
Concurrency in Practice
Threaded vs. Event-based – is that a even valid question?

Robert Staudinger
rstaudinger@cs.uni-salzburg.at

Summer 2007 Software Systems Class
Department of Computer Sciences

University of Salzburg, Austria

July 13, 2007

Abstract

This survey looks at a handful influential papers and approaches re-
garding concurrent programming. Threaded programming is still sub-
ject to heated discussions, it even received some high-profile criticism,
as elaborated in Section 2. Rather than refuting, some multi-threading
advocates argue that offhand dismissal would be premature. This has
in turn led to the question whether a confrontation of both paradigms
is valid at all – which has to be answered with “not really”. Section
5 finally provides some details about Duff’s Device, a well known way
for portable implementation of cooperative threads.

1 Introduction

Run-time environments such as Java have made threaded programming look
very easy by putting synchronisation primitives into the language itself. Also
there seems to be a fixed idea among many programmers that multi-threaded
applications would perform better, which is probably to blame on shallow
literature. On the other hand advocates of event-driven programming are
dismissing threads offhand, in turn citing well known difficulties such as
race-conditions and timing non-determinism. This survey takes a look at
a number of influential papers on the topic of threaded and event-driven
programming and tries to find out whether an antagonism between both
approaches really exists.

1



2 High-profile criticism of multi-threading

The classical multi-threading programming paradigm has been subject to
much critique [10, 11], which in turn called defenders to join the discussion
[13].

One of the early strong critiques was Jon Ousterhout’s 1996 USENIX
talk Why Threads are a Bad Idea (for most purposes) [11], in which he men-
tions a long list of unfavourable properties. His comments center around the
claims that threads are hard to program because of difficulties to get syn-
chronisation right, leading to race conditions and deadlocks. More items
of critique are that threads are hard to debug and also break abstraction
between modules. Ousterhout advocates an event-driven programming style
instead, with a single logical (and also “physical” in terms of operating sys-
tem) thread of execution. Naturally the simplicity of event-handlers comes
at the price of being a less general abstraction. More complex handlers
would block the event dispatcher for an unacceptably long time and thus
have to be split up into parts – potentially obfuscating the code. He closes
with an evaluation of respective advantages, including easier portability1

of event-driven programs and advantages with regard to high performance
requirements of threads.

In The Problem with Threads[10] UC Berkeley’s Edward A. Lee argues in
a similar direction. He points out that while threaded programming seems
to be only a small step from sequential programming, it is actually much
more. By discarding the basic properties of sequential computation, which
are understandability, predictability and determinism, a threaded program
becomes wildly non-deterministic. Lee recommends more aggressive pruning
of threads to achieve determinism and cites careful lock acquisition and
application of understood design patterns [9] as remedies. However, even
when applying these techniques during software design and development,
satisfactory results are hard to achieve. He continues to point out a number
of programming language dialects that add support for multi-threading over
their ancestors. Examples are the C dialects Split-C [7] and Cilk [3] as well
as Guava [2], a Java derivative. As deterministic alternative to threads, the
rendezvous approach of Ptolemy II [5], is presented and discussed in depth.
He closes by pointing to a future of coordination languages [12] that are
orthogonal to the actual thread functionality implementations, but admits
that this is nothing new, rather just failed to take on until now.

1This particular concern has been alleviated by run-time environments such as Java(tm)
in the meantime

2



3 Can issues be avoided?

Contrary to the above reservation with regard to threads Rob von Behren
et al argue favourably in Why Events are a Bad Idea (for high-concurrency
servers) [13]. However, they clearly point out that assertions made in their
paper do not conflict with [11]. Their strongest claim is that desireable
properties of an event-based programming style, such as low synchronisa-
tion and state management overhead, as well as better scheduling and lo-
cality, can also be achieved in a threaded system, if compiler support for
threads is available. Revisiting the Lauer and Needham prove of equiva-
lence of message-passing and process-based systems [8] they conclude that
assumptions regarding cooperative scheduling and shared memory no longer
hold. Thus nowadays’ implementations are invalidating the strict theoreti-
cal concept of duality to some extent. For their benchmarks they used an
optimised version of the GNU Pth threading package2, removing most of the
O(n) operations from the scheduler. A particularly interesting point is made
in the chapter about compiler support for threads, mentioning a C-derived
programming language called nesC [6] that supports atomic sections. Fi-
nally an important issue is that this paper based on userland threading and
coroutine techniques, which in terms of tunability are way closer to events
than opaque kernel-level threading.

