
Survey of Dynamic Instrumentation of Operating Systems

Harald Röck

Department of Computer Sciences
University of Salzburg, Austria

hroeck@cs.uni-salzburg.at

July 13, 2007

1 Introduction

Operating systems and modern software systems get
more complex and more difficult to understand ev-
ery day. Instrumentation of a software system is a
technique for inserting extra code into an applica-
tion to observer its behavior[6]. It provides insights
to a running system, and helps to understand even
complex systems. The information provided by an
instrumentation tool can be used do debug a running
system, to improve the performance of a system by
identifying bottlenecks, or simply help to understand
the control flow of an application or system. In [6],
the authors explain how they used their instrumenta-
tion tool to identify a stock ticker applet that was re-
sponsible for poor performance on a multi user sys-
tem with more the 170 users. Just by killing the ap-
plet the system idle was increased by 15 percent.

Instrumentation can be divided in two major cat-
egories: static instrumentation and dynamic instru-
mentation. Static instrumentation refers to instru-
mentation techniques that provide information by
inserting instrumentation code before the program
runs. The additional code could be inserted by the
developer in the source code of the program, by the
compiler, or by linker. The instrumentation code is

always present in the running program, and cannot
be changed without stopping or even recompiling the
program. The instrumentation statements, however,
are usually guarded by a flag to dynamically enable
or disable the instrumentation.

Dynamic instrumentation refers to techniques that
insert instrumentation code into a running program.
The instrumentation code is only present when
needed, and can be changed without the need to
stop or recompile the program. Dynamic instrumen-
tation tools change a running system by either in-
jecting probes or by dynamically rewriting the code.
Probe based instrumentation tools work similar to
a debug. They overwrite a single instruction in the
program with a break instruction that transfers con-
trol to the instrumentation tool. The instrumentation
tool examines the state of the instrumented program,
outputs the requested information, and emulates the
overwritten instruction before returning control to
the instrumented program. Dynamic rewriting, on
the other hand, takes a block of code and inserts in-
strumentation code while rewriting it. The resulting
instrumented code is stored on a different location in
memory and all references to the original code are
updated to point to the new instrumented code. The
original code is left unchanged at its old location.

1



Figure 1: Pin’s Software Architecture

The rewriting is done by a just in time (JIT) com-
piler, that attempts to optimize the new code using
well known optimization algorithm.

Any instrumentation of a system introduces some
additional computation and needs additional re-
sources, which potentially distort the results. This
is commonly confused with the uncertainty princi-
ple [4, 12]. However, the impact of observing a run-
ning process is defined as observer effect [11].

2 Pin

Pin [6] is an instrumentation system introduced by
Intel. Is is designed for user applications, uses binary
rewriting, and provides a rich API to implement in-
strumentation tools, called Pintools, in C/C++. The
pin API and user model is based on ATOM [10] and
it is architecture independent whenever possible. As
a result it is possible to write portable instrumenta-
tion tools. A user can insert instrumentation code
at arbitrary locations, and it is not required to man-
ually inline instructions or to do state saving and
restoring. By using a just-in-time (JIT) compiler to
insert and optimize code, Pin achieves efficient in-
strumentation. The JIT compiler performs different

Figure 2: PinOS Architecture

optimizations to produce efficient code. It supports
register reallocation, inlining, liveness analysis, and
instruction scheduling.

Figure 1 depicts Pin’s run-time software architec-
ture. Pin consists of a virtual machine (VM), a code
cache, and an instrumentation API that is used by
the Pintools. The VM is further divided into a JIT
compiler, an emulation unit and a dispatcher. The
JIT compiler is responsible for binary rewriting of
block of code. It compiles from one ISA directly to
the same ISA without using any intermediate repre-
sentation. The output of the JIT is stored in the code
cache. The dispatcher launches the code produced by
the JIT compiler in the code cache. It coordinates the
interleaving of the JIT compiler and the actual appli-
cation. The emulator is necessary to run code that
cannot be executed directly. As an example of code
that runs in the emulator are system calls, which re-
quire special handling from the VM. To obtain con-
trol of an application Pin uses the Unix Ptrace API,
that is usually used by standard debuggers and trac-
ing tools like strace. Using Ptrace, Pin is even able
to attach to a currently running process.

2.1 PinOS

PinOS [1] is an extension to Pin that supports instru-
mentation across user and kernel code. It extends
the Pin API to write Pintools that instrument kernel
code in addition to traditional Pin, which was limited

2



to user space code. PinOS is built upon Xen with In-
tel VT technology and uses virtualization techniques
to achieve whole-system instrumentation. Figure 2
depicts the architecture of PinOS running with one
guest OS. PinOS obtains system services from the
host OS, but runs underneath the guest OS in the
guest domain. Its internal architecture is the same
as the original Pin.

