
1

Channel-based Coordination Models and
Languages for Component Composition: A

Survey
Patricia Derler

Abstract—This paper surveys the field of
channel-based coordination models for com-
ponent composition. Composition of systems
out of components can be done by interac-
tion on a component level or by coordinating
components from the outside. Coordination
from the outside, also called exogenous coordi-
nation, imposes many advantages to software
systems like easy reusability and maintainabil-
ity or the ability to dynamically plug in new
components into a system. Exogenous coordi-
nation can be done by using channels to con-
nect components. Components passively ex-
change data items via channels, the commu-
nication protocol is given by the topology of
the connections and the behavior of the chan-
nels. Examples for channel behaviors are syn-
chronous or asynchronous, lossy or blocking
channels. This paper discusses coordination
models and languages dealing with channel-
based component composition.

Index Terms—channel-based, component
composition, coordination model, coordina-
tion language

I. Introduction

Building software systems out of independent
components to encapsulate functionality is a best
practice in software development. Important
goals of component based design of software is
maintainability and reusability. But it is not
enough to build software systems out of indepen-
dent components, the way those components in-
teract also has a big impact on the quality of soft-
ware, especially on the reusability of components
in a different context. A component can inter-
act with another component by initiating com-
munication itself through method call semantics.
Components have to know about other compo-

Paris-Lodron University of Salzburg, Austria
email: patricia.derler@cs.uni-salzburg.at

nents interfaces in order to use them which result
in tight coupling of components. In tightly cou-
pled systems the extraction of a component from
its context and the reuse in a different context
is very difficult. A coordination of components
from the outside can help in avoiding tight cou-
pling of components. Control from the outside
is also called exogenous coordination, the op-
posite of endogenous coordination which means
that the components coordinate themselves. In
exogenous coordination models, the control is
never given to the components. Components are
only passive entities in a system exchanging data.
By controlling components from the outside, it
is not necessary to know about components and
their interfaces in order to use them. Exogenous
coordination can be done by writing glue code
that manages the interaction between compo-
nents. Glue code is typically written in scripting
languages. The amount of glue code is directly
proportional to the size of the system which, in
large systems, soon becomes hard to maintain
and reuse. To avoid having monolithic glue code,
the code for interaction can also be built compo-
sitionally out of components. Reusable glue code
components can be constructed out of channels
and connectors.

This paper is organized as follows: In Section
II, the notion of coordination is explained and
III introduces the concept of (mobile) channels
for coordination. Section IV describes models
for channel-based component composition and
section V discusses languages for channel-based
component composition. Section VI shows some
examples where channel-based component com-
position was used. The paper concludes with a
brief summary in section VII.



2

II. What is Meant by Coordination

Arbab states in [1] that coordination is
the problem of ensuring proper communication
among code pieces of active entities in an appli-
cation. In his research, he focuses on the model
of cooperation which has to be chosen to enable
communication by means of choosing communi-
cation primitives that must be used. Coordina-
tion is the study of topologies of interactions and
the realization of protocols to ensure the well-
behavedness of a system. The goal of coordi-
nation models and languages is to find a solu-
tion to the problem of managing the interaction
among concurrent programs. There are multiple
models and languages for coordination which can
be classified as data-oriented or control-oriented,
exogenous or endogenous. Data-oriented appli-
cations are concerned with what happens to the
data and usually model data in a substantial
shared body. Examples for a data-oriented ap-
plication are databases. Control-oriented appli-
cations describe a set of activities that produce,
consume and transform data; important is the
flow of control. Work-flow organizations are ex-
amples for control-oriented applications. Coor-
dination must be considered in all parts of the
software development process, i.e. in design, de-
velopment, debugging, maintenance and reuse.
This often leads to an early integration of the
communication protocol and makes it hard to
change the communication protocol at a later
date. The coordination protocol should be made
explicit to avoid errors, facilitate changes, enable
reuse as well as the adoption of different coordi-
nation models. Surveys on coordination models
and languages can be found at [14], [15], [16] or
[3].

