Orran Krieger, Marc Auslander, Bryan Rosenburg,
Robert Wisniewski, Jimi Xenidis, Dilma Da Silva,
Michal Ostrowski, Jonathan Appavoo, Maria Butrico,
Mark Mergen, Amos Waterland, Volkmar Uhlig

K42: Building a Complete

Operating System

Presented by Thomas Aschauer

at the Software Systems Seminar,
Department of Computer Sciences,
University of Salzburg

" SN
Contents

m History & Goals
m Key Concepts

m Conclusion

5/31/2007 ding a Complete Operating System Slide 2

K42 History & Goals

"
K42 History:
Technical Predictions in 1996

m Windows dominant

m Multiprocessors more important

m Increasing OS maintenance costs

m Customizability & extensibility critical

m All machines 64 bit in five years

5/31/2007 42: Building a Complete Operating System Slide 4

» I
Research Goals

m Performance & scalability
Small & large multiprocessor

m Customizabillity
m Applicability

m Wide availability
Open source & maintainability

5/31/2007 2: Building a Complete Operating System Slide 5

" B
Technical Directions
m Start from scratch

m Exokernel design

m User level implementations
m OO Design

5/31/2007 Building a Complete Operating System Slide 6

K42 Key Concepts

System Structure

Application

OS Libraries

OS Emulation

K42 System Library

Servers

—

interprocess & intraprocess communication,...

Thread scheduling,

—

File server, name server, socket server,
pty server, pipe server,...

Kernel

—

IPC infrastructure, networking, device drivers

Memory & process management

: Building a Complete Operating System Slide 8

S
Key concept (a): Clustered Object
m Object in OO-sense

m Resides on one or more processors

m Services requests for one or more
Processors

5/31/2007 2: Building a Complete Operating System Slide 9

Example: Clustered Object “Counter”

Processor Processor
1 2

Thread a Thread b
inc ()

dec ()
getValue() : int

Counter Interface

m Interface

Counter

m Implementation

(a) Shared value Counter Counter
L Rep ¢ Rep
(b) Distributed value 1 5

5/31/2007 K42: Building a Complete Operating System Slide 10

S
Key Concept (b): Customization

m Hot swapping

Replace active object with new
Implementation

m Dynamic upgrade
Replace all objects providing a certain service
Uses hot swapping

5/31/2007 2: Building a Complete Operating System Slide 11

Example: Hot Swapping

A 4 A 4 A 4

Threads

Mediator

A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4

Implement. Implement. | | Implement. Implement.
A B B

A
5/31/2007 K42: Building a Complete Operating System Slide 12

» S
Key Concept (c): OO Design

m Use OO design

Whenever applicable
“One Instance per resource’

m Avoid global data structures and policies
They do not scale well

m Separate service mechanism from policy
Can be customized independently

5/31/2007 42: Building a Complete Operating System Slide 13

Example: OO Memory Management

_ File Cache File
Region Manager Representative

/

Hardware Addr. Page
Translator HATSegment Manager

File Cache File

Region Manager Representative

5/31/2007 42: Building a Complete Operating System Slide 14

"
Key Concept (d): User-level
Implementation of Kernel Functionality

m Goals
Avoid system call
Minimize kernel resources

m E£.g. Scheduling

5/31/2007 : Building a Complete Operating System Slide 15

Example: User-Level Scheduling

K
-
Kernel Scheduler :qé
/ \
Process / \Process

; = =
0
Dispatcher Dispatcher -

Threads Threads

5/31/2007 42: Building a Complete Operating System Slide 16

Concluding Remarks

Hot-Swapping Performance Gain [1]

m Adaptive page
replacement

180
5 60 —e—LRU
| Streaming % 140 —=— Adaptive
background 2% 12
applications 28 100
_§ 2 g0
- 25 60|
= Monitor page usage g5 |
pattern s -
g ,
o 0 ‘ ‘ ‘ ‘ ‘ ‘
m Hot swap to 0 1 §] ‘ ° °
Sequen’[ia| op’[imized Number of concurrent background streams
FCM

5/31/2007 Building a Complete Operating System Slide 18

Hot-Swapping Performance Gain [2]

m Adaptive file cache

@ 1800

£ 1600 -

T 1400 -

m 1: Default £ § 1200 -

implementation 5 8 1999

a 'a-_) 800 -

§’ S 600

C £ = 400 -

H 2 Optlmlzed fOI’ E 200
non-shared files g 0

o Shared Shared-Exclusive Shared-Exclusive /
Small-Large

m 3: Cache small files
In application
address space

5/31/2007 2: Building a Complete Operating System Slide 19

"

K42 vs. Linux 2.4.19 [1]

25

20 1

10 1

Speedup (larger is better)

—— Linux
—— K42

Parallel Make (flex)

14
Processors

19

24

5/31/2007 ding a Complete Operating System

Slide 20

" S
K42 vs. Linux 2.4.19 [2]

—e— Linux
——K42

Speedup (larger is better)

Parallel PostMark

9 14 19 24
Processors

5/31/2007 ding a Complete Operating System

Slide 21

"

K42 vs. Linux 2.4.19 [3]

Scripts/hour (larger is better)

40000 1

—e— Linux
——K42

35000 T

30000 T

25000 ~

20000 ~

15000

10000

5000 -

modified SDET

(@]

9 14 19 24
Processors

5/31/2007 ding a Complete Operating System

Slide 22

Achieved Goals

m Scalability & customizability
Through OO design

m Customizability
Hot swapping & dynamic upgrade

m Applicability

Linux compatibility

m Wide availability
Open source

m Still open
Maintainability

5/31/2007 Building a Complete Operating System Slide 23

Thank You!

References

m http://www.research.ibm.com/K42

m Oran Krieger, Marc Auslander, Bryan Rosenburg, Robert W.
Wisniewski, Jimi Xenidis, Dilma Da Silva, Michal Ostrowski,
Jonathan Appavoo, Maria Butrico, Mark Mergen, Amos Waterland,
Volkmar Uhlig: K42: Building a Complete Operating System.
Proceedings of the 2006 EuroSys Conference, Leuven, Belgium.

m Orran Krieger, Marc Auslander, Bryan Rosenburg, Robert
Wisniewski, Jimi Xenidis, Dilma Da Silva, Michal Ostrowski,
Jonathan Appavoo, Maria Butrico, Mark Mergen, Amos Waterland,
Volkmar Uhlig: K42: Building a Complete Operating System.
Presentation at the 2006 EuroSys Conference, Leuven, Belgium.
See http://www.cs.kuleuven.ac.be/conference/EuroSys2006/

5/31/2007 2: Building a Complete Operating System Slide 25

Backup Slides

Discussion on OO

m Advantages
Easy to provide special implementations

Per-instance resource management enables
autonomic system optimization

m Disadvantages
Scattered control flow

Performance overhead
m Outperformed

Really more maintainable?

5/31/2007 2: Building a Complete Operating System Slide 27

Linux Compatibility

m Linux APl & ABI compatibility
m glibc
Unmodified version
m System trap reflection
Modified version
m Directly calls K42 system lib in user space
m Kernel support
Directly linking TCP/IP stack, file systems, drivers, ...

Provides Linux code environment
» Significant maintenance effort needed

5/31/2007 2: Building a Complete Operating System Slide 28