3 DTrace

DTrace [2] was developed by Sun Microcsystems for
dynamic instrumentation of production systems. It is
a probe based tool for Solaris, which is able to instru-
ment both user-level and kernel-level software in a
”unified and absolute safe fashion” [2]. The DTrace
framework separates instrumentation providers from
the core framework. When loaded into the kernel,
a provider determines the potential instrumentation
points and calls back into the core framework to cre-
ate a probe. This step points out a potential for in-
strumentation to the DTrace framework, but does not
actually instrument the system. A consumer can en-
able an advertised probe, and the DTrace framework
calls the provider to activate the probe. Multiple con-
sumers can use the same probe, without the provider
being aware of it, since the DTrace framework han-
dles the multiplexing.

A user implements its instrumentation code in a
C-like high-level control language, called D. D pro-
grams are compiled into the ”D intermediate format”
(DIF) instruction set that is emulated within the So-
laris kernel. Since the DIF emulator assures safety
by validating string and variable references when
DIF code is loaded into the kernel, DTrace is consid-
ered absolutely safe. In addition, the virtual machine
in the kernel checks for run-time errors, like division
by zero, that cannot be detected statically.

Figure 3: KProbes Internals

4 KProbes

KProbes [5] is the build-in dynamic instrumentation
framework of the Linux kernel. The development of
KProbes is based on the DProbes [7] patch. Kprobes
provides an in-kernel interface for instrumenting the
Linux kernel. A user has to write a loadable ker-
nel module, that inserts probes when loaded. The
user module has to ensure to remove the inserted
installed probes when the module is unloaded. As
the name suggest, Kprobes is probe based and over-
writes instructions with a break instruction that result
in a trap. Figure 3 depicts the internal data structures
used by KProbes. It uses a global hash table that
is indexed by code addresses. Each address can be
associated with one or more Kprobe handler struc-
tures. If a trap is triggered, control is transfered to the
Kprobes mechanism, which looks for probe handlers
in the global hash table. Each probe handler consists
of a pre-handler, a post-handler, and a fault-handler.
The pre-handler is executed before the probed in-
struction, the post-handler executes after the probed
instruction, and the fault-handler is used to handle
any faults that occur during execution of the pre-,
or post-handler, or when the probed instruction ex-
ecutes. The handlers can be used to dump the reg-

3



Figure 4: Systemtap Processing steps

ister contents before, after, and when a fault occurs,
respectively.

4.1 SystemTap

SystemTap [9, 3] on Linux corresponds to DTrace
on Solaris. Similar to DTrace, SystemTap provides a
high-level control language to instrument a running
Linux system. It uses Kprobes as underlying mecha-
nism to insert probe points into the kernel.

The processing steps of systemtap is outlined in
Figure 4. The systemtap translator takes a user writ-
ten probe script, the script library and the a image
that contains the debug info of the kernel to instru-
ment. The translator input is a C like script lan-
guage that resembles ”D” of Dtrace. A script pro-
vides an association of handler routines with probe
points, which are abstract names to identify a par-
ticular place in the kernel or an event that could oc-
cur at any time. The systemtap translator parses the
user script, elaborates it with the script library and
produces a C source file that is compiled and linked
with the runtime framework into a stand-alone load-

Figure 5: JIFL’s Software Architecture

able kernel module. Systemtap runs the probes by
loading the kernel module. When a probe is running,
systemtap provides different mechanisms to extract
the profiling or logging information of a probe from
the kernel. As default it uses relayfs to transport
blocks of information from the kernel- to the user-
space. A user space daemon collects the information
and stores it in a temporary file, that can be examined
and analyzed by the user.

5 JIFL

JIFL [8], short for JIT Instrumentation Framework
for Linux, is the first framework that uses binary
rewriting to instrument OS kernels. The design of
JIFL is very close to Pin. Figure 5 depicts JIFL’s
software architecture. JIFL is a loadable kernel mod-
ule that consists of a runtime system, a private heap,
the code cache and the instrumentation API. The run-
time system contains the JIT compiler that copies the
machine code into the code cache, while instrument-
ing it with the user supplied code in a JIFL plugin.

4



The JIT compiler works on basic block level and
supports different optimization techniques. When in-
serting instrumentation code it performs register and
eflags liveness analysis to reduce the number of reg-
ister savings and restoring operations. Additionally,
the JIT attempts to inline the instrumentation code
whenever possible.

The dispatcher locates the code blocks in the code
cache and redirects execution to it. If the requested
code block is not in the code cache the dispatcher
starts the JIT compiler, that translate the respective
code block and inserts it into the code cache. In addi-
tion, the JIFL system needs its own memory manager
and heap while doing JIT compilation, because the
Linux memory allocator is not reentrant, and JIFL
could operate on behalf of a thread that is currently
executing a memory allocation request.

