Dynamic Prediction of Collection Yield

for Managed Runtimes

Michal Wegiel
mwegiel@cs.ucsb.edu

Chandra Krintz
ckrintz@cs.ucsb.edu

Computer Science Department
University of California, Santa Barbara

May 13, 2009

Presentation by Andreas Rottmann
Department of Computer Sciences
University of Salzburg
a.rottmann@gmx.at

Wegiel, Krintz (University of California)

Dynamic Yield Prediction

May 13, 2009

1/17

Outline

@ Motivation

Wegiel, Krintz (University of California) Dynamic Yield Prediction May 13, 2009

Outline

@ Motivation

© The Yield Predictor
@ Preliminaries
@ Algorithm
@ Implementation

Wegiel, Krintz (University of California) Dynamic Yield Prediction May 13, 2009 2 /17

Outline

@ Motivation

© The Yield Predictor
@ Preliminaries
@ Algorithm
@ Implementation

© Performance Evaluation

2/17

Wegiel, Krintz (University of California) Dynamic Yield Prediction

May 13, 2009

The Goal: Minimizing GC cost

Approaches

@ Generational GC
@ Employ parallelization and concurrency
@ Compacting GC

@ Coordinate GC & OS virtual memory managment

o Enhance locality (minimize TLB and cache misses)
e GC avoidance using yield prediction

Wegiel, Krintz (University of California) Dynamic Yield Prediction May 13, 2009 3/17

Detecting ineffective collections

Does it make sense?

@ Existing systems don't consider GC productivity
@ Many GC runs are not productive
@ Average GC yield of < 5% of heap size common in Java applications

@ Avoid ineffective collections

Yield Prediction

@ Need a fast and accurate estimator of GC yield
@ Marking phase gives 100% accuracy, but. ..
@ ...amounts to 50% — 90% of total GC time

Wegiel, Krintz (University of California) Dynamic Yield Prediction May 13, 2009

The Yield Predictor

Observation: Dead objects form clusters

Virtual Memory

HEERIEEE NS

Dead Objects

@ The hardware already tracks usage of virtual memory pages

@ Use hardware page reference counts to predict collection yield

Wegiel, Krintz (University of California) Dynamic Yield Prediction May 13, 2009

Exploiting Virtual Memory

Background

Each virtual memory page has:
e Dirty Bit
@ Recently-Referenced Bit (RR)
Managed by OS/hardware to implement swapping

@ Correlation: not-RR <> objects on that page dead

Wegiel, Krintz (University of California) Dynamic Yield Prediction

May 13, 2009 6 /17

YP Parameters

Skip Threshold

Skip collections predicted to yield < x% of heap size

Old-Young Ratio

Old Young

| | | >
[

f f

Last GC Now (GC)

Wegiel, Krintz (University of California) Dynamic Yield Prediction May 13, 2009 7/17

Data Structures

Timestamp Array

o Carries (approximate) time of last access for each page

@ Populated by polling thread, regularly querying the RR bits from OS

MRE-cleared, OS-cleared page bits

@ Just in software
@ Used to multiplex the RR hardware bit between MRE and OS

Mispredicted-Dead Array
@ To account for seldom-used, permanent data structures

Wegiel, Krintz (University of California) Dynamic Yield Prediction May 13, 2009 8 /17

RR multiplexing

Cos, Cyp: “cleared” flags

Read Clear
YP | RRyp = RRuw @ Cos RRuw < 0,Cyp < 1,Cos < 0
OS | RRos = RRuw @ Cyp RRuw + 0,Cos «+ 1,Cyp <0

Wegiel, Krintz (University of California) Dynamic Yield Prediction May 13, 2009 9 /17

The Algorithm — Outline

@ Distinguish between mutator and GC access to a page

o Before GC: Snapshot RR page bits
o After GC: Clear RR bits set by GC activity

@ Adjust timestamps by GC pause length (after GC)
o Keep track of mispredicted-as-dead when doing GC
@ RR polling thread disabled during GC

Wegiel, Krintz (University of California) Dynamic Yield Prediction May 13, 2009

The Algorithm — Pseudocode (1)

Estimate Yield

rr_list = get_rr_pages(heap_start, heap_end)

for page in rr_list:
timestamp [page] = current_time
dead_count = 0

limit = OLD_YOUNG_RATIO * (current_time — last_full_gc)
predicted_dead = {}
for page in range(heap_start, heap_end):
age = current_time — timestamp[page]
if age >= limit and not mispredicted_dead[page]:
predicted_dead[page] = True
dead_count += page_size

Wegiel, Krintz (University of California) Dynamic Yield Prediction May 13, 2009

The Algorithm — Pseudocode (2)

Skip or Collect

if dead_count < SKIP_THRESHOLD % heap_size:
dead_count = max(dead_count, min_expansion)
expand_heap(dead_count)
total__expansion 4+= dead_count
else:
do_regular_gc|()
total_expansion = try_to_shrink_heap(total_expansion)
update_mispredicted_dead ()
if heap_relocated:
heap_start, heap_end = get_heap_boundaries()
clear_rr_pages(heap_start, heap_end)
for page in range(heap_start, heap_end):
timestamp [page] += gc_time
last_full_gc = current_time

Wegiel, Krintz (University of California) Dynamic Yield Prediction May 13, 2009

Implementation — MRE part

Sun’s HotSpot JVM

@ Uses a generational GC Scheme (young, old, permanent)

Young generation managed by copying GC

o
@ Major GC upon space exhaustion of old space
@ Three different GC implementations

e Compressor
e HotSpot Compactor
e Mapping Collector

Algorithm works with all three GC implentations.

Wegiel, Krintz (University of California) Dynamic Yield Prediction May 13, 2009 13 /17

Implementation — OS part

Linux 2.6 kernel module

Exposes /proc/ref/bits write-only file:

@ Written to by the polling thread in the MRE (10ms interval)
@ Data written: address range, result pointer

@ The kernel writes RR pages in requested range into result area

4

Kernel modifications

@ Minor modification required for handling of the per-page os-cleared
and mre-cleared bits.

Wegiel, Krintz (University of California) Dynamic Yield Prediction May 13, 2009 14 /17

Performance — Conditions

o Intel Core 2 Duo (dual-core), 2GB RAM, Linux 2.6.17 kernel

@ 16 Java programs

@ Mix of standard benchmarks & open-source Apps

Clustering

@ Most clusters < 4KiB, but average size > 200KiB

@ > 50% of dead space fully covered by pages

V.

GC yield

@ 9 of 16: < 5% — low yield group
@ 7 others: > 23%

A\

Wegiel, Krintz (University of California) Dynamic Yield Prediction May 13, 2009 15 / 17

Performance — Impact

Prediction Accuracy
For 5% skip threshold: 4% of heap size

Prediction Cost

With skip threshold = 0% (no skips):
@ < 4% on average
e < 10% max

For the low-yield group:
@ Speedup: > 44% on average, depending on GC
o Skip rate: 75% on average

For others:

o Maximum overhead: 3%

Wegiel, Krintz (University of California) Dynamic Yield Prediction May 13, 2009 16 / 17

End of Presentation

Thanks for your Attention!

May 13, 2009 17 / 17

	Motivation
	The Yield Predictor
	Preliminaries
	Algorithm
	Implementation

	Performance Evaluation
	Outro

