
Self-Collecting Mutators are Self-Compacting

Stephanie Stroka

February 11, 2011

Chapter 1

Introduction

An average program often allocates temporary memory, so called short-term
memory, which is discarded as the program proceeds. If we plot the amount of
memory allocated on the heap against the execution time of the program, we will
observe that it is growing and shrinking continuously. The time axis must
therefore not represent the processor or environmental time, but logical points in
the program where memory is deallocated.
Figure 1.1 shows the memory consumption of a simple program, which allocated
temporary memory during loop-runs. Other more complex programs will show
periodic memory consumption if the periods are abstracted by multiple graphs as
sketched in Figure 1.2. These examples demonstrate correct programs without
memory leaks.
[5] analyzed the net memory consumption of the GNU C compiler (version 2.5.1)
and the results showed a similar periodic behavior in memory consumption
(bottom line of Figure 1.3). Some allocators lose the periodic behavior when we
have a look at the gross memory consumption. The top line of Figure 1.3, for
example, represents the gross memory consumption of GCC 2.5.1, which used
obstack1 allocations. We see that there is an enormous difference between the

1The obstack allocator creates a stack for each allocation with an undefined size

time

memory

malloc()

free()

Figure 1.1: Periodic memory consumption

1

time

memory

time

memory

Figure 1.2: Periodic memory consumption abstracted with multiple graphs

2

Figure 1.3: Periodic memory consumption in GCC 2.5.1

memory needed and the memory allocated for that program.
To find an allocator that has good behavior in memory consumption (which would
be if the gross memory slightly differs from the net memory), I propose to have a
closer look on the memory periods that exist in most programs. With the
knowledge of knowing which objects are short-living and which are long-living,
even a simple sequential fit allocator might give optimal results. Figure 1.4 shows
how a sequentially ordered memory block can provide optimal memory
consumption if the life-time is known.
Automatically knowing the life-time of objects, however, is not a trivial task. I
therefore concentrated on the short-term memory model [1] developed by the
Computational Systems Group of Prof. Christoph Kirsch, which enables
programmatically defined life-time information and logical clocks for memory
objects on the heap. The intention is to build an allocator that is able to
re-introduce the periodic behavior in gross memory consumption, if necessary by
abstracting the periods with multiple clocks.
The goal of the Self-Collecting Mutators are Self-Compacting project is to provide
a memory management system that allows to analyze the periodic memory
consumption, and as a consequence also the fragmentation, of programs using a
time-aware memory model: The short-term memory model. The two
implementations - short-term memory with compact-fit and short-term memory
with regions - use alternative allocators in despite of the original implementation
with ptmalloc2. I decided to use compact-fit as an allocator which is able to
bind memory fragmentation by performing compaction if the fragmentation
exceeds the limit. The implementation attempts to provide information about how
many compactions are necessary for different periods. For a multi-clock
implementation, I used a region-based memory allocator. A clock is then bound to
a region. The region-based implementation aims to prevent massive
fragmentation, as memory with similar life-time is allocated into the same region.

3

Bumppointer

Long-
Living-
Memory

Long-
Living-
Memory

Mid-
Living-
Memory

malloc()

Bumppointer

Long-
Living-
Memory

Long-
Living-
Memory

Mid-
Living-
Memory

malloc()

Short-
Living-
Memory

Short-
Living-
Memory

Short-
Living-
Memory

Bumppointer

Long-
Living-
Memory

Long-
Living-
Memory

Mid-
Living-
Memory

malloc()

Figure 1.4: Optimal sequential fit allocation

4

Chapter 2

Implementation

In the short-term memory model, objects on the heap expire after a finite amount of
time. Thus, like in a human brain, the oblivion is an automated process if the mem-
ory is not refreshed when time advances. Short-term memory that is continuously
refreshed, on the other hand, evolves into long-term memory. Time advancing and
refreshing of memory can be done explicitly by the programmer by applying so-called
object life-time approximation.

During allocation, a one word header is reserved for a short-term memory object.
This header includes the descriptor counter which counts the amount of refreshing
calls that have been executed on the object. When an object is refreshed, a descrip-
tor, which points to the refreshed object, is added to the short-term memory model
and the specific descriptor counter is incremented. The descriptor is stored in a
descriptor page, which is accessible via a thread-local descriptor buffer, as depicted
in Figure 2.1.

