptors D3.4 [Processors]: Memory
management (garbage collection)

General Terms Algorithms, Languages, Performance

Keywords Explicit Heap Management

∗ Supported by the EU ArtistDesign Network of Excellence on Embed-
ded Systems Design, the National Research Network RiSE on Rigorous
Systems Engineering (Austrian Science Fund S11404-N23), and an Elise
Richter Fellowship (Austrian Science Fund V00125).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ISMM’11, June 4–5, 2011, San Jose, California, USA.
Copyright c© 2011 ACM 978-1-4503-0263-0/11/06. . . $10.00

1. Introduction
At any time instant during mutator execution, an ideal dynamic
heap management distinguishes the memory objects on the heap
that are still needed by the mutator in the future (dynamically live)
from the memory objects that are not needed anymore (dead). Heap
management is correct if the memory allocated for the objects that
are in what we call the needed set of objects is always guaranteed
to be maintained. Heap management is bounded if the memory
allocated for the objects in the (complementary) not-needed set of
objects is always eventually reclaimed by deallocation or reuse.

Traditional heap management based on explicit deallocation
or garbage collection implements different approximations of the
needed and not-needed sets. Explicit deallocation, if used correctly,
under-approximates the not-needed set. Tracing garbage collectors
over-approximate the needed set by computing the set of reachable
objects, which contains the needed set if used correctly, i.e., in the
absence of reachable memory leaks. Reference-counting garbage
collectors under-approximate the not-needed set by computing the
set of unreachable objects, which is contained in the not-needed
set. The needed and not-needed sets can also be approximated at
the same time by tracing and reference-counting hybrids [5].

Despite the differences in approximation techniques, heap man-
agement based on explicit deallocation or garbage collection im-
plements the same memory model for programming mutators. Al-
located memory is guaranteed to be maintained until deallocation,
either explicitly, or implicitly through unreachability. We refer to
this model as persistent memory model throughout the paper. In the
persistent memory model, memory is persistent until further notice.
Thus objects in the needed set are safe without attention whereas
objects in the not-needed set require action, either by explicit deal-
location or garbage collection, hence the name. The advantages and
disadvantages of explicit deallocation and garbage collection are
direct consequences of the memory model. Explicit deallocation is
fast but creates dangling pointers through premature deallocation
and memory leaks through missing deallocation. Garbage collec-
tion removes the danger of dangling pointers but introduces cost
and complexity for computing unreachability, directly or indirectly,
and may therefore still allow for reachable memory leaks.

We propose short-term memory as an alternative model to the
persistent memory model for studying an area of dynamic heap
management that is in our opinion largely unexplored, at least
by using a general model explicitly. In the short-term memory
model, memory allocated for an object is only guaranteed to be
maintained for a finite amount of time. Here, each object has,
in addition to the memory that has been allocated for it, a so-
called expiration date. When the object expires, its memory may be
reclaimed by deallocation or reuse. If the object is needed beyond
its expiration date, it may be refreshed before it expires, extending
its expiration date but only by a finite amount of time. Refreshing
may be repeated arbitrarily often but does not accumulate time.

needed

not-expired

reachable

heap
co
n
se
rv
a
ti
ve

e
xp

ir
a
ti
o
n

conservative
refresh

Figure 1. Approximation of the needed set by the not-expired set
in the short-term memory model.

Thus, in the short-term memory model, memory is short-term until
further notice. Now, objects in the not-needed set will be reclaimed
without attention whereas objects in the needed set require action
by refreshing.

Similar to the persistent memory model, short-term memory
may be implemented by providing, in this case, refreshing in-
formation explicitly or implicitly. Note that explicitly refreshing
needed objects can always be done since needed objects are always
reachable, as opposed to explicitly deallocating not-needed objects,
which may or may not be reachable. Moreover, unlike the persistent
memory model, short-term memory induces the notion of two sets
that provide structure that does not exist with persistent memory:
the not-expired set of objects which have not yet expired, and the
(complementary) expired set of objects. It is important to note that
the two sets only exist if time is guaranteed to advance. Otherwise,
all memory is permanent. As shown in Figure 1, the not-expired
set is controlled by two concepts: conservative refresh of objects
potentially preventing reachable but not-needed objects from ex-
piring, and conservative expiration potentially delaying expiration
of unreachable and thus not-needed objects.

Heap management in the short-term memory model is correct if
the not-expired set always contains the needed set, and is bounded
if the expired set always eventually contains the objects of the not-
needed set, and time advances. Note that the mark phase of a mark-
sweep garbage collector may readily be used to provide refreshing
information that guarantees correctness by conservatively refresh-
ing all reachable objects before time advances. However, this ap-
proach may again suffer from reachable memory leaks.

In this paper we focus on explicit refreshing. Unlike explicit
deallocation, explicit refreshing only requires to know an upper
bound on the lifetime of objects that may be arbitrarily large as
long as it is finite. Explicit deallocation requires to know an upper
bound that must be less than the time when the objects becomes
unreachable. Like explicit deallocation, explicit refreshing may be
done incorrectly. For example, incorrect use of explicit refreshing
is missing refreshing information, resulting in memory being re-
claimed too early creating dangling pointers. However, unreachable
objects can never be explicitly deallocated in the persistent mem-
ory model (source of memory leaks) whereas refreshing needed
and thus reachable objects is always possible. Other errors and their
consequences are discussed at the beginning of Section 2.

We have developed a concurrent, incremental, and non-moving
implementation of short-term memory for explicit refreshing called
self-collecting mutators integrated into C as dynamic library using
the ptmalloc2 allocator of glibc-2.10.11, the Jikes Research Virtual
Machine [3] for Java, and the 6g runtime for Go2. The code is open
source and available online [2]. In Jikes and 6g we use their mark-

1 http://www.gnu.org/software/libc
2 http://golang.org

sweep garbage collectors because they are non-moving (and there
is anyway no other choice for 6g) and do not incur runtime over-
head when not running (unlike, e.g. the Jikes reference-counting
collector). Note that, for brevity, we generally use the term “thread”
to refer to a thread (as in C and Java) and a goroutine (as in Go, de-
velopers forgive us) alike. We also use the term “object” to refer to
a memory block (as in C) and an object (as in Java or Go) alike.

All memory management operations are lock-free, i.e., do not
acquire any locks, and run in constant time modulo the underlying
allocators. The progress of time for expiring objects is programmer-
controlled by explicit “tick” calls. Each memory management op-
eration may collect, in addition to performing its actual function,
any number of expired objects. There are no additional heap man-
agement threads in the system for this purpose, hence the name
self-collecting mutators. The default collection strategy is lazy for
maximal incrementality where each operation collects at most one
object. Currently, the only implemented alternative is eager col-
lection for maximal throughput and minimal memory consumption
where each operation collects all objects that have expired. In this
case, however, operations may not run in constant time. Alternative,
more dynamic designs remain future work.

The integrated systems are heap management hybrids with per-
sistent memory as default and short-term memory as option. We
show in a number of use cases and benchmarks that using persistent
memory for permanent and long-living objects while using short-
term memory for short-living objects simplifies explicit heap man-
agement at the expense of slightly increased memory consumption
and improves temporal and spatial performance of implicit heap
management at the expense of safety. Re-establishing safety, which
may require the development of adequate program analysis tools,
remains future work.

The paper makes the following contributions: (1) the short-term
memory model, (2) the self-collecting mutators implementation in
C, Java, and Go, and (3) an experimental analysis of several macro-
and micro-benchmarks.