III. Coordination via Channels

An efficient way of describing and imple-
menting interaction between components can be
done via channels [27]. Channels allow anony-
mous point-to-point communication among com-
ponents. Mobile channels allow the dynamic re-
configuration of channels in a system without
affecting the components or having components
noticing these changes.

Scholten [28] presents a coordination frame-

work called MoCha for asynchronous mobile
channels in distributed systems. [29] presents
an exogenous coordination calculus for MoCha
based on mobile channels which is built upon
the π-calculus, a model for describing concur-
rent computation as systems of communication
agents [30].

Andrade and Fiadeiro [32] present a math-
ematical pattern for component coordination
based on the notion on channels. Channels are
described as programs which do not perform any
computation but enable the communication be-
tween two components by establishing a connec-
tion.

IV. Models for Channel-based
Component Composition

The oldest channel-based models for compo-
nent composition are dataflow models, Petri-nets
[5] and Kahn networks [6]. Dataflow models are
used largely to visualize the data flow in systems.
The idea of ’coordination from the outside’ is
a basic principle of data flow models. The fo-
cus in data flow models is on the coordination of
nodes by input and output operations. Broy and
Stefanescu [24] research the algebraic structure
of dataflow networks by basing the semantics
of dataflow networks on stream processing func-
tions. This research describes the algebraic cal-
culus that combines laws of graph isomorphism
and laws of semantic characteristics of dataflow
nodes and studies deterministic and nondeter-
ministic cases. A generalization of data-flow net-
works for describing dynamically reconfigurable
or mobile networks is given in [17] and [18] using
the model of stream functions.

Petri-nets [5] are graphs consisting of nodes
and directed arcs connecting these nodes. Place
nodes contain tokens and transition nodes pro-
cess (also called fire) these tokens and put to-
kens into other place nodes. Petri nets are non-
deterministic because in multiple enabled tran-
sitions there is no specification on which transi-
tion fires first. Petri nets are used in software
design but also analysis and diagnostics and in
workflow management. In [12], Guillen-Scholten
et al. discuss systems communicating through
mobile channels using Petri-nets as a modeling
language.



DERLER: SURVEY ON CHANNEL-BASED COORDINATION MODELS AND LANGUAGES 3

Kahn [6] networks represent channel histories
as streams and processes as continuous functions
on streams. A network is a system of recursive
stream equations and network behavior is the
least fixed point of network equations. Processes
communicate via unbounded FIFO channels by
writing and reading tokens to and from chan-
nels. Kahn networks are deterministic, for the
same input tokens, the system always produces
the same set of output tokens. Kahn networks
are used for modeling distributed systems and
signal processing systems.

The Idealized Worker Idealized Manager
(IWIM) Model [2] picks up the idea of Kahn net-
works and extends it. IWIM is a generic model of
communication. Important concepts are compo-
sitionality (inherited from the data-flow model),
anonymous communication and the separation of
computation concerns from communication con-
cerns. This separation describes exogenous coor-
dination. The name IWIM comes from the con-
cept of a weak dependence of workers on their en-
vironment. Each process is an individual worker.
The weak dependence allows more sophisticated
exogenous coordination of active entities in a sys-
tem. IWIM describes processes, events, ports
and channels. Processes are black boxes with
well defined ports through which data can be ex-
changed. Ports are connected via channels and
events are broadcasts of information to the sys-
tem. IWIM introduces different kinds of chan-
nels which differs from Kahn networks where
only one channel kind, namely FIFO channels,
are used. Communication is supported by events
sent via ports. IWIM is specialized on processes
and also deals with process instance creation and
installation. Manifold [7], a coordination lan-
guage built upon the IWIM model, will be dis-
cussed in section V.