A tick call removes a descriptor and decrements the descriptor counter. If the
descriptor counter is then equal to zero, the object is removed.

In the following sections the implementations for short-term memory with compact-
fit and short-term memory with regions are described in more detail. This includes
the characteristics of both memory allocators, their design and their complexity
constraints. Furthermore, the integration into the short-term memory library libscm
is presented.

next

descriptor 1

descriptor m

next

descriptor 1

descriptor 2

...descriptor_page descriptor_page

descriptor 2

#_of_descriptors #_of_descriptors

descriptor_buffer

not_expired[0]

not_expired_length

not_expired[1]

not_expired[2]

not_expired[3]

not_expired[x]

clock

first

descriptor_page_list

last

Figure 2.1: The descriptor buffer

5

2.1 Short-term memory with Compact-fit

Compact-fit is a compacting memory management system for allocating,
deallocating, and accessing memory in real time which provides predictable
memory fragmentation and response times [4] [3]. There exist two compact-fit
implementations: Moving and non-moving, which have equal complexity
constraints but differ in the way that non-moving is faster, because it does not
move the actual objects on the physical memory. The non-moving variant adds
another layer of abstraction by placing a block table between abstract addresses
and physical addresses, which is then used for compaction. For simplicity I used
the moving variant, but non-moving should work as well.
Compact-fit organizes its memory into pages and page-blocks as size-classes. The
main idea is to allow partially fragmented pages and bind it to a constant k. If the
amount of fragmented pages is greater than k, the memory is compacted by
moving blocks from the end of the size-class into the fragmented pages, as
illustrated in Figure 2.2.
To hide the physical memory address from the user, compact-fit manages objects
through an abstract address. Thus, in despite of the typical ptmalloc2, which is
the allocator used in the GNU C library, the compact-fit allocator returns an
abstract address that the user must dereference first:

v o i d ∗∗ c f m a l l o c (s i z e t s i z e) ;

The user must therefore be aware of any additional object header that has been
added to the allocated memory. In my implementation, the short-term memory
object header is added during allocation, which means that dereferencing is
accomplished with the following macro which considers the object header:

#d e f i n e DEREF(x) (PAYLOAD OFFSET(∗ x))

In the following the library calls which are necessary to manage short-term
memory with compact-fit are presented.

void** scm malloc(size t size): To integrate the compact-fit allocator into
libscm a level of abstraction for cf malloc has been added. This additional level
wraps the initialization of the object header around the compact-fit malloc call.

void scm refresh(void** aaddr, unsigned int extension): The scm refresh
call has also been adapted to allow abstract addresses as a parameter. Since the
descriptor counter is located at the physical memory, the refresh function is
responsible for dereferencing the abstract address to be able to increment the
descriptor counter. The descriptor, however, points to the abstract address as
illustrated in Figure 2.3. This is necessary to assure correctness after memory
compaction.

void scm tick(void);: The tick call slightly differs from the original
implementation of libscm as the handling of abstract addresses during the
collection of descriptors has to be considered. The expired descriptors are added
to the beginning of the expired descriptor list which is then collected all at once or
incrementally, depending on the compiler flags. Objects with a descriptor counter
of 0 will then be deallocated.

6

Figure 2.2: The process of compaction for a partial compaction bound of k = 2

7

next

descriptor 1

descriptor 2

descriptor_page

#_of_descriptors

abstract_space physical_space

Figure 2.3: Descriptor page containing abstract addresses

2.2 Short-term memory with Regions

For the region-based approach, the short-term memory implementation has been
adapted to support multiple clocks and descriptors for regions. Figure 2.4 presents
the new configuration for the descriptor buffers. For each clock initialization, a
new descriptor buffer is created and a default region is identified with the clock.
Instead of an scm malloc() and scm refresh() call, region-based short-term
memory is rather assigned to a clock during allocation. Refreshing is still possible,
but optional, and allows the assignment of multiple clocks for one region. Thus,
instead of managing descriptors and descriptor counters for each object, every
allocation and refresh of an object results in a new descriptor for the region in
which the object exists.
The regions design is illustrated in Figure 2.5. Regions are implemented as lists of
pages, where each page contains a pointer to the next page, the overall memory
and the size of used memory, which allows constant sequential fit allocation. If a
memory request can not be satisfied by an existing page, a new page is created
and the unused page memory of the last page is declared as fragmentation. An
optimization would be to sort the pages for the biggest amount of fragmentation,
so that a memory request is always applied on the page with the smallest size of
used memory. Furthermore, the region desgin allows constant
region-page-deallocation, or in other word linear region-deallocation in the amount
of region-pages, if the descriptor counter is 0.
In the following I define a number of library calls which are necessary to manage
the memory with the region-based short-term memory model.