2. Model and Implementation
For programming with short-term memory we propose to use a
fully backwards-compatible approach. The default is that objects
are allocated as persistent and managed by the existing heap man-
agement systems (malloc/free, GC). Then, any time after its allo-
cation (and before its deallocation),

• an object o may be flagged as short-term and, as a consequence,
managed by our heap management system, by refreshing o with
a so-called expiration extension of e ≥ 0 through a constant-
time, lock-free refresh(o, e)-call.

The effect is that the object receives an expiration date (l + e)
where l is the current value of a software clock, which is simply an
integer counter that is local to the refreshing thread. From then on
the object will not be managed by the existing heap management
system anymore. Instead,

• the object is now guaranteed to exist until the thread that re-
freshed the object advances thread-local time to (l + e+ 1) by
incrementing the value of its thread-local clock through (e+1)
constant-time, lock-free tick-calls.

After that the object is said to have expired and will be collected
by our system. Objects may be flagged as short-term any time after
their allocation, e.g. when an exact or at least reasonable expiration
date is known. If it later turns out that the object will expire too
early, the object may be refreshed again with a later expiration date.
However, an object once flagged as short-term may not be returned
to persistent memory anymore although an appropriate memory

management call would be easy to implement. It is rather a design
choice we made because we did not find use cases.

There are a number of implications related to multiple refresh-
ing of an object and the definition of time. We discuss them briefly
right here before getting back to our use cases.

An object may be refreshed by multiple threads multiple times
even in between time advance. As a result, an object may have
multiple expiration dates (for one but also for different threads)
since each refresh creates a new expiration date for the object. The
expiration semantics is nevertheless simple. In general,

• an object in short-term memory expires when all its expiration
dates have expired, and

• an expiration date has expired if its value is less than the thread-
local time of the thread that created the expiration date through
refreshing.

Thus multiple refreshing of an object by the same thread with
the same expiration extension in between time advance has no ef-
fect other than wasting CPU time and memory (for creating and
storing expiration dates). In contrast, multiple deallocations of an
object with traditional explicit heap management systems (mal-
loc/free) is an error. However, multiple refreshing across expira-
tion, i.e., refreshing already expired objects, is also an error, which
may lead to multiple deallocations of an object. The error may be
detected at runtime to prevent multiple deallocations. An imple-
mentation remains future work.

Multiple refreshing of an object by different threads indicates
that the object is not only shared but also short-term with respect to
multiple thread-local clocks. The issue here is that refreshing and
ticking requires coordination among the involved threads to prevent
a shared object from expiring before all involved threads had a
chance to refresh it. Coordination may either be done explicitly by
the application (fast and space-efficient but difficult) or implicitly
by our heap management system (easy and fast but less space-
efficient), which effectively computes the notion of a global time
for handling expiration dates of shared objects, see Section 2.6.
For Go, there is a third option, namely for objects communicated
through channels, to perform the necessary coordination implicitly
and fast, and even without any space overhead.

Multiple refreshing may be avoided altogether by providing
more than one clock per thread. The extreme case is that each
object gets its own clock making short-term memory programming
equivalent to persistent memory programming. Multiple clocks per
thread are anyway interesting since, in terms of expressiveness,
they are equivalent to non-zero expiration extensions if the clocks
have a common base clock. Otherwise, multiple clocks are even
more general, see Section 2.5.

Multiple refreshing does not make an object permanent but
not advancing time does. Time advance may only be guaranteed
by using real-time clocks rather than software clocks. This is an
interesting topic for future work. However, even with software
clocks, short-term memory may be used in real-time applications,
see Section 2.4.

2.1 Single-Threaded Use Cases
We have manually ported a number of existing programs written
in C, Java, and Go to short-term memory. We describe each port
and argue informally about its correctness to provide intuition on
the effort of using short-term memory explicitly in terms of lines
of code and in terms of the difficulty of placing the needed code
correctly. Table 1 shows the porting effort for each use case.

We first present single-threaded use cases: the mpg1233 MP3
encoder and the x264 video encoder written in C, the Monte Carlo

3 http://www.mpg123.de

mpg123 x264 MC Tree WS
Original LoC 16043 61722 1450 104 29
Removed LoC 43 102 0 0 0

tick 1 1 1 3 1
refresh(0) 48 2 36 1 1

refresh((>0) 0 4 0 0 0
Aux LoC 0 63 0 11 0

Table 1. Original number of lines of code, number of removed
lines of code, number of tick-calls, number of refresh(0)-calls,
number of refresh(>0)-calls, and number of lines of auxiliary
code, for each use case.
(MC) benchmark of the Grande Java Benchmark Suite [18] writ-
ten in Java, and the Tree benchmark of the Computer Language
Benchmarks Game4 written in Go. In the next section we deal with
multi-threaded use cases: a multi-threaded version of the x264 en-
coder and a simple web server (WS) written in Go.

The following improvements are achieved by short-term mem-
ory. The C use cases logically need fewer lines of code and es-
tablishing correctness is easy. In Java and Go, unlike with garbage
collection, correctness with explicit short-term memory is not guar-
anteed. Nevertheless, in the presented use cases establishing cor-
rectness is easy. Moreover, by using short-term memory, the Java
and Go use cases improve in terms of number of garbage collection
runs, total execution time, and memory consumption. The perfor-
mance improvements are shown in Section 4.

We apply an informal translation scheme that helps establishing
correctness. We first place a tick-call at the code location that marks
the end of the period of the most frequent periodic behavior of the
benchmark where most of the memory expires, which was easy to
find in all benchmarks. Code locations where less memory expires
but more frequently are also an option, which we may consider in
future work. In this case more refreshing work will be required but
memory consumption may be reduced. Next, we flag all objects
as short-term that can expire safely at the tick-calls by placing
refresh-calls right after their allocation with expiration extensions
that depend on the use case and range from zero, in most cases,
to some positive value, in more complex cases such as the x264
benchmark. Multiple refreshing is only used for optimizations in
the x264 benchmark.

mpg123 in C. The mpg123 benchmark decodes a set of mp3 files
into a set of corresponding wav files. All memory is needed just
for the conversion of a single file, which means that all memory
is flagged as short-term with refresh(0)-calls, and one tick-call,
conveniently placed in the code where processing a file finishes,
suffices to let all memory expire. This removes the need for all 43
free-calls in the original code. Note that we placed a refresh(0)-call
after each of the 48 allocation sites (of which some may never be
executed). The result is obviously correct without introducing any
memory leaks.

We are aware that this use case is somewhat trivial. Still, it
shows the capabilities of our programming model and how easy
it can be to use short-term memory.

x264 in C. As a second use case we have ported the open
source video encoder x264 [20], which implements the H.264
standard [25]. We focus on the memory management of frames
and frame buffers. All other memory is irrelevant for performance
since it is only allocated once. Note that our port covers only the
default configuration of x264, without additional features which
may require additional memory.

Figure 2 shows the dataflow of frames in the x264 encoder. In
the single-threaded use case, there is only a single (main) thread

4 http://shootout.alioth.debian.org

processing
unit

reference buffers output

refresh

malloc

3
4

5
6

tick 7

concurrent

or
pop_unused

2

input frames

1

lookahead thread

push_unused

unused
frame
pool

Figure 2. Dataflow of the x264 video encoder.

performing all work including frame lookahead and encoding. The
numbers next to the boxes show the order in which the boxes are
executed or activated. The malloc/refresh/tick boxes are introduced
by the port to short-term memory. The original dataflow is as fol-
lows. Upon reading an input frame, memory is allocated for it. This
frame is then encoded relative to previously encoded frames stored
in so-called reference buffers. The result is output and written to
the reference buffers for future reference.