In [23], Arbab et al. describe a formal model
for component-based systems. A formal, logic-
based component interface description language
is introduced that conveys the observable seman-
tics of components. Components are black boxes
that communicate via unbounded FIFO buffers
which are called channels. Channels can be dy-
namically relocated. The component interface
only shows observable behavior of a component,
i.e. the channels it is connected to, blocking in-

variants to describe possible deadlock behavior,
preconditions and postconditions which describe
the contents of the buffers for the initial external
channels and when the system terminates. This
interface specification leads to the possibility of
reasoning about the correctness of an entire sys-
tem which extends the usual notion of partial
correctness by excluding deadlocks.

Reo [9] builds upon the IWIM model of co-
ordination and the coordination language Man-
ifold. Reo comes from the Greek word ρεω
pronounced ’rhe-oh’ and means flow as water
in streams or channels. Reo is an exogenous
coordination language based on a calculus of
channel composition. This model introduces a
variety of channels like synchronous channels,
asynchronous channels, drains, spouts and lossy
channels. In Reo, complex connectors are built
out of simple channels or other connectors. Con-
nectors are reusable and build networks consist-
ing of channels and nodes. Communication in
Reo is not deterministic but fairness can be guar-
anteed. Reo is not only a coordination model for
process models but can be used for any kind of
active entity inside a component. Examples are
threads, agents or actors. Reo is more general
than dataflow models, Kahn-networks and Petri-
nets which can be seen as specialized channel-
based models. A formal description of Reo is
given in [25] in a coalgebraic semantics. Reo
connectors are modelled as relations or timed
data streams consisting of twin pairs of separate
data and time streams. A whole toolset is evolv-
ing around Reo for modeling, simulation, model
checking, animation and code generation of Reo
circuits.

V. Languages for Cannel-based
Component Composition

Examples for coordination languages are
Linda [4], a data-oriented language, which [13]
claims to be one of the best known. Linda intro-
duces the notion of a shared tuple space which is
a centrally managed space containing all pieces
of information that processes want to communi-
cate.

Manifold ([7], [8]) is a control oriented coordi-
nation language and an incarnation of the IWIM
model described in IV. Manifold supports dy-



4

namic reconfiguration of Kahn network topolo-
gies and explicitly supports connectors. All com-
munication in Manifold is asynchronous. A com-
piler, a run-time system library, utility programs
and libraries support in writing a Manifold appli-
cation. A Manifold application consists of pro-
cesses running on a network of heterogeneous
hosts. Processes may be written in different
programming languages and they don’t need to
know about Manifold. Visifold [26] is a visual
programming environment for Manifold.

The σπ coordination language [13] is inspired
by Manifold. σπ is a core language for speci-
fying dynamic networks of components. A pro-
gram is seen as a number of components each
consisting of a collection of separable, reusable
classes. Objects as instances of a class execute
in parallel with other objects. σπ enables anony-
mous communication via synchronous or asyn-
chronous, mobile channels. Interaction is con-
trolled by the objects executing on the system
which means that σπ does not impose exogenous
coordination. The separation of coordination
and computation is nevertheless easily reached
by specifying each classes external channels in
the component interface. Port-managers imple-
ment these interfaces and as a result only have
access to the ports of a component and can not
affect the computation. A coordinator describes
the communication between port-managers by
creating components and their associated port-
managers, links components and transmits data
items in channels between port-managers. The
coordinator can be seen as the coordination pro-
tocol.

VI. Applications of Channel-based
Component Composition

[13] lists a few areas, where coordination lan-
guages have been applied, including the par-
allelization of computation intensive sequential
programs in the fields of simulation of fluid
dynamics systems, matching of DNA strings,
molecular synthesis, parallel and distributed sim-
ulation, monitoring of medical data, computer
graphics, analysis of financial data integrated
into decision support systems and game playing
(chess). This section mentions a few concrete
applications for channel-based component com-

position.
The following list contains applications of

channel-based models to show the broad usage
from modeling of software systems to modeling
biological organisms. A big benefit of modeling
interaction between components with channels is
the intuitive graphical flow-diagram representa-
tion.

