
Outline Project description Grammar Pumping Lemma Limitation Parser End

IndentationSensitiveLanguages

Leonhard Brunauer Bernhard Mühlbacher

University of Salzburg

June 29, 2006

Outline Project description Grammar Pumping Lemma Limitation Parser End

Outline

1 Project description

2 Grammar

3 Pumping Lemma

4 Limitation

5 Parser

Outline Project description Grammar Pumping Lemma Limitation Parser End

Description

Spin-off of the project we are working on in the compiler
construction class: Boa

Nested structures are not defined by BEGIN and END tokens,
but by the level of indentation of statements.

This feature can be found in several other programming
languages around:

Haskell
Python

Outline Project description Grammar Pumping Lemma Limitation Parser End

Example

def sign(i: int) -> int:
if i < 0:

return -1
elif i == 0:

return 0
else:

return 1

Outline Project description Grammar Pumping Lemma Limitation Parser End

Definition

Definition

Let Σ be an alphabet. A counter Cn
t for some symbol t ∈ Σ and

some number n ∈ N is defined by:

1 C 0
t = ε and

2 Cn+1
t = Cn

t ◦ t , where ◦ is the concatenation symbol.

Referring to the above definition, a counter obviously generates a
string of length n that does not contain any other symbol than t.

Outline Project description Grammar Pumping Lemma Limitation Parser End

Definition (cond’t)

Definition

An indentation sensitive grammar ISG is a 5-tuple (V ,Σ,C ,R,S),
where

1 V is a finite set of non-terminal symbols,

2 Σ is a finite set of terminal symbols,

3 C is a set of counters

C = {Cn
t | t ∈ Σ and n ∈ N}

4 R is a finite set of rules, where the left-hand side is a string of
zero or one counter and exactly one non-terminal and the
right-hand side is a string of non-terminals, terminals, and
counters, and

5 S ∈ V is the start symbol.

Outline Project description Grammar Pumping Lemma Limitation Parser End

Example

The grammar for a simplified programming language is defined by
G = (V ,Σ,C ,R,S), where

1 V = {S , 〈Stmt〉, 〈Simple〉, 〈Nesting〉, 〈Cond〉}
2 Σ = {“if“, identifier, intLiteral, “ : “, “ = “,newline,→}
3 C = {C n

→ | n ∈ N}
4 R is defined by:

S → C 0
→〈Stmt〉 | ε

C n
→〈Stmt〉 → C n

→〈Stmt〉C n
→〈Stmt〉 | C n

→〈Nesting〉 | C n
→〈Simple〉

C n
→〈Nesting〉 → C n

→“if“ 〈Cond〉 “ : “ newline C n+1
→ 〈Stmt〉

〈Simple〉 → identifier “ = “ intLiteral newline
〈Cond〉 → identifier

Outline Project description Grammar Pumping Lemma Limitation Parser End

Pumping Lemma for context-free Languages
(M.Sipser)

If A is a context-free language, then there is a number p(pumping
length) where, if s is any string in A of length at least p, then s
may be divided into five pieces s = uvxyz satisfying the conditions

1 for each i ≥ 0, uv ixy iz ∈ A,

2 |vy | > 0, and

3 |vxy | ≤ p.

Outline Project description Grammar Pumping Lemma Limitation Parser End

Theorem + Proof

Theorem

G is not context free.

Proof.

We assume that G is a CFL and obtain a contradiction. Let p be
the pumping length for G that is guaranteed to exist by the
pumping lemma. We use the string
s = if ◦ → ◦if ◦ → ◦ → ◦if ◦ → ◦ → ◦ → ◦if ◦ ◦ (→)p ◦ ass or
an other representation:
s = if ◦

→ ◦if ◦
→ ◦ → ◦if ◦
→ ◦ → ◦ → ◦if ◦
....
→ ◦........................◦ →︸ ︷︷ ︸

p times

◦ass

Outline Project description Grammar Pumping Lemma Limitation Parser End

Proof (cond’t)

Clearly s is a member of G and of length at least p.

The pumping lemma states that s can be pumped, but we
show that it cannot.

In other words, we show that no matter how we choose v one
of the three conditions of the lemma is violated.

Outline Project description Grammar Pumping Lemma Limitation Parser End

Proof (cond’t)

1 vxy = ”if ”: pumping v leads to a string like if ◦ if ... and such
a string is not in G , because after each if we have to increase
the indentation level (one → more than the if before).