One frame is an instance of a data structure consisting of mul-
tiple sub-objects, arrays, and management data. All frames require
the same amount of memory. This allows for pool allocation and
reuse of not-needed frames for new ones. Pool allocation may im-
prove runtime performance and result in less memory fragmenta-
tion compared to general-purpose memory allocation. A frame can
be reused (is returned to the pool) when it is removed from all frame
buffers. Determining when this is the case is non-trivial since a
frame may be stored in multiple reference buffers. The original im-
plementation uses reference counting to determine when a frame
can be reused. The reference counter of a frame increases when the
frame is added to a frame buffer, and decreases when the frame is
removed from a buffer. The frame is pushed into the unused frame
pool when the reference counter becomes zero.

By porting to short-term memory we remove the need for refer-
ence counting. We have also removed pool allocation even though
it can be used in combination with short-term memory. The relevant
periodic behavior is given by encoding of a single frame. Therefore,
we place a tick-call in the code where encoding a frame finishes.
There are two approaches to refreshing: either refresh once with
a long enough expiration extension, or else continuously refresh
needed frames with an expiration extension of 1. Both approaches
are implemented and tested, and described next.

The single-refresh approach leverages the fact that frames are
removed from the reference buffers after a certain amount of time.
The refresh-calls are placed such that a frame is refreshed when
its encoding starts with an expiration extension that depends on the
two x264 specific parameters bframes and ref which influence the
size of the reference buffers. More details about the two parameters
can be found in [20, 26]. We validated the calculated expiration
extensions on several videos with different resolutions and length,
and with different input parameters of the x264 encoder.

The expiration extensions in the single-refresh approach are
conservative approximations of the lifetime of frames and thus in-
troduce memory overhead when frames are actually needed for
shorter amounts of time. In the continuous-refresh approach, we
aim at removing that memory overhead by avoiding large exten-
sions and instead refreshing all buffered frames right before the
tick-call with an expiration extension of 1. The refresh(1)-calls
guarantee that the frames will exist until the tick-call after the next
frame encoding. Note that the runtime overhead of continuous re-
freshing is low due to the small number of frames in the frame
buffers. Continuous refreshing is easy to do since it can be done
right before a tick-call and is independent of the implementation of

Algorithm 1 Pseudo code of the Monte Carlo benchmark

1 monteCar lo (i n t r e p e t i t i o n s)
2 {
3 R e s u l t S e t r e s u l t s = c r e a t e R e s u l t S e t (r e p e t i t i o n s) ;
4 f o r (i n t i = 0 ; i < r e p e t i t i o n s ; i ++)
5 {
6 RandomWalk walk = createRandomWalk () ;
7 r e f r e s h (walk , 0) ;
8 r e s u l t s . add (d o C a l c u l a t i o n (walk)) ;
9 t i c k () ;

10 }
11 e v a l u a t e R e s u l t s (r e s u l t s) ;
12 }

the encoding unit, whereas the reference counting of the original
implementation is done at every add- and remove-operation of the
reference buffers.

Our experiments show that the effect of both refreshing ap-
proaches on throughput (total execution time) and memory man-
agement latency is negligible. Continuous refreshing is easier to
use and consumes less memory than single refreshing in our bench-
marks. In general, however, continuous refreshing may introduce
more runtime overhead.

It is interesting to note that the memory usage pattern of the
x264 encoder represents a bad case for many other memory man-
agement systems:

1. Explicit deallocation memory management is difficult to em-
ploy for x264 since it is unknown at compile time when a frame
can be deallocated, which is the reason why the original imple-
mentation involves reference counting.

2. Generational garbage collectors are not suitable since at each
collection of the nursery all live frames (which always exist and
consist of multiple objects) need to be copied to the long-living
part of the heap.

3. With region-based memory management for x264 it is difficult
to form non-trivial regions (with more than one frame and not
containing all frames).

Monte Carlo in Java. Algorithm 1 shows the Monte Carlo bench-
mark [18], which consists of a calculation loop to which we add a
tick-call at the end. A result object is generated in every loop it-
eration. It is stored in a result set and exists until the end of the
program. All other objects which are allocated in the calculation
loop, e.g. the RandomWalk object and all objects allocated in the
doCalculation method, only exist for one loop iteration and can be
safely flagged as short-term.

With short-term memory all garbage collection runs are avoided
by reusing the memory of expired objects. In Section 4 we show
that with short-term memory every loop iteration takes nearly the
same amount of time, in contrast to execution with a garbage col-
lector where the loop iterations which are interrupted for garbage
collection take significantly more time. Throughput and memory
consumption also improve. Note that the same, although not with
less effort, could be achieved with static preallocation, e.g. by
reusing the same RandomWalk object for all loop iterations.

An interesting aspect of the Monte Carlo benchmark is that it
contains a reachable memory leak. The result object contains a
reference to the RandomWalk object which created it. Short-term
memory fixes the memory leak by flagging the RandomWalk object
as short-term, which lets the object expire at the end of the loop
iteration. Clearly, the memory leak could also be fixed for garbage-
collection use by deleting the reference from the result object to the
RandomWalk object.

Tree Benchmark in Go. The Tree benchmark allocates one per-
manent tree and many short-living trees with different sizes. These

trees are then dismissed after a validation step. For porting the
benchmark to short-term memory we set a tick-call after every val-
idation of a short-living tree. All but one short-living tree are allo-
cated and validated in one loop, so two tick-calls are sufficient (one
for the tree outside the loop, and one in the loop). Each loop itera-
tion validates two trees. We therefore place a second tick-call in the
loop for less memory consumption. The nodes of short-living trees
are flagged as short-term right after their allocation by refresh(0)-
calls. The permanent tree stays persistent and thus does not expire.

Using short-term memory in this benchmark results in higher
throughput, lower near-constant latency, and less peak memory
consumption, as shown in Section 4.

2.2 Multi-Threaded Use Cases
We ported two multi-threaded use cases to self-collecting mutators,
a multi-threaded version of the x264 encoder written in C, and a
simple web server written in Go. In the latter use case, objects are
not shared among threads, which enables straightforward porting.
The x264 use case includes shared objects, i.e., shared frames.

We explored two approaches of using short-term memory for
shared objects. With the first, global-time approach, every thread
refreshes the shared objects it needs according to the notion of a
global time rather than its own thread-local time. Global time ad-
vances when the thread-local times of all threads in the system have
advanced by at least one time unit. Refreshing an object according
to global time thus conservatively approximates the effect achieved
by refreshing an object according to the thread-local times of the
threads that really need the object. The definition and calculation of
global time is described in Section 2.6 in more detail. With the sec-
ond, local-time approach, we use thread-local times even for shared
objects. Some concurrent reasoning may then be necessary to en-
sure that a shared object does not expire before all threads that need
it have refreshed it for the first time.

x264 in C. With the x264 encoder, there is little difference in
terms of porting effort between the single-threaded and the multi-
threaded use case.

The multi-threaded version of the x264 video encoder processes
multiple frames in parallel. It consists of a main thread, a lookahead
thread for prefetching frames, and a number of encoding threads.
The lookahead thread deals with frames before they are flagged
as short-term. As indicated by the area with dashed borderline
in Figure 2, the encoding unit and the reference buffers exist in
multiple instances, one instance per encoding thread. The encoder
uses one mutex per frame for thread synchronization. We use a
finalizer function to destroy such mutexes properly when collecting
expired frames. Finalizers are described in Section 2.3.

The single-threaded ports of the x264 use case work for multiple
threads without further modifications except for the registration of
the finalizer that destroys the mutex of an expired frame. In this
case, all short-term memory operations are invoked from within
the main thread only. However, we also demonstrate multi-threaded
short-term memory management by moving the refresh- and tick-
calls into the encoding threads and then using either the global-time
approach or else the local-time approach.