A. Enhancing Component Interfaces to Support
Component Composition

In [10] Amaro, Pimentel and Roldan address
the problem of interoperability of components at
the protocol level by specifying the interaction
behavior of software components. The approach
enhances component interfaces by extending in-
terface description languages with a description
of an abstract component interaction protocol
(i.e. the interactive behavior of a component).
This protocol enables compatibility checks (e.g.
when two components can interact without dead-
locking) dependent on the connector considered
for composition of components. Substitutability
of components can be analyzed with respect to
preserving a ”safe” behavior of the system.

B. Quality of Service in Service-oriented Archi-
tectures

Meng describes in [22] an approach of how to
assure quality of service requirements in Service-
oriented Applications. QoS values are non-
functional requirements of users to a component
or to the behavior of a system consisting of inter-
connected components. QoS values can be speci-
fied in an algebraic model. Constraint automata
can be used to compute QoS values for connec-
tors. To meet the QoS requirements, connectors
from different providers can be selected such that
their composition satisfies the non-functional re-
quirements.

C. Software Adaption

The discipline of software adaption [19] deals
with topics related with managing the entities
of a system to properly communicate with each
other. Eterovic et al. [20] describe an approach
for software adaption using coordination mod-
els and aspect-oriented techniques. An aspect-
oriented architecture description language (Ao-



DERLER: SURVEY ON CHANNEL-BASED COORDINATION MODELS AND LANGUAGES 5

Rapide) is used to separate adaption aspects at
the software architecture level. Separating the
aspects is done using the coordination model Reo
by wrapping functional components and linking
them via Reo connectors.

D. Improving the Deployment Process with Re-
spect to QoS

The deployment process of software compo-
nents for large, distributed applications usually
has many constraints and requirements. It is
very difficult to do the deployment manually, au-
tomated tools and techniques are needed. If QoS
parameters like performance or reliability have
to be taken into consideration, a straight-forward
deployment is not possible. [21] presents a graph-
based approach for software deployment enabling
the planning with respect to the communication
resources. Those communication resources are
channels required by components and commu-
nication resources available on the hosts in the
target environment. Component-based applica-
tions and distributed environments are modeled
as graphs and the deployment is defined as a
mapping of the application graph to the target
environment graph. The approach pays atten-
tion to behavior, cost, speed and security of the
interconnections among components of the ap-
plication which have significant effects on the ap-
plications QoS. The paper provides an example
that models the composition of Web Services us-
ing Reo showing how application and target en-
vironment are modelled and how the mapping
function is calculated.

E. Modelling Coordination in Biological Systems

Models of biological systems from cells to or-
ganisms are used for understanding effects and
side-effects of influences on a system. An exam-
ple where models for biological systems are used
is drug research. Models capture the causality,
dependence, conflicts and competition between
entities. The main advantage of modeling bi-
ological systems is that models are predictable
and behavior is modeled in terms of boundary
conditions. Coordination in terms of biology
means communication between cells which can
be rather complex. Regulatory gene networks
can be modelled using coordination languages.

In [11], Clarke, Costa and Arbab show an appli-
cation of Reo which provides a model for describ-
ing and reasoning about the behavour of biolog-
ical systems. Benefits of using Reo for model-
ing biological systems are the formal techniques,
the algebraic behavior and the abstraction from
molecular actions provided by Reo.

F. Multi-Agent Systems

Dastani et al. present in [31] the application
of a channel-based exogenous coordination lan-
guage on multi-agent systems using Reo as a co-
ordination model. The paper describes an ap-
proach for modeling and verifying the organiza-
tional structure of multi-agent systems consist-
ing of individual agents or other multi-agent sys-
tems. Noteworthy is the possibility of dynamic
reconfiguration of organizational structures of
multi-agent systems.

