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The ideal allocator

Fast memory allocation and deallocation

No ”wasted” memory space

Internal fragmentation
External fragmentation

Predictable time and memory consumption

Fast compile-time
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The problem

Fast allocation ↪→ wasting memory

Less fragmentation ↪→ slow allocation

OptimalMemoryConsumption ∼ 1
AllocationTime

Predictable memory consumption
↪→ unreasonable run-time (memory copying)
↪→ unreasonable compile-time (program analysis?!)
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Typical program characteristics [1]
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Figure 1: Periodic memory allocation and deallocation
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Memory consumption in Garbage Collectors
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Figure 2: Garbage Collector loses periodic memory characteristics
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Periodic memory allocation in the heap
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Figure 3: Periodic memory allocation and deallocation in the heap
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Typical program characteristics [2]
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Figure 4: Periodic memory allocation with growing list
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Semi-periodic memory allocation in the heap
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Figure 5: Periodic memory allocation with growing list in the heap
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Analyzing techniques

To analyze periodic memory consumption, we need...

an allocator that provides information about fragmentation
↪→ Compact-Fit

a mutator that provides time information
↪→ Self-Collecting Mutator
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Binding memory life-time to a clock
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Figure 6: Periodic memory allocation with self-collecting mutators
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Implementation

SCM eager collection ↪→ all expired objects will be
deallocated at scm tick()
SCM‘s malloc function uses cf malloc() instead of
ptmalloc2()
Example program with scm malloc(), scm refresh() and
scm tick()
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Figure 7: Analyzing memory consumption behaviour with growing #ticks
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Results

Runtime increases with growing # ticks
↪→ tick(), refresh() and compaction()

Memory consumption decreases with # ticks
↪→ max. fragmentation = #free()
↪→ ...unlikely, because of periodic characteristic

Compaction causes compaction
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Figure 8: Compaction causes compaction
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Results

1 tick

k = 1, compaction = 160
k = 2, compaction = 520
k = 3, compaction = 0
k = 4, compaction = 0
...

3 ticks

k = 1, compaction = 282
k = 2, compaction = 12
k = 3, compaction = 0
k = 4, compaction = 0
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Outlook

Analyze k for non-trivial programs

Find optimal middle ground for memory consumption and
compaction overhead

Formalize relation of k and refresh()/tick()
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