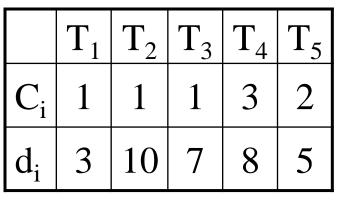
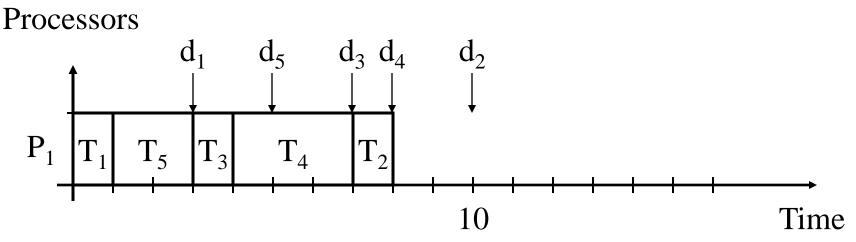
Embedded Software Engineering

3 Unit Course, Winter 2010 CS Department, Univ. of Salzburg

RT Scheduling

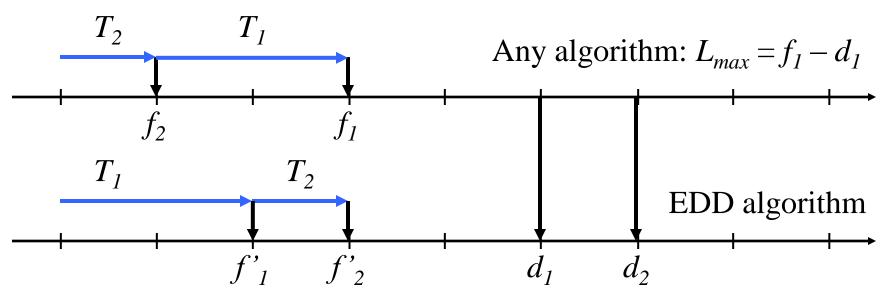

Christoph Kirsch

www.cs.uni-salzburg.at/~ck/teaching/ESE-Winter-2010


Earliest Due Date (EDD)

- The schedulability test for the *earliest due date* algorithm holds for a given set of *n* tasks, if:
 - $\forall i \in \{1, ..., n\}. f_i \le d_i \text{ where } f_i = \sum_{k=1}^{i} C_k$
- The test is *exact*
- The *earliest due date* algorithm executes all tasks in a given set of *n* tasks in the order of non-decreasing deadlines

EDD Example


© 2006 C. Kirsch -3-

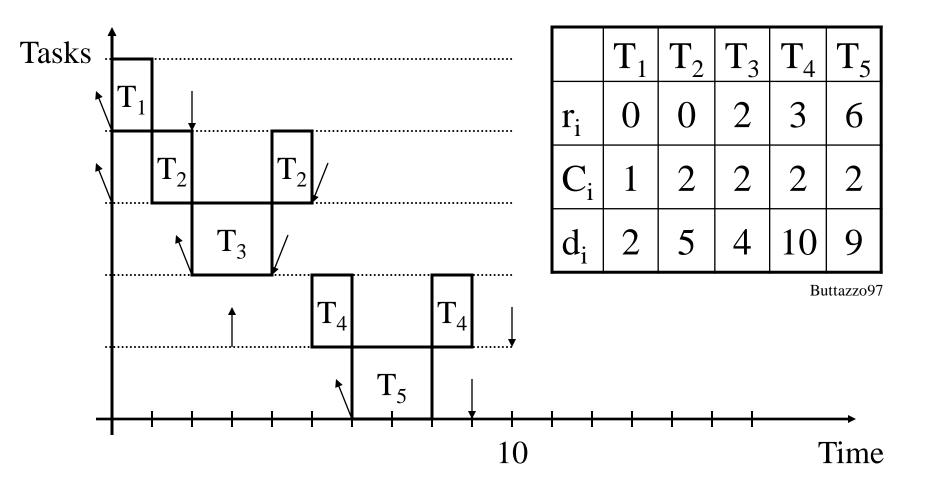
Assume, then Guarantee

- *Resource* assumptions:
 - single processor
 - no administrative overhead
- *Task* assumptions:
 - independent, i.e., no precedence constraints
 - release times are equal for all tasks
 - WCET $(T_i) = C_i$ given
 - absolute deadlines given
- *Optimality* guarantee:
 - EDD is optimal wrt. feasibility
 - EDD is optimal wrt. maximum lateness

Proof

Interchange argument: In a non-EDD schedule ∃T₁, T₂ with d₁ ≤ d₂ but T₂ executes before T₁

- Exchanging does not increase maximum lateness
- There are only finitely many transpositions


Earliest Deadline First (EDF)

- The schedulability test for the *earliest deadline first* algorithm holds for a given set of *n* tasks, if:
 - At any instant *t* where a task is released

 $\forall i \in \{1, ..., n\}. f_i \leq d_i \text{ where } f_i = \sum_{k=1}^{i} c_k(t) \text{ and } c_k(t) \text{ is the remaining WCET of } T_i \text{ at } t$

- The test is *exact*
- The *earliest deadline first* algorithm executes at any instant, given a set of *n* tasks, the task with the earliest deadline: dynamic priority assignment algorithm

EDF Example

© 2006 C. Kirsch -7-

Assume, then Guarantee for EDF

- *Resource* assumptions:
 - single processor
 - no administrative overhead
- *Task* assumptions:
 - preemptive
 - independent, i.e., no precedence constraints
 - release times given
 - WCET $(T_i) = C_i$ given
 - relative deadlines given
- *Optimality* guarantee:
 - EDF is optimal wrt. feasibility
 - EDF is optimal wrt. maximum lateness

Proof for EDF

- Based on the interchange argument for EDD:
 - Exchange time slices instead of tasks because of possible preemptions