VII. Conclusion

Component composition and coordination of
components is an area with a lot of ongoing re-
search. Especially for distributed systems which
are prone to topological changes, exogenous coor-
dination via channels turns out to be a promiss-
ing approach for managing the complexity of the
specification and implementation of an indepen-
dent coordination protocol.

This paper gives a brief overview of the work
done in the field of channel-based coordination
models and languages for component composi-
tion and mentions areas where this approach was
successfully applied in order to improve quality,
understandability and maintainability of hetero-
geneous systems.

References

[1] Arbab, F. (1998) What Do You Mean, Coordina-
tion?. Bulletin of the Dutch Association for Theoreti-
cal Computer Science, NVTI 11-22.

[2] Arbab, F. (1996) The IWIM model for coordination
of concurrent activities. Coordination Languages and
Models (April 1996), P. Ciancarini and C. Hankin,
Eds., vol. 1061 of Lecture Notes in Computer Science,
Springer- Verlag, pp. 34-56.

[3] Ciancarini, P. (1996) Coordination models and lan-
guages as software integrators. ACM Comput. Surv.
28, 2 (Jun. 1996), 300-302.

[4] Carriero, N., and Gelernter, D. (1989) LINDA in con-
text. Communications of the ACM 32 (1989), 444-458.



6

[5] C.A. Petri (1996) Nets, Time and Space. Theoretical
Computer Science, 153:348.

[6] Kahn, C. (1974) The semantics of a simple language
for parallel programming. In J. L. Rosenfeld, editi-
tor, Information Processing ’74: Proceedings of the
IFIP Congress, 471-475. North-Holland, New York,
NY, 1974.

[7] Bonsangue, M., Arbab, F., de Bakker, J., Rutien,
J., Scutella, A., and Zavattaro, G. (2000) A transi-
tion system semantics for the control-driven coordina-
tion language manifold. Theoretical Computer Science
2004 3-47.

[8] Arbab, F. (1996) Manifold version 2: Language ref-
erence manual. Technical report, CWI, Amsterdam,
The Netherlands, 1996. Available on-line at the URL:
http : //www.cwi.nl/ftp/manifold/refman.ps.Z.

[9] Arbab, F. (2004) Reo: a channel-based coordina-
tion model for component composition. Mathemati-
cal. Structures in Comp. Science, 14.3, 2004, 329-366,
Cambridge University Press.

[10] Amaro, S., Pimentel, E., Roldan, A., Reo Based In-
teraction Model. Electronic Notes in Theoretical Com-
puter Science, FACS 2005.

[11] Clarke, D., Costa, D., Arbab, F. (2004) Modelling
Coordination in Biological Systems. ISoLA 2004: 9-
25.

[12] Guiellen-Scholten, J., Arbab, F., de Boer, F., Bon-
sangue, M. (2005) Modeling the Exogenous Coordi-
nation of Mobile Channel-based Systems with Petri
Nets. Electronic Notes in Theoretical Computer Sci-
ence, Volume 154, Issue1, 2006, FOCLASA 2005.

[13] Arbab, F., de Boer, F. and Bonsangue, M. (2000a)
A coordination language for mobile components. Proc.
ACMSAC’00.

[14] Arbab, F. (1998) Coordination and its Relevance.
In Proceedings of the 9th international Workshop on
Database and Expert Systems Applications (August
26 - 28, 1998). DEXA. IEEE Computer Society, Wash-
ington, DC, 529.

[15] Gelernter, D. and Carriero, N., (1992) Coordination
languages and their significance. Commun. ACM 35,
2 (Feb. 1992).

[16] Papadopoulos, G. A., Arbab, F. (1998) Coordina-
tion models and languages, Centrum voor Wiskunde
en Informatica (CWI), ISSN 1386-369X.