For the single-refresh approach, the formula calculating the
lifetime of a frame can be refined using the number n of threads,
i.e., the expiration extension e of a frame in the single-threaded
case reduces to e′ = de/ne. It turns out that using the thread-local
time approach for shared objects also works for both refreshing
approaches, including the refined extensions for the single-refresh
approach, since all threads are anyway synchronized by mutexes in
a way that thread-local time and global time only differ by at most
one time unit.

The usage and performance results of the multi-threaded use
case are similar to the single-threaded use case, see Section 4.

Web Server in Go. We have ported the godoc web server to
short-term memory but eventually decided to use our own simple
implementation of a static yet multi-threaded web server in Go for
benchmarking. The godoc web server indexes all library packages,
which dominates the performance of the parts relevant to short-
term memory. Our server creates a goroutine for each request,
which simply serves a static web page. In the port to short-term
memory, the objects storing web page content are flagged as short-
term. We show with this use case that self-collecting mutators in
Go maintain goroutine scalability as well as memory consumption
while reducing memory management latency.

2.3 Implementation
The C, Java, and Go implementations of self-collecting mutators
are based on the same algorithm and data structures, and differ only
slightly in some low-level details that we point out whenever they
are relevant. The implementations are available in source code [2].

Descriptors. An expiration date of a given object is represented
by a descriptor, which is a pointer to the object. Descriptors repre-
senting a given (not-expired) expiration date are gathered in a de-
scriptor list. In other words, the expiration date value represented
by a descriptor is implicitly encoded by storing the descriptor in
a descriptor list for this value. Note that an object may even have
multiple expiration dates with the same value, which means that
there may be multiple descriptors in a descriptor list pointing to the
same object.

Object Header. Every object (also if persistent) is extended by
a 64-bit object header that stores a descriptor counter, which is
a 32-bit integer that counts, similar to a reference counter, the
number of descriptors that point to the object, i.e., the number of
expiration dates the object has. Incrementing and decrementing the
descriptor counter of an object are the only operations that must
be done atomically by atomic increment and atomic decrement-
and-test instructions, respectively. All other operations involved
in refreshing and expiring objects as well as advancing time are
thread-local.

The remaining 32 bits of the object header are used differently
in the C and Go implementations and unused in the Java imple-
mentation. For C, five of the 32 bits identify an optional user-
implemented finalizer that gets invoked right before deallocation.
The other 27 bits are unused. Finalizers receive a permanent and
unique 5-bit identifier upon user-controlled, constant-time registra-
tion in a simple 32-entry identifier-to-finalizer table. A more dy-
namic service remains future work. For Go, 16 bits store the offset
from the object address to its garbage collector status flag. Another
8 bits store an identifier of an internal Go size-class, needed to free
an object of size smaller than 32KB. The remaining 8 bits are un-
used. Objects larger than 32KB actually require an additional 64-bit
word in the object header for storing a pointer.

Descriptor Management. A descriptor list is a singly-linked list
of descriptor pages represented by a fixed-size record containing a
head and a tail pointer to the first and the last page, respectively. A
descriptor page is a fixed-size record that consists of a pointer to the
next page, an integer word that counts the actual number of descrip-
tors stored in the page, and a fixed number of pointers for storing
descriptors. A descriptor page is therefore properly initialized if
just the first two entries are zeroed. The size m of descriptor pages
is fixed at compile time. Descriptor pages are allocated cache- and
page-aligned for better runtime performance. We distinguish dif-
ferent size configurations of m in our benchmarks. Note that us-
ing descriptor pages provides only a constant-factor, yet potentially
significant, optimization over a singly-linked list of descriptors.

Given a compile-time bound n on the expiration extensions for
refreshing, we use a thread-local descriptor buffer to store n + 1

descriptor lists in an array of size n + 1, which supports expira-
tion extensions between zero and n. The buffer also stores thread-
local time denoted by l. The descriptors in the buffer are interpreted
against l as follows. The descriptor list containing descriptors rep-
resenting an expiration date l is located at position l mod (n+1)
in the buffer. Given an expiration extension 0 ≤ e ≤ n, a new
descriptor representing an expiration date l + e will therefore be
appended to the descriptor list at position (l + e) mod (n + 1).
Thus the descriptors in the descriptor list at position l mod (n+1)
expire when thread-local time advances.

There are three descriptor management operations: create,
move-expired, and collect, which all run in constant time.

Given an object and the index i = (l + e) mod (n + 1), the
create-operation stores a new descriptor, i.e., a pointer to the object,
in the last descriptor page of the descriptor list at position i in the
buffer, if the page is not full. Otherwise, the descriptor is stored in
a new page that is allocated, either from a thread-local descriptor-
page pool or, if empty, from free memory, and appended to the list.

Given the index i = l mod (n + 1) upon thread-local time
advance, the move-expired-operation removes the descriptor pages
from the descriptor list at position i in the buffer, if it contains at
least one descriptor, and appends the pages to a thread-local de-
scriptor list called the expired-descriptor list. Unlike the descriptor
lists in a descriptor buffer, the expired-descriptor list may contain
descriptors that represent different expiration dates that have, how-
ever, all expired. Moreover, the expired-descriptor list stores, in ad-
dition to head and tail pointers, an integer counter that keeps track
of how many descriptors in the first descriptor page of the list have
already been collected.

The collect-operation only operates on the expired-descriptor
list. If the list is empty, the operation immediately returns. Oth-
erwise, the first descriptor in the list is removed from the list, i.e.,
from the first descriptor page in the list. If the page becomes empty,
it is removed from the list. The empty page is then returned ei-
ther to the descriptor-page pool, if the pool is not full, which is
determined by a compile-time bound, or to free memory by call-
ing the underlying free routine. Then, the descriptor counter of the
object to which the removed descriptor points is decremented by
an atomic decrement-and-test instruction. If the counter becomes
zero, the object is deallocated, again by calling the underlying free
routine. Note that, in the C implementation, we check if a finalizer
has been set in the object header of the object. If yes, the finalizer
is invoked right before deallocation.

In summary, each thread maintains a descriptor buffer contain-
ing (n+ 1) descriptor lists and an integer word for storing thread-
local time, an expired-descriptor list, and a bounded descriptor-
page pool.

Memory Management. We now describe the memory manage-
ment calls, which do not require any locking and all run in constant
time modulo the underlying malloc/new/free implementations.

A malloc-call or new-call simply calls the allocation routine
of the underlying system to allocate a memory block that fits the
requested size plus one 64-bit word for the object header with the
descriptor counter initialized to zero.

In the C implementation, a free-call invokes the underlying free
routine to deallocate the given memory block but only if its de-
scriptor counter is zero. Otherwise, it returns without deallocation.
The standard calloc and realloc routines have been wrapped in a
similar way. If the realloc-call is invoked on a memory block that
does not fit the requested adjustment in size, a new memory block
that fits is allocated. The old memory block is then deallocated but
again only if its descriptor counter is zero. This approach has an
important consequence: our C library can readily be linked against
any existing C code and used without introducing any new mem-
ory leaks and without any modifications to the code, unless the code

makes assumptions on the layout of memory management data in
memory blocks. We tested this claim by successfully linking the
library against Apache HTTP server-2.2.15 and executing it. With-
out using short-term memory, our implementations only introduce
a per-object space overhead of one 64-bit word and negligible run-
time overhead as shown in Section 4.

