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K42 History & Goals




"
K42 History:
Technical Predictions in 1996

m Windows dominant

m Multiprocessors more important

m Increasing OS maintenance costs

m Customizability & extensibility critical

m All machines 64 bit in five years
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Research Goals

m Performance & scalability
Small & large multiprocessor

m Customizabillity
m Applicability

m Wide availability
Open source & maintainability
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" B
Technical Directions
m Start from scratch

m Exokernel design

m User level implementations
m OO Design
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K42 Key Concepts




System Structure

Application

OS Libraries

OS Emulation

K42 System Library

Servers

—

interprocess & intraprocess communication,...

Thread scheduling,

—

File server, name server, socket server,
pty server, pipe server,...

Kernel

—

IPC infrastructure, networking, device drivers

Memory & process management
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Key concept (a): Clustered Object
m Object in OO-sense

m Resides on one or more processors

m Services requests for one or more
Processors
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Example: Clustered Object “Counter”

Processor Processor
1 2

Thread a Thread b
inc ()

dec ()
getValue() : int

Counter Interface

m Interface

Counter

m Implementation

(a) Shared value Counter Counter
L Rep ¢ Rep
(b) Distributed value 1 5
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Key Concept (b): Customization

m Hot swapping

Replace active object with new
Implementation

m Dynamic upgrade
Replace all objects providing a certain service
Uses hot swapping
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Example: Hot Swapping

A 4 A 4 A 4

Threads

Mediator

A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4

Implement. Implement. | | Implement. Implement.
A B B

A
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» S
Key Concept (c): OO Design

m Use OO design

Whenever applicable
“One Instance per resource’

m Avoid global data structures and policies
They do not scale well

m Separate service mechanism from policy
Can be customized independently
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Example: OO Memory Management

_ File Cache File
Region Manager Representative

/

Hardware Addr. Page
Translator HATSegment Manager

File Cache File

Region Manager Representative
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Key Concept (d): User-level
Implementation of Kernel Functionality

m Goals
Avoid system call
Minimize kernel resources

m E£.g. Scheduling
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Example: User-Level Scheduling

K
-
Kernel Scheduler :qé
/ \
Process / \Process

; = =
0
Dispatcher Dispatcher -

Threads Threads
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Concluding Remarks




Hot-Swapping Performance Gain [1]

m Adaptive page
replacement
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background 2% 12
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Hot-Swapping Performance Gain [2]

m Adaptive file cache

@ 1800

£ 1600 -

T 1400 -

m 1: Default £ § 1200 -

implementation 5 8 1999

a 'a-_) 800 -

§’ S 600

C £ = 400 -

H 2 Optlmlzed fOI’ E 200
non-shared files g 0

o Shared Shared-Exclusive Shared-Exclusive /
Small-Large

m 3: Cache small files
In application
address space
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K42 vs. Linux 2.4.19 [1]
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Speedup (larger is better)

—— Linux
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Processors
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K42 vs. Linux 2.4.19 [2]

—e— Linux
——K42

Speedup (larger is better)

Parallel PostMark
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Processors
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K42 vs. Linux 2.4.19 [3]

Scripts/hour (larger is better)

40000 1

—e— Linux
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Achieved Goals

m Scalability & customizability
Through OO design

m Customizability
Hot swapping & dynamic upgrade

m Applicability

Linux compatibility

m Wide availability
Open source

m Still open
Maintainability
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Thank You!
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Discussion on OO

m Advantages
Easy to provide special implementations

Per-instance resource management enables
autonomic system optimization

m Disadvantages
Scattered control flow

Performance overhead
m Outperformed

Really more maintainable?
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Linux Compatibility

m Linux APl & ABI compatibility
m glibc
Unmodified version
m System trap reflection
Modified version
m Directly calls K42 system lib in user space
m Kernel support
Directly linking TCP/IP stack, file systems, drivers, ...

Provides Linux code environment
» Significant maintenance effort needed
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