void init clock(pthread key t* clock key): The programmer is responsible for
initializing the needed clocks. The clock-key will be stored at the
pthread key t address, given as a function parameter. The clocks should
have different phases and frequencies. Although it would not be a program
error, multiple clocks with the same phase and frequency would result in bad
space and time consumption.

void* scm malloc clock(size t size, pthread key t* clock key): For
region-based self-collecting mutators, memory must be assigned to a clock,
which represents a region. This function takes the clock-key address
initialized before and the size of the object in bytes as parameters and
returns a pointer to the usable, allocated memory.

8

descriptor_buffer

not_expired[0]

not_expired_length

not_expired[1]

not_expired[2]

not_expired[3]

not_expired[x]

clock

clock

descriptor_buffer

region

descriptor_buffer

not_expired[0]

not_expired_length

not_expired[1]

not_expired[2]

not_expired[3]

not_expired[x]

clock

clock

descriptor_buffer

region

Clock_1:

Clock_2:

Figure 2.4: Multiple descriptor buffers for multiple clocks

firstPage

lastPage

page

nextPage

size

page

nextPage

size

scm_region_header

descriptor counter

Figure 2.5: The region design: Header design and sequential fit allocations.

9

void scm refresh clock(void* ptr, unsigned int extension, pthread key t* clock key):
Refreshing with a certain expiration extension and/or another clock extends
the life-time of a memory object. The expiration extension value defines the
amount of tick calls of a certain clock by which the memory is still needed.
An expiration extension of n, therefore, results in deallocation at the
(n + 1)-th tick call. Refreshing with an expiration extension of 0 is done
implicitly when memory is allocated to a clock. Memory can also be
refreshed with an additional clock, which results in a life-time extension
equal to the maximum life-time of both clock-regions. An explicit refresh
call results in the expiration extension of all objects in the same region.

void scm tick clock(pthread key t* clock key): A tick call results in the
deallocation of all regions assigned to a clock that have an expiration
extension of 0 and in a decrement of all other expiration extensions n > 0.
The collection of the regions is either done all at once (eager) or
incremental (lazy), which means that the deallocation of a region is at least
delayed by (d− 1) further scm refresh clock and scm tick clock calls,
where d is the amount of memory objects allocated in one region.

10

Chapter 3

Tests

3.1 Short-term memory with Compact-fit

Both implementations have been tested on simple scenarios. A representative
benchmark remains future work. The short-term memory with compact-fit
implementation has been tested on a simple program that allocates long-term,
mid-term and short-term memory in loops, as depicted in Figure 3.1. The tick calls
have been incrementally added in three executions, starting with 1) one tick call at
the end of the program, 2) an additional tick call at the end of the outter loop
and 3) in the third run, four tick calls, additionally at the end of the inner loops.
The result of the test showed that the runtime increases with O(1) which is
caused by the overhead of additional refresh, tick and free calls and with O(n) if
compaction is necessary. For the case that no compaction is necessary, that is for
k = 3, the maximum number of used pages for the amount of tick calls is listed in
Table 3.1.
Another interesting result showed that, for a certain number of k, the number of
compaction increased (Table 3.1). This phenomenon happens, because
compaction causes compaction, as Figure 3.2 and 3.3 illustrate. In Figure 3.2 the
partial compaction bound k has been set to 1 and the first page that is
deallocated is the first that has been allocated. Note that the first page is not a

stm

stm

mtm

ltm

stm

stm

mtm

ltm

stm

stm

mtm

ltm

tick() tick()

tick()

tick()

tick()

tick()

tick()

Figure 3.1: The test-scenario for short-term memory with compact-fit.
ltm: long-term memory, mtm: mid-term memory, stm: short-term memory