For Java and Go, we have modified the underlying garbage
collectors such that all objects including all short-term memory
objects are considered in computing reachability but short-term
memory objects that ever had a descriptor counter greater than zero
are not deallocated even when determined unreachable. Instead,
the memory of expired objects is deallocated by our system to be
reused later upon allocation, again into persistent memory first. Our
modifications only involve a few lines of code in both cases and do
not incur any runtime overhead. Similar to the C implementation,
legacy Java and Go applications run without any modifications.

The refresh-call first atomically increments the descriptor
counter of the given object. Then, a new descriptor pointing to
the object is inserted into the descriptor buffer by the previously
described create-operation.

The tick-call first increments the thread-local clock and then
invokes the previously described move-expired-operation to move
the just expired descriptors to the expired-descriptor list.

In principle, any memory management operation may collect
expired descriptors and deallocate expired objects. Each operation
may collect anywhere between one at a time (lazy) for maximal
incrementality and all at once (eager) for maximal throughput and
minimal memory consumption.

In our implementations, the default is lazy. Moreover, only the
refresh-call and the tick-call collect by invoking the previously de-
scribed collect-operation once after performing their actual func-
tion. Lazy collection at a refresh-call makes sure that the memory
allocated for descriptors is bounded in the number of refresh-calls
between tick-calls, similar to the memory allocated for objects.

The alternative of eager collection is only implemented in tick-
calls. Interesting future work may be to study collection strategies
for trading-off memory management throughput, latency, and space
consumption dynamically. For example, we may choose to collect
varying numbers of expired descriptors per call, and to collect ex-
pired descriptors also in other calls such as the malloc-call, new-
call, and free-call, and even in code unrelated to memory manage-
ment. Another option is running auxiliary threads that collect ex-
pired descriptors concurrently to the mutator.

Managing memory objects in persistent or short-term memory
can now be done as follows. A malloc-call or new-call allocates
persistent memory for a given object. As long as the object is not
refreshed, it remains in persistent memory and thus requires, in the
C implementation, explicit deallocation by a free-call. However,
the first refresh-call on the object, even with an expiration extension
of zero, logically transfers the object to short-term memory. Then,
again in the C implementation, explicit deallocation is unnecessary
and should be replaced by invoking tick-calls instead. Existing
free-calls on short-term memory objects may nevertheless remain
in the code as long as they are invoked before any tick-call makes
the objects expire. Note that the malloc-call or new-call could also
do both allocation and refresh in one step, which we nevertheless
chose not to do for backwards compatibility and since reasonable
expiration dates may not be known at allocation time.

Thread Management. All thread management operations for
short-term memory run in constant time. A thread maintains
thread-local metadata called descriptor root, which is a fixed-sized
record that contains a descriptor buffer, an expired-descriptor list, a
descriptor-page pool, and a descriptor-root pointer for constructing
a global, lock-protected, and unbounded pool of unused descrip-
tor roots. Memory for descriptor roots is allocated either from that

pool, if not empty, or else from free memory. Descriptor roots
obtained from free memory can be efficiently initialized just by
allocating zeroed memory. Roots obtained from the pool do not
require initialization. Descriptor roots and pages are the only two
metadata types for short-term memory that require heap allocation.

Similar to the allocation of metadata storage for the underly-
ing allocators, which is on demand upon the first invocation of a
malloc-call or new-call, a descriptor root is allocated upon the first
invocation of a refresh-call by a thread, effectively registering the
thread with the short-term memory system. This approach mini-
mizes the impact on scalability of threads that do not use short-
term memory. Note that, by integrating the descriptor-root pool
deeper into the underlying allocators, which already use a global
lock to protect their metadata pools, it may be possible, as part of
future work, to avoid introducing an extra global lock for protecting
the descriptor-root pool. Without negative impact on scalability, all
metadata storage may then be allocated upon the first invocation of
a malloc-call or new-call.

When a thread terminates, its descriptor root is inserted into
the descriptor-root pool for later reuse by another thread. In Java
and Go, this is done transparently by the runtime system whereas,
in C, a manual unregister-call is required. Interestingly, reused
descriptor roots are not initialized since they may still contain
uncollected, expired and even not-expired descriptors. Instead, the
new thread may safely reuse a descriptor root expiring the not-
expired and collecting the expired descriptors of the previous thread
exactly from where they were left off. In particular, the new thread
advances the root’s thread-local time from where it was left off.

2.4 Real Time and Fragmentation
As shown by our Java and Go benchmarks, self-collecting muta-
tors may, at the expense of safety, significantly decrease memory
management latency by reducing the number of garbage collection
runs, sometimes to zero, while even improving throughput. Real-
time garbage collectors such as Metronome [4] reduce latency as
well and are safe but only at a significant loss in throughput and in-
crease in code complexity, which makes it difficult to certify them
for hard real-time applications. Self-collecting mutators perform all
operations in constant time and may therefore even be suitable for
managing hard real-time applications if combined with a real-time
allocator such as Compact-fit [11] or TLSF [17]. Lastly, real-time
instead of software clocks may be used to guarantee time advance.
However, using short-term memory correctly may become more
difficult in this case and even require execution time analysis.

Our implementations of short-term memory are based on exist-
ing allocators unaware of short-term memory and, in particular, its
effect on fragmentation. In our benchmarks fragmentation has not
been an issue but it may become one in others. Addressing frag-
mentation in short-term memory is part of our future work.

2.5 Multiple Clocks
Self-collecting mutators use thread-local clocks and, optionally, the
notion of a global clock, to expire objects. Each clock is stored in a
descriptor buffer along with the descriptors that the clock expires.
In principle, self-collecting mutators can readily be generalized to
use a dynamic set of multiple clocks, i.e., descriptor buffers to
be precise. Multiple, independent clocks are more expressive than
a single clock in the sense that they may facilitate expiration of
objects with different, independent lifetimes more accurately and
thus decrease memory consumption. Note that advancing multiple
clocks according to a common base clock is equivalent to using a
single clock with non-zero expiration extensions for refreshing. An
implementation of multiple clocks may require synchronization if
threads share clocks, which may harm performance and scalability.
Alternatively, a programming convention, as in Go for sharing

objects, could require each clock to be associated with a single
thread at any time. Clock ownership along with object ownership
could then be passed, as in Go through channels, from one thread
to another. The issue of using short-term memory in library code
may be addressed similarly, e.g. by maintaining dedicated library
clocks. An implementation remains future work.

2.6 Global-Time Management
We describe a simple global-time management for brevity that suf-
fices for the use cases considered here but does not support dynam-
ically changing sets of threads. It also does not handle blocking and
faulty threads properly since global time would not advance in their
presence. However, we have developed a more general global-time
management based on so-called thread-global time that does sup-
port dynamically changing sets of threads including blocking and
faulty threads [1].

Shared objects in short-term memory may, in addition to regular
refreshing, also be refreshed by a constant-time, lock-free global-
refresh-call and expire according to a synchronized notion of global
time, which is advanced by a constant-time, lock-free global-tick-
call. The global calls operate on a new thread-local, global-time
descriptor buffer, whereas the regular local calls still operate on
the existing thread-local-time descriptor buffer. The clock in the
global-time descriptor buffer is not used here but represents thread-
global time in the more general global-time management [1].

Global time is represented by a global integer counter called
the global clock. The expiration semantics remains simple. An
expiration date created by a global-refresh-call has expired if its
value is less than global time. The intention is that all threads
sharing an object have a chance to refresh the object before it
expires without coordinating refreshing and ticking explicitly.