2 vxy = ”if ◦ → ”: pumping v we also get a string like
if ◦ → ◦if ◦ → ◦if ◦ ..., that is not in G , if i > 1 (pump more
than once). Here we again violates to increase the indentation
level after each if .

3 vxy = ” → ”: pumping v again results in a string
if ◦ → ◦ → ◦..., which is not in G . We have to increase the
indentation level after each if exactly once.

4 vxy = ”ass”: here the condition 1 of the pumping lemma is
violated if i = 0, because we need an assignment ass

5 vxy = ”→ ◦...◦ →︸ ︷︷ ︸
p times

◦ass”: if i = 0, condition 1 is violated (no

ass) and also condition 3 (|vxy | > p)

Outline Project description Grammar Pumping Lemma Limitation Parser End

Limitation of the indentation level

Theorem

The depth of indentation level is finite, and is limited by the length
of the input string.

Proof.

This theorem is obviously true because the number of →’s cannot
be greater than the input string.

For our example we have a lower bound of O(
√

n) where n = |s|
s = if ◦

→ ◦if ◦
→ ◦ → ◦if ◦
→ ◦ → ◦ → ◦if ◦︸ ︷︷ ︸

m

n =
∑m

i=1 i = m∗(m+1)
2 = (m2+m)

2 .

Outline Project description Grammar Pumping Lemma Limitation Parser End

Parser construction

Try to construct an efficient LL-parser for an indentation sensitive
grammar.

1 Eliminating left recursion

2 Counter binding

3 Getting rid of backtracking

Outline Project description Grammar Pumping Lemma Limitation Parser End

Eliminating left recursion

Left recursion may lead to nondeterministic choices or prevent
the parser from terminating.

A → Aα | β

Left recursion can be eliminated by transforming the grammar
to

A → βA′

A′ → αA′ | ε

Outline Project description Grammar Pumping Lemma Limitation Parser End

Counter binding

Simplify the choice among deriving a variable only and
deriving a variable and a counter at once.

Prevent from nondeterminism.

Example

Let’s try to find a derivation for Cn
t A

Cn
t A → Cn

t B

Cn
t B → Cn

t B1

B → B2

Which rule to apply for Cn
t B ?

Outline Project description Grammar Pumping Lemma Limitation Parser End

Counter binding (cont’d)

To get rid of this choice we introduce counter binding.

We can explicitly bind counters and variables to make them
behave like a single variable.
A counter that is not bounded is treated like a terminal
symbol.
If a counter appears on a LHS, it must be bounded.

Example

Cn
t A → Cn

t B

Cn
t B → Cn

t B1

B → B2

Cn
t A ⇒ Cn

t B ⇒ Cn
t B1

Outline Project description Grammar Pumping Lemma Limitation Parser End

Getting rid of backtracking

Introducing counters may lead to nondeterministic choices.

Cn
t A → Cn

t B1 | Cn
t B2

FIRST (Cn
t B1) = FIRST (Cn

t B2) if n 6= 0

Delay the choice and fetch n t-symbols first.

Deterministic choice, iff FIRST (B1) 6= FIRST (B2)

Outline Project description Grammar Pumping Lemma Limitation Parser End

Getting rid of backtracking (cont’d)

The situation gets more complicated if we have

Cn
t A → Cn+c

t B1 | Cn
t B2

for some c ∈ N
Introduce a new counter field value.

Say that a counter Cn
t is applied to the input, if we try to

fetch t-tokens until value = n.

Apply Cn+c
t to the input:

If the counter’s value = n, proceed with C n+c
t B1

Otherwise set C n
t ’s value to C n+c

t ’s one and try to proceed
with C n

t B2

Outline Project description Grammar Pumping Lemma Limitation Parser End

Demo

Outline Project description Grammar Pumping Lemma Limitation Parser End

Efficient Parser Implementation vs Theory

Counters are placed on the parser’s stack.

Counters can grow to an arbitrary large number, dependent
on the length of the input string.

From a theoretical point of view, every stack element needs
an unbounded amount of memory.

From a pragmatic point of view, we can assume that a stack
element needs only a bounded amount of memory for every
reasonable input string.

Outline Project description Grammar Pumping Lemma Limitation Parser End

Thanks for your attention!

	Outline
	Project description
	Grammar
	Pumping Lemma
	Limitation
	Parser
	End