4 Is the “vs” valid at all?

Another interesting paper building bridges between the traditionally disjoint
fields of event-driven and threaded programming approaches is Cooperative
Task Management without Manual Stack Management [1] by Atul Adya et
al. The subtitle Event-driven Programming is Not the Opposite of Threaded
Programming makes the point pretty well and tries to clarify the underlying
mostly orthogonal issues of (i) task management, (ii) stack management,
(iii) I/O management, (iv) conflict management and (v) data partitioning,
of which stack management is discussed in more depth. The term stack
ripping is coined for manual stack management in languages that do not
offer native support for closures. What is not made as clear are the details
and implications of atomic (non-preemptible) code blocks in the context of
a manually managed stack. Clearly the focus is on the hybrid approach pre-
sented using an elaborate example using Fibers3, a collaborative threading
API available in the WindowsNT family of operating systems. Contrary
to papers discussed above, benchmarks are not provided. The focus is on

2http://www.gnu.org/software/pth/
3http://msdn2.microsoft.com/en-us/library/ms682661.aspx

3

http://www.gnu.org/software/pth/
http://msdn2.microsoft.com/en-us/library/ms682661.aspx


software design and -programming techniques.

5 Poor man’s threading

Finally, a C programming technique with roots in execution speed optimi-
sation, called Duff’s Device4, is used in a number of collaborative userland
threading implementations, like for example Coroutines in C 5. The most
elaborate and widely used incarnation of which is probably Adam Dunkels’
protothreads library [4]. Duff’s Device relies on the fact that switch state-
ments in C do fall through, unless a break statement is inserted. The ven-
erable Lysator site6 also has some auxiliary historical information. What
is particularly interesting is that Duff’s Device offers a portable (compiler
independent) way of collaborative concurrency for C, thus facilitating static
analisis. In order to exploit that feature for the implementation of a userland
threading package the necessary bookkeeping code is usually wrapped into
preprocessor defines, to make the resulting code at least somewhat readable.
Unfortunately the destruction of non-static local variables on the stack at
each yield requires manual stack management or abstinence from using them
across yield-points, which might not always be obvious.

6 Conclusion

The wildly varying presumptions and statements in the discussed papers
have showed that Threaded vs. Event-based is indeed the wrong question.
Instead, as detailed in Section 4, it is primarily a question of stack manage-
ment and task management. The wide range of available solutions ranging
from language-level primitives over library support to custom tailored, ap-
plication specific concurrency support should be able satisfy most demands.
This is not to say that there is no more room for innovation left. In terms
of implementation the square peg of concurrency has not yet been fit into
the round hole of determinism, at least not as a programming model that is
comparably straight forward as threads in terms of being obvious and easy
to understand.

4http://en.wikipedia.org/wiki/Duffs device
5http://www.chiark.greenend.org.uk/ sgtatham/coroutines.html
6http://www.lysator.liu.se/c/duffs-device.html

4

http://en.wikipedia.org/wiki/Duffs_device
http://www.chiark.greenend.org.uk/~sgtatham/coroutines.html
http://www.lysator.liu.se/c/duffs-device.html


References

[1] A. Adya, J. Howell, M. Theimer, W. Bolosky, and J. Douceur. Cooperative
task management without manual stack management, 2002.

[2] David F. Bacon, Robert E. Strom, and Ashis Tarafdar. Guava: a dialect of
Java without data races. ACM SIGPLAN Notices, 35(10):382–400, 2000.

[3] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.
Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded
runtime system. Journal of Parallel and Distributed Computing, 37(1):55–69,
1996.

[4] Adam Dunkels, Oliver Schmidt, Thiemo Voigt, and Muneeb Ali. Protothreads:
simplifying event-driven programming of memory-constrained embedded sys-
tems. In SenSys ’06: Proceedings of the 4th international conference on Em-
bedded networked sensor systems, pages 29–42, New York, NY, USA, 2006.
ACM Press.

[5] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendor, e Sonia,
and S. Yuhong. Taming heterogeneity—the ptolemy approach, 2002.

[6] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The
nesc language: A holistic approach to networked embedded systems, 2003.

[7] A. Krishnamurthy, D. E. Culler, A. Dusseau, S. C. Goldstein, S. Lumetta,
T. von Eicken, and K. Yelick. Parallel programming in split-c. In Supercomput-
ing ’93: Proceedings of the 1993 ACM/IEEE conference on Supercomputing,
pages 262–273, New York, NY, USA, 1993. ACM Press.

[8] Hugh C. Lauer and Roger M. Needham. On the duality of operating system
structures. SIGOPS Oper. Syst. Rev., 13(2):3–19, 1979.

[9] Douglas Lea and Doug Lea. Concurrent Programming in Java: Design Prin-
ciples and Patterns. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1996.

[10] Edward A. Lee. The problem with threads. Computer, 39(5):33–42, 2006.

[11] John Ousterhout. Why Threads Are A Bad Idea (for most purposes).
In USENIX Winter Technical Conference, San Diego, CA, January 1996.
USENIX.

[12] George A. Papadopoulos and Farhad Arbab. Coordination models and lan-
guages. In 761, page 55. Centrum voor Wiskunde en Informatica (CWI), ISSN
1386-369X, 31 1998.

[13] R. von Behren, J. Condit, and E. Brewer. Why events are a bad idea for
high-concurrency servers, 2003.

5


	Introduction
	High-profile criticism of multi-threading
	Can issues be avoided?
	Is the ``vs'' valid at all?
	Poor man's threading
	Conclusion