In addition to the global clock, global-time management also
requires a global ticked-threads counter and, for each thread, a
thread-local integer counter representing the global phase of the
thread. The global phase determines whether the thread performed
a global-tick-call since global time has last advanced. Initially, the
values of the global clock and phases are zero, and the ticked-
threads counter is set to the (fixed) number of threads in the system.
The global-tick-call increments the global phase of the invoking
thread if the global phase of the thread is equal to global time, oth-
erwise it immediately returns. In case the global phase was incre-
mented, the ticked-threads counter is subsequently decremented by
an atomic decrement-and-test instruction. If the counter becomes
zero, global time is advanced and the ticked-threads counter is reset
to the (fixed) number of threads in the system, marking the begin-
ning of a new global period. Locking is not required since only one
thread can decrement the counter to zero.

A global-refresh-call sets the expiration date of an object to the
current global time plus the extension plus one time unit. The addi-
tional time unit is sufficient to guarantee that the object does not ex-
pire before one full global period has elapsed, i.e., all threads have
invoked the global-tick-call at least once. Therefore, the global-
time descriptor buffer needs to accommodate one more descriptor
list. So far, we have implemented global-time management in C.
Future work may focus on optimizing memory consumption, yet
probably at the expense of runtime performance.

3. Related Work
We first discuss general memory management work related to the
short-term memory model and then specific work related to the
design and implementation of self-collecting mutators.

3.1 Short-term Memory
Implementing short-term memory essentially requires a representa-
tion of the not-expired and expired sets as well as an algorithm that

determines expiration information and time advance. The algorithm
may be an offline analysis tool or an online system, as with most
related work, or a programmer who provides the information man-
ually, as with self-collecting mutators. The representation may log-
ically implement sets to support any algorithm, as in self-collecting
mutators, or more specific data structures such as stacks and buffers
that are more efficient but work only for specific algorithms, as in
some related work.

Stack allocation can be seen as implementing a special case of
short-term memory where the representation are per-thread stacks
and the algorithm maintains per-frame expiration dates and per-
stack time that advances upon returns from subroutines, which
facilitates constant-time allocation and deallocation of multiple
objects. General refreshing is not possible.

Short-term memory is originally inspired by cyclic allocation
where the representation are cyclic fixed-size per-allocation-site
buffers [21]. The algorithm maintains per-buffer expiration dates
set to the size of the buffer and per-buffer time that advances upon
each allocation in the buffer. For example, an allocation in a three-
element buffer will always receive an expiration date equal to the
current time plus three, i.e., memory allocated in the buffer will
be reused after three subsequent allocations in the buffer, making
deallocation unnecessary. Refreshing is again not possible. Note
that cyclic allocation requires properly dimensioning the buffers,
which is related to the more general problem of properly refreshing
objects and advancing time with short-term memory.

Region-based memory management [13, 24] can also be seen as
implementing a special case of short-term memory where the repre-
sentation are regions, which allow deallocating multiple objects in
constant time. The algorithm always uses expiration dates equal to
the current time and maintains per-region time that advances upon
events determined by either an offline analysis tool [24], or on-
line reference counting [13], or explicit deallocate-region calls [13].
General refreshing is not possible but could be done by copying ob-
jects from one region to another. Similarly, choosing the appropri-
ate region for an object must be done at its allocation and may only
be avoided by copying the object. In short-term memory, each de-
scriptor list forms a region and the associated clock is used to free
(collect) the region. In contrast to the region-based approach, re-
freshing allows for choosing an appropriate region at any time after
allocation and changing the region for an object without copying
but at the expense of freeing a region in non-constant time. In addi-
tion, multiple clocks allow an object to be in multiple regions, i.e.,
to be associated with different clocks.

Objective-C [16] provides autorelease pools, which are a spe-
cial case of short-term memory. The representation are stacked
explicitly-allocated pools for delaying object deallocation. Objects
can only be added to and removed from the top pool. The algorithm
always uses expiration dates equal to the current time and maintains
per-pool time that advances upon explicit deallocate-pool calls. An
object may be in multiple pools and is deallocated when these pools
have all been deallocated. General refreshing is again not possible.

Garbage collectors are implementations of the persistent mem-
ory model that compute unreachability, directly or indirectly, for
reclaiming otherwise persistent memory. However, some portions
of garbage collectors may be used to implement special cases of
short-term memory. For example, as stated before, the mark phase
of a mark-sweep garbage collector [19] may be used to implement
an algorithm that prevents reachable objects from expiring. The
transition from the mark to the sweep phase can then be seen as
time advance for all objects. More recent work on object staleness,
e.g. [7], and memory growth, e.g. [15], may be used to identify
reachable memory leaks for expiring reachable but actually not-
needed objects.

CPU 2x AMD Opteron DualCore, 2.0 GHz
RAM 4GB
OS Linux 2.6.32-21-generic
C compiler gcc version 4.4.3
C allocator ptmalloc2-20011215 (glibc-2.10.1)
Java VM Jikes RVM 3.1.0
Go compiler/runtime 6g, release 2010-11-02

Table 2. System configuration.

3.2 Self-Collecting Mutators
Reference-counting garbage collectors [9] determine reachability
by counting references pointing to an object. In our implementa-
tions we determine expiration by counting descriptors pointing to
an object. A drawback of reference counting are reference cycles
which do not occur in descriptor counting. Moreover, the runtime
overhead of descriptor counting is less than of reference counting
since descriptor counters are only accessed at tick- and refresh-
calls, which typically occur less frequently than reference changes.

Autorelease pools in Objective-C [16] approximate neededness
by maintaining a so-called retain counter in each object that keeps
track of the number of retain versus so-called release calls on
the object. Thus the retain counters correspond to our descriptor
counters. The pools contain references to objects and are thus
similar to our descriptor lists.

The descriptor buffers in our implementations essentially imple-
ment priority queues [10] where expiration extensions correspond
to priorities. Note that the time complexity of all our buffer opera-
tions is independent of the number of elements in the buffer, which
may or may not be the case for general priority queues.

Global-time management in self-collecting mutators is related
to epoch-based reclamation [12] and barrier synchronization [23].
A global period in global-time management corresponds to one
epoch. A barrier forces a set of threads into a global state by block-
ing each thread when it has reached a particular point in its exe-
cution. Here, global time advance corresponds to the global state
when all threads have ticked at least once in the current global pe-
riod. However, threads that have ticked are not blocked until global
time advance. We could also block threads, as in barrier synchro-
nization, potentially reducing memory consumption at the expense
of mutator execution speed. An implementation and adequate ex-
periments are future work.

The idea of hybrid memory management systems is not new.
One related example is the work presented in [8] and [14], which
uses static analysis to insert free-calls in Java code, thus reducing
the number of garbage collection runs. An interesting question is
whether finding appropriate locations (and extensions) for refresh-
calls as well as tick-calls is easier than for free-calls. In our Java
implementation we collect expired objects in a way that is similar
to the approach taken in [14].

4. Time and Space
We discuss performance results obtained with the benchmarks de-
scribed in Section 2.1 and 2.2. The setup of the benchmarking
environment is shown in Table 2. Memory consumption is re-
ported as gross consumption including fragmentation. Net mem-
ory consumption is not shown since fragmentation turned out to be
bounded by small constants in all benchmarks.

For the mpg123 benchmark in C we compare self-collecting
mutators and ptmalloc2. For the x264 benchmark we run the origi-
nal video encoder with and without pool allocation, and compare it
with both porting approaches described in Section 2.1, the single-
refresh and the continuous-refresh approach. We measure through-
put (total execution time) and memory consumption of both bench-
marks in all configurations. The effect on latency is negligible.

