
JIT Instrumentation - A Novel Approach to Dynamically
Instrument Operating Systems

Marek Olszewski, Keir Mierle, Adam Czajkowski, and Angela Demke
Brown

presented by Harald Röck

University of Salzburg, Department of Computer Sciences

3. May 2007

presented by Harald Röck (University of Salzburg, Department of Computer Sciences)JIT Instrumentation - A Novel Approach to Dynamically Instrument Operating Systems3. May 2007 1 / 20



1 Introduction

2 Dynamic Binary Rewriting

3 Design of JIFL

4 Evaluation

5 Conclusion

presented by Harald Röck (University of Salzburg, Department of Computer Sciences)JIT Instrumentation - A Novel Approach to Dynamically Instrument Operating Systems3. May 2007 2 / 20



Introduction

Operating Systems are growing in complexity

Kernel instrumentation can help

Dynamic instrumentation

No recompilation and no reboot
Debugging systemic problems
Feasible in production settings

presented by Harald Röck (University of Salzburg, Department of Computer Sciences)JIT Instrumentation - A Novel Approach to Dynamically Instrument Operating Systems3. May 2007 3 / 20



Current Approach: Probe-Based

Dynamic instrumentation tools for OSs are probe based

Efficient on fixed lenght architectures

Slow on variable length architectures

Not safe to overwrite multiple instructions
Must use trap instruction

presented by Harald Röck (University of Salzburg, Department of Computer Sciences)JIT Instrumentation - A Novel Approach to Dynamically Instrument Operating Systems3. May 2007 4 / 20



Trap-based Instrumentation

Original code:

Trap Handler:

1 Save Processor
state

2 Lookup which
instrumentation
to call

3 Call
instrumentation

4 Emulate
overwritten
instruction

5 Restore processor
state

Instrumentation:

Very Expensive!

presented by Harald Röck (University of Salzburg, Department of Computer Sciences)JIT Instrumentation - A Novel Approach to Dynamically Instrument Operating Systems3. May 2007 5 / 20



Trap-based Instrumentation

Original code:

Trap Handler:

1 Save Processor
state

2 Lookup which
instrumentation
to call

3 Call
instrumentation

4 Emulate
overwritten
instruction

5 Restore processor
state

Instrumentation:

Very Expensive!

presented by Harald Röck (University of Salzburg, Department of Computer Sciences)JIT Instrumentation - A Novel Approach to Dynamically Instrument Operating Systems3. May 2007 5 / 20



Trap-based Instrumentation

Original code: Trap Handler:

1 Save Processor
state

2 Lookup which
instrumentation
to call

3 Call
instrumentation

4 Emulate
overwritten
instruction

5 Restore processor
state

Instrumentation:

Very Expensive!

presented by Harald Röck (University of Salzburg, Department of Computer Sciences)JIT Instrumentation - A Novel Approach to Dynamically Instrument Operating Systems3. May 2007 5 / 20



Trap-based Instrumentation

Original code: Trap Handler:

1 Save Processor
state

2 Lookup which
instrumentation
to call

3 Call
instrumentation

4 Emulate
overwritten
instruction

5 Restore processor
state

Instrumentation:

Very Expensive!

presented by Harald Röck (University of Salzburg, Department of Computer Sciences)JIT Instrumentation - A Novel Approach to Dynamically Instrument Operating Systems3. May 2007 5 / 20



JIT Instrumentation

Original code:

Code cache:

Instrumentation:

presented by Harald Röck (University of Salzburg, Department of Computer Sciences)JIT Instrumentation - A Novel Approach to Dynamically Instrument Operating Systems3. May 2007 6 / 20



JIT Instrumentation

Original code: Code cache: Instrumentation:

presented by Harald Röck (University of Salzburg, Department of Computer Sciences)JIT Instrumentation - A Novel Approach to Dynamically Instrument Operating Systems3. May 2007 6 / 20



JIT Instrumentation

Original code: Code cache: Instrumentation:

presented by Harald Röck (University of Salzburg, Department of Computer Sciences)JIT Instrumentation - A Novel Approach to Dynamically Instrument Operating Systems3. May 2007 6 / 20



Dynamic Binary Rewriting

Use binary rewriting to insert the new instructions

Interleaves binary rewriting with execution

Performed by a runtime system
Typically at basic block granularity

Code is rewritten into a code cache

Rewritten code must be:

Efficient
Unaware of its new location

presented by Harald Röck (University of Salzburg, Department of Computer Sciences)JIT Instrumentation - A Novel Approach to Dynamically Instrument Operating Systems3. May 2007 7 / 20



Dynamic Binary Rewriting

presented by Harald Röck (University of Salzburg, Department of Computer Sciences)JIT Instrumentation - A Novel Approach to Dynamically Instrument Operating Systems3. May 2007 8 / 20



Dynamic Binary Rewriting

presented by Harald Röck (University of Salzburg, Department of Computer Sciences)JIT Instrumentation - A Novel Approach to Dynamically Instrument Operating Systems3. May 2007 8 / 20