11

ticks used pages

1 52
2 5
4 3

Table 3.1: More ticks result in less used pages

LT
MT

MT

MT

LT

MT

MT

MT
LT

MT

MT
LT

MT

MT

MT

MT

MT

MT

MT

Figure 3.2: Compaction with k = 1: The second page

pure middle-living memory. The first deallocation series results in a half-full first
page, where it is necessary to move memory from the last page. After the
movement, the second page is completely deallocated, as is the third page.
Therefore, no further compaction is necessary, because the memory in the first
page will be deallocated at last.
In Figure 3.3, the partial compaction bound has been set to 2 and therefore
compaction starts at the second page. This compaction causes a domino effect in
other compactions, which would be unnecessary in that case. A possible solution,
which intuitively comes to the mind when we reconsider Figure 1.4, is that we
deallocate memory in a LIFO manner.

k compaction

1 160
2 520
3 0
4 ...

Table 3.2: Compaction may cause more compaction

12

LT
MT

MT

LT

MT

MT

MT

LT

MT

MT

MT

MT

MT

MT

LT

MT

MT

MT
MT

LT

MT

MT

MT

MT

MT

MT

MT

Figure 3.3: Compaction with k = 2: The domino effect

3.2 Short-term memory with Regions

The short-term memory with regions implementation has been tested with two
clocks which tick with different frequencies. The first clock-region allocates 30 x
512bytes in a loop that runs 10 times. It ticks every time at the end of the loop.
The seconds clock allocates the same memory, but only every second time. It also
ticks at the end of every second loop-iteration. Thus, the second clock runs with
half of the frequency of the first clock. If libscm has been compiled to support
eager collection, the difference between needed and allocated memory is low.
Figure 3.4 shows the net memory consumption for this simple example. Figure 3.5
displays the gross memory consumption. The steps in the allocated memory
results from the allocation of region pages. If lazy collection is on, the descriptors
are incrementally removed. The deallocation of a region is then delayed by a
constant d, where d is the amount of descriptors that point to a region. Since
every allocated object creates a new descriptor for the region, d is at least as big
as the amount of objects in a region.

13

Figure 3.4: Needed Memory for the short-term memory with regions test example

Figure 3.5: Allocated Memory for the short-term memory with regions test example.
Eager collection is on

14

Figure 3.6: Allocated Memory for the short-term memory with regions test example.
Eager collection is off

15

Chapter 4

Conclusion

The self-collecting mutators are self-compacting project provides a basis for
further memory consumption analysis. Two implementations, short-term memory
with compact-fit and short-term memory with regions, have been presented as
variants of the existing self-collecting mutator library libscm.
Short-term memory with compact-fit can be used as a time- and space-predicting
explicit dynamic memory management, although it is often more efficient to
disclaim the compaction process for a better run-time behavior, especially to
prevent the compaction domino-effect.
Short-term memory with regions use region-based memory management by
binding clocks to regions. Thereby we have seen that it is possible to preserve the
periodic memory behavior while still achieving fast deallocation, in our case O(n),
n = number of region-pages.
Future work includes the implementation and interpretation of representative
benchmarks and the formalization of the coherence between program periods and
fragmentation for both implementations. Furthermore, it would be interesting to
analyze memory consumption with a short-term memory implementation for the
famous REAPS allocator [2].

16

Bibliography

[1] M. Aigner, A. Haas, C.M. Kirsch, and A. Sokolova. Short-term memory for self-
collecting mutators - revised version. Technical Report 2010-06, Department of
Computer Sciences, University of Salzburg, October 2010.

[2] Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinley. Reconsidering
custom memory allocation. In Proceedings of the 17th ACM SIGPLAN con-
ference on Object-oriented programming, systems, languages, and applications,
OOPSLA ’02, pages 1–12, New York, NY, USA, 2002. ACM.

[3] S.S. Craciunas, C.M. Kirsch, H. Payer, H. Röck, and A. Sokolova. Concurrency
and scalability versus fragmentation and compaction with compact-fit. Technical
Report 2009-02, Department of Computer Sciences, University of Salzburg, April
2009.

[4] S.S. Craciunas, C.M. Kirsch, H. Payer, A. Sokolova, H. Stadler, and
R. Staudinger. A compacting real-time memory management system. In Proc.
USENIX Annual Technical Conference, 2008.

[5] Mark S. Johnstone and Paul R. Wilson. The memory fragmentation problem:
solved? In Proceedings of the 1st international symposium on Memory man-
agement, ISMM ’98, pages 26–36, New York, NY, USA, 1998. ACM.

17