[17] Broy, M. (1995) Equations for describing dynamic
nets of communicating systems. 5th COMPASSwork-
shop. Springer-Verlag Lecture Notes in Computer Sci-
ence 906 170-187.

[18] Grosu, R., Stoelen, K. (1996) A model for mo-
bile point-to-point data-flow networks without chan-
nel sharing. Springer-Verlag Lecture Notes in Com-
puter Science 1101 504-519.

[19] Yellin, D. M., Strom, R. E. (1997) Protocol Specica-
tions and Component Adaptors. ACM Transaction on
Programming Languages and Systems, 19(2).

[20] Eterovic, Y., Murillo, J. M., Palma K. (2004) Manag-
ing components adaptation using aspect oriented tech-
niques. In First International Workshop on Coordina-
tion and Adaptation Techniques for Software Entities

(WCAT04, held in conjunction with ECOOP 2004),
June 2004.

[21] Heydarnoori, A. (2006) Caspian: A QoS-Aware De-
ployment Approach for Channel-based Component-
based Applications, Technical Report.

[22] Meng, S. (2007) QCCS: A Formal Model to Enforce
QoS Requirements in Service Composition, tase, pp.
389-400, First Joint IEEE/IFIP Symposium on The-
oretical Aspects of Software Engineering (TASE ’07).

[23] Arbab, F., de Boer, F. S., and Bonsangue, M. M.
(2000) A Logical Interface Description Language for
Components. In Proceedings of the 4th international
Conference on Coordination Languages and Models
(September 11 - 13, 2000). A. Porto and G. Roman,
Eds. Lecture Notes In Computer Science, vol. 1906.
Springer-Verlag, London, 249-266.

[24] Broy, M. and Stefanescu, G. (2001) The algebra of
stream processing functions. Theor. Comput. Sci. 258,
1-2 (May. 2001), 99-129.

[25] Arbab, F., Rutten, J., (2002) A coinductive calcu-
lus of component connectors, Technical Report SEN-
R0216, CWI, Amsterdam, September 2002.

[26] Bouvry, P. and Arbab, F. (1996) VISIFOLD: A
Visual Environment for a Coordination Language.
In Proceedings of the First international Conference
on Coordination Languages and Models (April 15 -
17, 1996). P. Ciancarini and C. Hankin, Eds. Lec-
ture Notes In Computer Science, vol. 1061. Springer-
Verlag, London, 403-406.

[27] Guillen-Scholten, J., Arbab, F., de Boer, F., and
Bonsangue, M. (2006) A Component Coordination
Model Based on Mobile Channels. Fundam. Inf. 73,
4 (Dec. 2006), 561-582.

[28] Guillen-Scholten, J.G. (2001) MoCha: A model for
distributed Mobile Channels. Master’s thesis, Leiden
University.

[29] Guillen-Scholten, J., Arbab, F., de Boer, F., and
Bonsangue, M. (2005) MoCha-pi, an exogenous coor-
dination calculus based on mobile channels. In Pro-
ceedings of the 2005 ACM Symposium on Applied
Computing (Santa Fe, New Mexico, March 13 - 17,
2005). L. M. Liebrock, Ed. SAC ’05. ACM Press, New
York, NY, 436-442.

[30] Milner, R. (1999) Communication and Mobile Sys-
tems: The Pi Calculus. Cambridge University Press.

[31] Dastani, M., Arbab, F., and de Boer, F. (2005) Co-
ordination and composition in multi-agent systems. In
Proceedings of the Fourth international Joint Confer-
ence on Autonomous Agents and Multiagent Systems
(The Netherlands, July 25 - 29, 2005). AAMAS ’05.
ACM Press, New York, NY, 439-446.

[32] Andrade, L., Fiadeiro, J. (2001) Coordination pat-
terns for component-based systems, In Proceedings
of the V Brazilian Symposium on Programming Lan-
guages SBLP‘2001.