Dynamic Binary Rewriting

presented by Harald Röck (University of Salzburg, Department of Computer Sciences)JIT Instrumentation - A Novel Approach to Dynamically Instrument Operating Systems3. May 2007 8 / 20



Dynamic Binary Rewriting

presented by Harald Röck (University of Salzburg, Department of Computer Sciences)JIT Instrumentation - A Novel Approach to Dynamically Instrument Operating Systems3. May 2007 8 / 20



Design of the JIFL Prototype

presented by Harald Röck (University of Salzburg, Department of Computer Sciences)JIT Instrumentation - A Novel Approach to Dynamically Instrument Operating Systems3. May 2007 9 / 20



Gaining Control

Runtime System must gain control before it can start
rewriting/instrumenting OS

Update system call table entry to point to a dynamically emitted
entry stub

Calls per-system call instrumentation
Calls dispatcher and passes original system call pointer

presented by Harald Röck (University of Salzburg, Department of Computer Sciences)JIT Instrumentation - A Novel Approach to Dynamically Instrument Operating Systems3. May 2007 10 / 20



Dispatcher

Saves registers and condition code states

Dispatcher checks if target basic block is in code cache

If so it jumps to its basic block
Otherwise it invokes the JIT to compile and instrument the new basic
block

presented by Harald Röck (University of Salzburg, Department of Computer Sciences)JIT Instrumentation - A Novel Approach to Dynamically Instrument Operating Systems3. May 2007 11 / 20



JIT Compiler

Like convential JIT compiler, except its intput/output is x86 machine
code

Compiles at a dynamic basic block granularity

All but the last control flow instruction are copied directly into the
code cache
Control flow instructions are modified to account for the new location
of the code

Communicates with the JIFL plugin to determine what
instrumentation to insert

Insert call instruction
Push/Pop instrumentation parameters
Save/Restore volatile registers
Save/Restore condition code register

presented by Harald Röck (University of Salzburg, Department of Computer Sciences)JIT Instrumentation - A Novel Approach to Dynamically Instrument Operating Systems3. May 2007 12 / 20



Optimizations

Eliminating Redundant State Saving

Inlining Instrumentation

presented by Harald Röck (University of Salzburg, Department of Computer Sciences)JIT Instrumentation - A Novel Approach to Dynamically Instrument Operating Systems3. May 2007 13 / 20



Optimizations

Eliminating Redundant State Saving

Inlining Instrumentation

presented by Harald Röck (University of Salzburg, Department of Computer Sciences)JIT Instrumentation - A Novel Approach to Dynamically Instrument Operating Systems3. May 2007 13 / 20



OS Issues

Memory Allocator

JIT needs dynamic allocate memory
Linux allocator is not reentrant
Use own allocator on a preallocated head

Release control

Calls to schedule() have to be redirected

presented by Harald Röck (University of Salzburg, Department of Computer Sciences)JIT Instrumentation - A Novel Approach to Dynamically Instrument Operating Systems3. May 2007 14 / 20



Evaluation

JIFL vs KProbes

Instrument every system call with three types of instrumentation

System Call Monitoring
Call Tracing
Basic Block Counting

LMBench and ApacheBench2 benchmarks

Test setup

4-way Intel Pentium 4 Xeon SMP 2.8GHz
Linux 2.6.17.13 with SMP support and no preemption

presented by Harald Röck (University of Salzburg, Department of Computer Sciences)JIT Instrumentation - A Novel Approach to Dynamically Instrument Operating Systems3. May 2007 15 / 20



Evaluation - System Call Monitoring

presented by Harald Röck (University of Salzburg, Department of Computer Sciences)JIT Instrumentation - A Novel Approach to Dynamically Instrument Operating Systems3. May 2007 16 / 20



Evaluation - Call Tracing

presented by Harald Röck (University of Salzburg, Department of Computer Sciences)JIT Instrumentation - A Novel Approach to Dynamically Instrument Operating Systems3. May 2007 17 / 20



Evaluation - Basic Block Counting

presented by Harald Röck (University of Salzburg, Department of Computer Sciences)JIT Instrumentation - A Novel Approach to Dynamically Instrument Operating Systems3. May 2007 18 / 20



Evaluation - Apache Throughput

presented by Harald Röck (University of Salzburg, Department of Computer Sciences)JIT Instrumentation - A Novel Approach to Dynamically Instrument Operating Systems3. May 2007 19 / 20



Conclusion

JIT instrumentation viable for operating systems

Results are very competitive

Enables more powerful instrumentation

presented by Harald Röck (University of Salzburg, Department of Computer Sciences)JIT Instrumentation - A Novel Approach to Dynamically Instrument Operating Systems3. May 2007 20 / 20


	
	Introduction
	Dynamic Binary Rewriting
	Design of JIFL
	Evaluation
	Conclusion