For the Java benchmarks we compare self-collecting mutators
and two garbage collectors available with Jikes, the mark-sweep
garbage collector that we already use with self-collecting muta-
tors, and, as baseline, the standard garbage collector of Jikes, a
two-generation copying collector where the mature space is han-
dled by an Immix collector [6]. We measure the replay phase of re-
play compilation [22] provided by the production configuration of
Jikes, which runs a JIT compiler in the recording phase. For the Go
benchmarks we compare self-collecting mutators with the mark-
sweep garbage collector of the Go runtime. We measure through-
put (total execution time) and memory consumption of both the
Java and Go benchmarks. Moreover, we measure latency (loop ex-
ecution time for Java, time between two allocation operations in
Go) and show that self-collecting mutators has lower latency than
the garbage-collected systems.

Note that our use cases may also perform competitively when
using other, more specialized memory management systems, e.g.
a region-based allocator. However, a meaningful comparison re-
quires a proper integration with self-collecting mutators that we
have begun but not yet completed.

4.1 C
In both the mpg123 and the x264 benchmark runtime overhead
through self-collecting mutators (SCM) is negligible. The mpg123
benchmark (and the x264 benchmark in some cases) runs even
slightly faster than the unmodified baseline.

Figure 3 shows the memory consumption of the mpg123 bench-
mark. Self-collecting mutators with eager collection tracks the orig-
inal memory consumption except for a final portion of memory be-
fore time advance. Maximum memory consumption is similar for
lazy and eager collection. With lazy collection memory consump-
tion lags the original memory consumption. The execution time of
the tick-calls is around 20 times longer with eager collection (not
shown) since there are around 20 objects to be collected per time
advance, whereas the execution time of the refresh-calls is slightly
lower with eager collection because no objects are collected during
refreshing (not shown).

Figure 4(a) shows the memory consumption of the single-
threaded x264 benchmark on the 300-frame foreman video se-
quence5 (appended two times for 900 frames total) commonly used
for video coding benchmarks. The first 150 frames and the last
300 frames are not shown for better resolution. The omitted data
shows repetitive results or less memory consumption at the begin-
ning and end. Single-refresh, while in principle faster, introduces
some memory overhead by conservatively chosen expiration ex-
tensions. Memory consumption with continuous-refresh is always
below memory consumption with pool allocation.

Figure 4(b) shows the memory consumption of the multi-
threaded x264 benchmark on the same video running a main thread,
a lookahead thread, and four encoding threads. We distinguish
single-threaded short-term memory management where refreshing

5 ftp://ftp.ldv.e-technik.tu-muenchen.de/dist/cif/

 0
 50

 100
 150
 200
 250
 300
 350

 0 20 40 60 80 100m
e
m

o
ry

 c
o
n
s
u
m

p
ti
o
n

 i
n
 K

B

 (
lo

w
e
r

is
 b

e
tt
e
r)

number of allocations

tick tick tick

ptmalloc2 eager-SCM lazy-SCM

Figure 3. Memory consumption of the mpg123 benchmark.

(a) single-threaded

(b) multi-threaded

32
34
36
38
40
42
44
46
48
50
52
54

150 200 250 300 350 400 450 500 550 600

m
e

m
o

ry
 c

o
n

su
m

p
tio

n
in

 M
B

(l
o

w
e

r
is

 b
e

tt
e

r)

number of frames

SCM continuous refresh single-threaded
SCM single refresh single-threaded

SCM continuous refresh multi-threaded
SCM single refresh multi-threaded

original with pool allocation original without pool allocation

24
25
26
27
28
29
30
31
32
33
34

150 200 250 300 350 400 450 500 550 600

m
e

m
o

ry
 c

o
n

su
m

p
tio

n
in

 M
B

(l
o

w
e

r
is

 b
e

tt
e

r)

number of frames

Figure 4. Memory consumption of the x264 benchmark (x-axis
shortened for better resolution).

and ticking is done in the main thread from multi-threaded short-
term memory management where refreshing and ticking is done in
the encoding threads using either global time or else thread-local
time. Both single-refresh and continuous-refresh perform well with
single-threaded short-term memory management, introducing only
low memory overhead over pool allocation (as expected the over-
head of single refresh is slightly higher). With multi-threaded short-
term memory management, memory consumption is higher except
for continuous-refresh using thread-local time, which comes close
to the maximum memory consumption of single-refresh in the main
thread. Scalability is not affected, we obtain similar results on a 24-
core machine.

4.2 Java
We execute the Monte Carlo benchmark 30 times and calculate the
average of the total execution times.

The original Monte Carlo benchmark (MC leaky) produces a
reachable memory leak which is not collected by a garbage collec-
tor. Self-collecting mutators (SCM) reuses the memory objects in
the memory leak upon expiration. Therefore, the MC leaky bench-
mark can be executed in just 20MB with self-collecting mutators.
The generational garbage collector (GEN) requires at least 95MB
whereas the mark-sweep garbage collector (MS) requires 100MB.
For this reason we benchmark MC leaky with heap sizes of 100MB
as well as 1GB, which is enough memory to run the benchmark
without garbage collection.

We then modified the Monte Carlo benchmark by removing the
memory leak (MC fixed). The fixed benchmark runs successfully
with a heap size of 20MB on all systems. For comparison we also
benchmark MC fixed with a heap size of 50MB, which is the initial

 0

 1

 2

 3

 4

 5

 6

MC
 leaky

 100MB

MC
 leaky
 1GB

MC
 fixed
 20MB

MC
 fixed
 50MB

MC
 fixed
 1GB

to
ta

l
ru

n
ti
m

e
 i
n

 s
e

c
o

n
d

s

(l
o

w
e

r
is

 b
e

tt
e

r)

	

SCM
GEN

MS

Figure 5. Total execution time of the Monte Carlo benchmarks.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500
 1

 10

 100

 1000

 10000

m
e
m

o
ry

 c
o
n
s
u
m

p
ti
o
n
 i
n
 M

B

 (
lo

w
e
r

is
 b

e
tt
e
r)

lo
o
p
 e

x
e
c
u
ti
o
n
 t
im

e

 i
n
 m

ic
ro

s
e
c
o
n
d
s

 (
lo

g
a
ri
th

m
ic

)
(l
o
w

e
r

is
 b

e
tt
e
r)

loop iteration

GEN memory consumption
MS memory consumption

SCM memory consumption

GEN loop execution time
MS loop execution time

SCM loop execution time

Figure 6. Memory consumption and loop execution time of the
fixed Monte Carlo benchmark.

heap size of the production configuration of Jikes. The results are
shown in Figure 5. SCM is slightly faster than the garbage-collected
systems, even when more memory is available.

Figure 6 shows the memory consumption and loop execution
time of the MC fixed benchmark recorded at the end of every loop
iteration, with a heap size of 50MB. The results show that the mem-
ory consumption and latency of SCM are nearly constant, in par-
ticular there are no latency peaks (the loop execution time jitter is
less than 100 microseconds) after startup. Both garbage-collected
systems have similar loop execution times as SCM except for the
iterations in which garbage collection is performed. The memory-
consumption function of the garbage-collected systems has the typ-
ical saw-tooth shape with peaks right before each garbage collec-
tion run. The chart depicts the first 2500 loop iterations, further
iterations show the same pattern. The measurements are done with
all short-living objects flagged as short-term by 36 refresh(0)-calls.
For avoiding all garbage collection runs it is sufficient to flag as
short-term the objects of just 10 allocation sites (which allocate
large objects).

Note that the first generational garbage collection run collects
much more memory than the memory allocated by the application
until then. The same is true for MS but to a lesser extent. This
memory (not allocated by the application) is not collected when
using SCM (it would be collected if garbage collection would
trigger with SCM but it does not here). The overhead of SCM can
be seen at time 0 as the difference between the GEN/MS versus the
SCM memory consumption (≤18%).

