
Scheduling
Multithreaded
Computations by
Work stealing
by Robert D Blumofe and Charles E. Leiserson, MIT
Laboratory for Computer Science

Presented by Dayton Bishop on
May 3rd, in the Software Systems Seminar 2007
Department of Computer Sciences, University of Salzburg

2

Overview
Introduction to the thematics of Multi Processing
Goal of the presentation
Work Sharing
Premises for work stealing
Steps towards the development of the work stealing
Algorithm
Analysing the algorithm
Comparison of the algorithms Work Sharing and Work
Stealing
Improvements
Implementation

3

Introduction to the thematics of
Multi Processing

Multiprocessor systems have been around for
some time
Single processors can only increase their speed
according to Moore’s law
At some point there is a limit of the processor
speeds
Single processors are more expensive than
multiprocessors for same processing power
Uniprocessors are easier to handle from a
software perspective

4

Software on Multiprocessing
systems

Design issues:
Additional functionality
High requirements to the operating system to hide the
multiprocessing system
Communication Overhead
Multiprocessor scheduling is a NP complete problem
Therefore a good simulation of the problem is the bins
packing problem

5

Constraints of Multi Processing

Factors limiting processing power
Temperature
Communication Speeds
Power consumption
Software

6

Goal

Comparing the known alternatives of
Work stealing
Work sharing

Proving that Work Stealing requires less
communication than Work Sharing

Work Sharing Communications : Ө (T1 SMax)
T1 : Minimum execution time for one processor
SMax : Size in Bytes of the largest activation frame

7

Work Sharing

General Idea is a Global queue
There are other papers that propose a
distributed shared work queue
Each processor requests a Thread to work
on from this central queue
If the thread is stalled it is returned to the
central queue

8

Premises on Threads

Life of a thread:
Spawn
Stalls
Dies

DAG
Fully Strict
Example for a Uniprocessor execution

9

10

Premises on Threads (2)

Heavyweight threads
Activation Frame
The frame hold all values
No global storage

A parent with Children remains alive
Activation Depth S1= Minimal Amount of space
possible

Total size of all frames of the execution
SP Linear expansion of space for a P –
Processor execution schedule

11

Terminology

TP : Time used by a P – processor execution
schedule
Tinfinity : Time of computation for an infinite
amount of processors
TP >= Tinfinite
Work : The number of tasks in the computation
T1 : The minimum time for a Uniprocessor
TP >= T1 / P

12

Steps twards the comparison

The Greedy Scheduling Algorithm
The Busy Leaves Algorithm
Randomized work – stealing algorithm
Refining using the atomic access model and
recycling

13

The Greedy Scheduling Algorithm

Linear Speed up
If P tasks are ready P execute
If less are ready all execute

14

The Busy Leaves Algorithm
No contending for access to thread pool
Unit access to the pool
Average available Prallelism: T1 / Tinfinity
Good for small scale systems
No scaling to large scale systems
Operation:

1. A spawns B, Then B is executed
2. If A stalls, return A to the thread pool
3. If A dies, Parent is executed. Else other thread in

pool
SP <= S1 * P

15

Randomized work – stealing
algorithm

Each processor maintains a
Thread deque
Maintains the busy leaves
properties
Actions

1. If Thread A enables Thread
B, A is placed in the ready
queue

2. If A spawns B, B is executed
3. If A dies, no Threads -> work

stealing from random
processor

16

Randomized work – stealing
algorithm

17

The atomic access model and
recycling

Balls and Bins Game
P - Balls
P - Bins
M is the number of the Requests
Balls are tossed randomly into bins
Rules:

1. Random balls from reservoir into Bins
2. Removes one ball from each Bin

18

The atomic access model and
recycling

Game ends after
M ball tosses
All Balls have been returned to the reservoir

Ball symbolizes a steal request
Interest: Total delay time

Remains rather small

19

Balls and Bins Game Results

Expected total delay = The number of Requests
Start with analysing 1 ball
Either it is delayed or it is not delayed at every of
the m throws
Does not matter what ball is removed from the
bin first
Then we assume that all the balls are equal
The total delay is the sum of P delays of balls

20

Analysing time and communication
cost

An accounting argument was used
Each round P dollars are available
These dollars are then distributed among three
bins:

Wait
Steal
Work

The execution finishes when as many tokens are
in the work bin as there are tasks

At the end there are task tokens in the work bin

21

Analysing time and communication
cost

Number of calculated dollars in the steal bucket:
P times the longest Path of the DAG

Number of calculated waits:
Is at most the number of dollars in the steal bucket

The total communication for work stealing:
The number of steal attempts times the amount of
information SMax -> O(P * Tinfinity * SMax)
Since in linear Speedup systems we assume P =
O(T1 / Tinfinity)

Result for the communication : O(T1 SMax)

22

Comparison of the algorithm to
other methods

Work sharing
Work Sharing Communications : Ө (T1 SMax)

Work stealing
O(T1 SMax)
Since P << T1 / Tinfinity we expect much better
results

23

Improvements

No guarantee that processors can run out
of space
Working with strict not fully strict graphs
Possibly even non strictness

24

Implementations

Cilk
C implementation for Multiprocessors of Work
stealing

Achievments:
Chessprogramms that have won awards

25

Danke für die
Aufmeksamkeit

Scheduling Multithreaded
computations by work stealing

Presented by Dayton Bishop

26

Ressources

1.

27

Proof(1)

1. Delay D
2. Delay of one ball by

another
3. Probability of for a

delay
4. Proving Inequality

	Scheduling Multithreaded Computations by Work stealing
	Overview
	Introduction to the thematics of Multi Processing
	Software on Multiprocessing systems
	Constraints of Multi Processing
	Goal
	Work Sharing
	Premises on Threads
	Premises on Threads (2)
	Terminology
	Steps twards the comparison
	The Greedy Scheduling Algorithm
	The Busy Leaves Algorithm
	Randomized work – stealing algorithm
	Randomized work – stealing algorithm
	The atomic access model and recycling
	The atomic access model and recycling
	Balls and Bins Game Results
	Analysing time and communication cost
	Analysing time and communication cost
	Comparison of the algorithm to other methods
	Improvements �
	Implementations
	Danke für die Aufmeksamkeit
	Ressources
	Proof(1)