A limitation of JIFL is that it is only possible to in-
strument code that is reached via a system call. The
entry point to the JIFL runtime system is the sys-
tem call table. Therefore, it is not possible to use
this system to instrument kernel threads or interrupt
handlers. Another implication of the system call ta-
ble rewriting approach is performance: JIFL intro-
duces a small constant overhead of about 2%. How-
ever, the JIFL outperforms the probe based Kprobes
mechanism by order of magnitudes in both micro
and macro benchmarks, since it uses binary rewrit-
ing instead of introducing traps.

6 Conclusion

Modern software systems and especially modern op-
erating systems become more complex and it is in-
creasingly difficult to understand their inner work-
ings. Instrumentation is a well established technique
to obtain insight into a running system. However,
dynamic instrumentation of operating systems was
until recently not very common. The available tools

were not easy to use in production systems or in-
troduced a high overhead. Dtrace [6] was ground
braking in this field. It provided a good abstrac-
tion, an easy to use interface, tool support to instru-
ment a whole system. Systemtap provides basically
the same functionality as Dtrace, and runs on top of
Kprobes. Both are probe based and overwrite a sin-
gle instruction with a break instruction similar to a
debugger. Recently, JIFL and PinOS were presented.
These are tools that use dynamic binary rewriting to
replace whole code sections with instrumented code.
The resulting code is more efficient, because there
is no break instruction necessary, and it is possible
to run well known compiler optimization techniques,
like inlining and register analysis, to speed up the ex-
ecution of the instrumented code.

References

[1] BUNGALE, P. P., AND LUK, C.-K. Pinos:
a programmable framework for whole-system
dynamic instrumentation. In VEE ’07: Pro-
ceedings of the 3rd international conference on
Virtual execution environments (New York, NY,
USA, 2007), ACM Press, pp. 137–147.

[2] CANTRILL, B. M., SHAPIRO, M. W., AND

LEVENTHAL, A. H. Dynamic instrumentation
of production systems. In ATEC’04: Proceed-
ings of the USENIX Annual Technical Confer-
ence 2004 on USENIX Annual Technical Con-
ference (Berkeley, CA, USA, 2004), USENIX
Association, pp. 2–2.

[3] EIGLER, F., PRASAD, V., COHEN,
W., NGUYEN, H., HUNT, M., KENIS-
TON, J., AND CHEN, B. Architecture
of systemtap: a Linux trace/probe tool.
http://sourceware.org/systemtap/archpaper.pdf.

5



[4] HEISENBERG, W. Über den anschaulichen
inhalt der quantentheoretischen kinematik und
mechanik. Zeitschrift für Physik 43 (1927),
172–198.

[5] LINUX TECHNOLOGY CEN-
TER. Kprobes: Kernel probes.
http://sourceware.org/systemtap/kprobes.

[6] LUK, C.-K., COHN, R., MUTH, R., PATIL,
H., KLAUSER, A., LOWNEY, G., WALLACE,
S., REDDI, V. J., AND HAZELWOOD, K. Pin:
building customized program analysis tools
with dynamic instrumentation. In PLDI ’05:
Proceedings of the 2005 ACM SIGPLAN con-
ference on Programming language design and
implementation (New York, NY, USA, 2005),
ACM Press, pp. 190–200.

[7] MOORE, R. J. A universal dynamic trace for
linux and other operating systems. In Proceed-
ings of the FREENIX Track: 2001 USENIX
Annual Technical Conference (Berkeley, CA,
USA, 2001), USENIX Association, pp. 297–
308.

[8] OLSZEWSKI, M., MIERLE, K., CZA-
JKOWSKI, A., AND BROWN, A. D. Jit
instrumentation: a novel approach to dynami-
cally instrument operating systems. In EuroSys
’07: Proceedings of the 2007 conference on
EuroSys (New York, NY, USA, 2007), ACM
Press, pp. 3–16.

[9] RED HAT, IBM, INTEL, AND HITACHI. Sys-
temtap. http://sourceware.org/systemtap/.

[10] SRIVASTAVA, A., AND EUSTACE, A. Atom: a
system for building customized program anal-
ysis tools. In PLDI ’94: Proceedings of
the ACM SIGPLAN 1994 conference on Pro-
gramming language design and implementa-

tion (New York, NY, USA, 1994), ACM Press,
pp. 196–205.

[11] WIKIPEDIA. Observer effect.
http://en.wikipedia.org/wiki/Observer effect.

[12] WIKIPEDIA. Uncertainty principle.
http://en.wikipedia.org/wiki/Uncertainty principle.

6


