

IndentationSensitiveLanguages

Leonhard Brunauer Bernhard Mühlbacher

University of Salzburg

June 29, 2006

3 Pumping Lemma

- Spin-off of the project we are working on in the compiler construction class: Boa
- Nested structures are not defined by BEGIN and END tokens, but by the level of indentation of statements.
- This feature can be found in several other programming languages around:
 - Haskell
 - Python


```
def sign(i: int) -> int:
    if i < 0:
        return -1
    elif i == 0:
        return 0
    else:
        return 1
```


Definition

Let Σ be an alphabet. A *counter* C_t^n for some symbol $t \in \Sigma$ and some number $n \in \mathbb{N}$ is defined by:

- $C_t^0 = \varepsilon$ and
- 2 $C_t^{n+1} = C_t^n \circ t$, where \circ is the concatenation symbol.

Referring to the above definition, a counter obviously generates a string of length n that does not contain any other symbol than t.

Definition (cond't)

Definition

An indentation sensitive grammar *ISG* is a 5-tuple (V, Σ, C, R, S) , where

- V is a finite set of *non-terminal* symbols,
- 2 Σ is a finite set of *terminal* symbols,
- **O** is a set of *counters*

$$C = \{C_t^n \mid t \in \Sigma \text{ and } n \in \mathbb{N}\}\$$

- R is a finite set of *rules*, where the left-hand side is a string of zero or one counter and exactly one non-terminal and the right-hand side is a string of non-terminals, terminals, and counters, and
- **()** $S \in V$ is the *start symbol*.

The grammar for a simplified programming language is defined by $G = (V, \Sigma, C, R, S)$, where

 $\textcircled{2} \ \Sigma = \{\text{``if`', identifier, intLiteral, ``: ``, ``= ``, newline, \rightarrow} \}$

$$0 \quad C = \{C^n_{\rightarrow} \mid n \in \mathbb{N}\}$$

R is defined by:

$$\begin{array}{rcl} S & \to & C^{0}_{\rightarrow}\langle Stmt \rangle \mid \varepsilon \\ C^{n}_{\rightarrow}\langle Stmt \rangle & \to & C^{n}_{\rightarrow}\langle Stmt \rangle C^{n}_{\rightarrow}\langle Stmt \rangle \mid C^{n}_{\rightarrow}\langle Nesting \rangle \mid C^{n}_{\rightarrow}\langle Simple \rangle \\ C^{n}_{\rightarrow}\langle Nesting \rangle & \to & C^{n}_{\rightarrow} \text{``if''} \langle Cond \rangle \text{``: ``newline } C^{n+1}_{\rightarrow}\langle Stmt \rangle \\ \langle Simple \rangle & \to & \text{identifier ``= ``intLiteral newline} \\ \langle Cond \rangle & \to & \text{identifier} \end{array}$$

Imping Lemma for context-free Languag (M.Sipser)

If A is a context-free language, then there is a number p(pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces s = uvxyz satisfying the conditions

• for each
$$i \ge 0$$
, $uv^i xy^i z \in A$,

$$|vxy| \le p.$$

End

Theorem + Proof

Theorem

G is not context free.

Proof.

We assume that G is a CFL and obtain a contradiction. Let p be the pumping length for G that is guaranteed to exist by the pumping lemma. We use the string $s = if \circ \rightarrow \circ if \circ \rightarrow \circ \rightarrow \circ if \circ \rightarrow \circ \rightarrow \circ if \circ \dots \circ (\rightarrow)^p \circ ass$ or an other representation:

$$s = if \circ \rightarrow \circ if \circ \rightarrow \circ \rightarrow \circ if \circ \rightarrow \circ \rightarrow \circ \rightarrow \circ if \circ \dots \rightarrow \circ \rightarrow \circ \rightarrow \circ if \circ$$

- Clearly s is a member of G and of length at least p.
- The pumping lemma states that s can be pumped, but we show that it cannot.
- In other words, we show that no matter how we choose v one of the three conditions of the lemma is violated.