4.3 Go
The results of the Tree benchmark are similar to the results of the
Monte Carlo benchmarks. Out of a total of 23 garbage collection
runs all but one are avoided with self-collecting mutators improving
latency and memory consumption, as shown in Figure 7, and total
execution time by up to 28%. The remaining garbage collection run
does not collect any objects.

The self-collecting mutators version of our implementation
of a static multi-threaded web server in Go improves client-side
server latency (from 1.87 to 1.54 milliseconds on average, from
1.7 to 1.05 milliseconds in standard deviation, and from 20.65

 0

 50

 100

 150

 200

 250

 300

 0 5000 10000 15000 20000

 10

 100

 1000

 10000

 100000

m
e
m

o
ry

 c
o
n
s
u
m

p
ti
o
n
 i
n
 M

B
(l
o
w

e
r

is
 b

e
tt
e
r)

in
te

r-
a
llo

c
a
ti
o
n
 t
im

e

 i
n
 m

ic
ro

s
e
c
o
n
d
s

 (
lo

g
a
ri
th

m
ic

)
(l
o
w

e
r

is
 b

e
tt
e
r)

allocation operations

MS memory consumption
SCM memory consumption

MS inter-allocation time
SCM inter-allocation time

Figure 7. Memory consumption and inter-allocation time of the
Tree benchmark.

to 10.85 milliseconds maximum) by decreasing the number of
garbage collection runs while consuming about the same amount
of memory as the unmodified server. The non-trivial aspect of this
benchmark is that goroutine scalability is maintained since reuse of
descriptor roots and pages across goroutines is effective.

5. Conclusion
We have proposed a memory model for heap management called
short-term memory and developed an implementation of short-
term memory for explicit refreshing called self-collecting mutators.
Short-term memory may be particularly useful in applications with
complex, data- rather than control-dependent object lifetime sce-
narios such as the x264 use case. Interesting, principled future work
may be to develop an allocator aware of short-term memory using,
e.g. regions, and to study alternative notions of time as well as pro-
gram analysis for enabling safe use of short-term memory.

Acknowledgments
We are grateful to all reviewers of all previous versions of this
paper, we have learned a lot from their comments and suggestions.

References
[1] AIGNER, M., HAAS, A., KIRSCH, C. M., AND SOKOLOVA, A. Short-term

memory for self-collecting mutators - revised version. Tech. Rep. 2010-06,
Department of Computer Sciences, University of Salzburg, October 2010.

[2] AIGNER, M., HAAS, A., AND LIPPAUTZ, M. Short-term memory implemen-
tation for C, Java, and Go, 2010. http://tiptoe.cs.uni-salzburg.at/
short-term-memory/.

[3] ALPERN, B., ATTANASIO, C. R., BARTON, J. J., BURKE, M. G., CHENG,
P., CHOI, J.-D., COCCHI, A., FINK, S. J., GROVE, D., HIND, M., HUMMEL,
S. F., LIEBER, D., LITVINOV, V., MERGEN, M. F., NGO, T., RUSSELL, J. R.,
SARKAR, V., SERRANO, M. J., SHEPHERD, J. C., SMITH, S. E., SREEDHAR,
V. C., SRINIVASAN, H., AND WHALEY, J. The Jalapeño virtual machine. IBM
Syst. J. 39, 1 (2000), 211–238.

[4] BACON, D. F., CHENG, P., AND RAJAN, V. T. A real-time garbage collector
with low overhead and consistent utilization. In Proc. POPL (2003), ACM.

[5] BACON, D. F., CHENG, P., AND RAJAN, V. T. A unified theory of garbage
collection. In Proc. OOPSLA (2004), ACM.

[6] BLACKBURN, S. M., AND MCKINLEY, K. S. Immix: a mark-region garbage
collector with space efficiency, fast collection, and mutator performance. In
Proc. PLDI (2008), ACM.

[7] BOND, M. D., AND MCKINLEY, K. S. Leak pruning. In Proc. ASPLOS (2009),
ACM.

[8] CHEREM, S., AND RUGINA, R. Compile-time deallocation of individual objects.
In Proc. ISMM (2006), ACM.

[9] COLLINS, G. E. A method for overlapping and erasure of lists. Commun. ACM
3, 12 (1960), 655–657.

[10] CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., AND STEIN, C. Introduc-
tion to Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001, ch. 6.5:
Priority queues, pp. 138–142.

[11] CRACIUNAS, S., KIRSCH, C. M., PAYER, H., SOKOLOVA, A., STADLER, H.,
AND STAUDINGER, R. A compacting real-time memory management system.
In Proc. USENIX ATC (2008).

[12] FRASER, K. Practical Lock-Freedom. PhD thesis, Computer Laboratory,
University of Cambridge, 2003.

[13] GAY, D., AND AIKEN, A. Memory management with explicit regions. In
Proc. PLDI (1998), ACM.

[14] GUYER, S. Z., MCKINLEY, K. S., AND FRAMPTON, D. Free-me: a static
analysis for automatic individual object reclamation. In Proc. PLDI (2006),
ACM.

[15] JUMP, M., AND MCKINLEY, K. S. Cork: dynamic memory leak detection for
garbage-collected languages. In Proc. POPL (2007), ACM.

[16] KOCHAN, S. Programming in Objective-C 2.0, 2nd ed. Addison-Wesley
Professional, 2009.

[17] MASMANO, M., RIPOLL, I., CRESPO, A., AND REAL, J. TLSF: A new
dynamic memory allocator for real-time systems. In Proc. ECRTS (2004), IEEE
Computer Society, pp. 79–86.

[18] MATHEW, J. A., CODDINGTON, P. D., AND HAWICK, K. A. Analysis and
development of Java Grande benchmarks. In Proc. JAVA (1999), ACM.

[19] MCCARTHY, J. Recursive functions of symbolic expressions and their compu-
tation by machine, Part I. Commun. ACM 3, 4 (1960), 184–195.

[20] MERRITT, L., AND VANAM, R. X264: A high performance H.264/AVC encoder,
2006.

[21] NGUYEN, H. H., AND RINARD, M. Detecting and eliminating memory leaks
using cyclic memory allocation. In Proc. ISMM (2007), ACM.

[22] OGATA, K., ONODERA, T., KAWACHIYA, K., KOMATSU, H., AND NAKATANI,
T. Replay compilation: improving debuggability of a just-in-time compiler. In
Proc. OOPSLA (2006), ACM.

[23] TANENBAUM, A. S. Modern Operating Systems. Prentice Hall, 2001.
[24] TOFTE, M., AND TALPIN, J.-P. Region-based memory management. Inf.

Comput. 132, 2 (1997), 109–176.
[25] WIEGAND, T., SULLIVAN, G. J., BJØNTEGAARD, G., AND LUTHRA, A.

Overview of the H.264/AVC video coding standard. IEEE Transactions on
Circuits and Systems for Video Technology 13, 7 (2003).

[26] http://mewiki.project357.com/wiki/x264 settings.

http://tiptoe.cs.uni-salzburg.at/short-term-memory/
http://tiptoe.cs.uni-salzburg.at/short-term-memory/

	1 Introduction
	2 Model and Implementation
	2.1 Single-Threaded Use Cases
	2.2 Multi-Threaded Use Cases
	2.3 Implementation
	2.4 Real Time and Fragmentation
	2.5 Multiple Clocks
	2.6 Global-Time Management

	3 Related Work
	3.1 Short-term Memory
	3.2 Self-Collecting Mutators

	4 Time and Space
	4.1 C
	4.2 Java
	4.3 Go

	5 Conclusion