Proof (cond't)

- vxy = "if": pumping v leads to a string like if ∘ if... and such a string is not in G, because after each if we have to increase the indentation level (one → more than the if before).
- vxy = "if ∘ → ": pumping v we also get a string like if ∘ → ∘if ∘ → ∘if ∘ ..., that is not in G, if i > 1 (pump more than once). Here we again violates to increase the indentation level after each if.
- vxy = " → ": pumping v again results in a string if ∘ → ∘ → ∘..., which is not in G. We have to increase the indentation level after each if exactly once.
- vxy = "ass": here the condition 1 of the pumping lemma is violated if i = 0, because we need an assignment ass

•
$$vxy = " \xrightarrow{p \text{ times}} \circ ass"$$
: if $i = 0$, condition 1 is violated (no ass) and also condition 3 ($|vxy| > p$)

Limitation of the indentation level

Theorem

The depth of indentation level is finite, and is limited by the length of the input string.

Proof.

This theorem is obviously true because the number of \rightarrow 's cannot be greater than the input string.

For our example we have a lower bound of $O(\sqrt{n})$ where n = |s| $s = if \circ$

$$\begin{array}{c} \rightarrow \circ if \circ \\ \rightarrow \circ \rightarrow \circ if \circ \\ \underbrace{\rightarrow \circ \rightarrow \circ \circ if \circ}_{m} \\ n = \sum_{i=1}^{m} i = \frac{m * (m+1)}{2} = \frac{(m^2 + m)}{2}. \end{array}$$

Try to construct an efficient LL-parser for an indentation sensitive grammar.

- Eliminating left recursion
- Ounter binding
- Getting rid of backtracking

Eliminating left recursion

• Left recursion may lead to nondeterministic choices or prevent the parser from terminating.

$$A \rightarrow A\alpha \mid \beta$$

• Left recursion can be eliminated by transforming the grammar to

$$egin{array}{rcl} A &
ightarrow & eta A' \ A' &
ightarrow & lpha A' \mid arepsilon \end{array}$$

- Simplify the choice among deriving a variable only and deriving a variable and a counter at once.
- Prevent from nondeterminism.

Example

Let's try to find a derivation for $C_t^n A$

$$C_t^n A \rightarrow C_t^n B$$

 $C_t^n B \rightarrow C_t^n B_1$
 $B \rightarrow B_2$

Which rule to apply for $C_t^n B$?

Parser

Counter binding (cont'd)

• To get rid of this choice we introduce counter binding.

- We can explicitly bind counters and variables to make them behave like a single variable.
- A counter that is not bounded is treated like a terminal symbol.
- If a counter appears on a LHS, it must be bounded.

Example

$$\begin{array}{rcl} \overline{C_t^n A} & \to & \overline{C_t^n B} \\ \overline{C_t^n B} & \to & C_t^n B_1 \\ B & \to & B_2 \end{array}$$

 $\overline{C_t^n A} \Rightarrow \overline{C_t^n B} \Rightarrow C_t^n B_1$

Getting rid of backtracking

Introducing counters may lead to nondeterministic choices.

$\overline{C_t^n A} \quad \to \quad \overline{C_t^n B_1} \mid \overline{C_t^n B_2}$

- $FIRST(\overline{C_t^n B_1}) = FIRST(\overline{C_t^n B_2})$ if $n \neq 0$
- Delay the choice and fetch *n t*-symbols first.
- Deterministic choice, iff $FIRST(B_1) \neq FIRST(B_2)$

Getting rid of backtracking (cont'd)

• The situation gets more complicated if we have

$$\overline{C_t^n A} \quad \to \quad \overline{C_t^{n+c} B_1} \mid \overline{C_t^n B_2}$$

for some $c \in \mathbb{N}$

- Introduce a new counter field value.
- Say that a counter C_t^n is applied to the input, if we try to fetch *t*-tokens until value = n.
- Apply C_t^{n+c} to the input:
 - If the counter's value = n, proceed with $C_t^{n+c}B_1$
 - Otherwise set $C_t^{n'}$'s value to $C_t^{n+c'}$'s one and try to proceed with $\overline{C_t^n B_2}$

Outline	Project description	Grammar	Pumping Lemma	Limitation	Parser	End			
Demo									

Efficient Parser Implementation vs Theory

- Counters are placed on the parser's stack.
- Counters can grow to an arbitrary large number, dependent on the length of the input string.
- From a theoretical point of view, every stack element needs an unbounded amount of memory.
- From a pragmatic point of view, we can assume that a stack element needs only a bounded amount of memory for every reasonable input string.

Outline	Project description	Grammar	Pumping Lemma	Limitation	Parser	End

Thanks for your attention!