
Self-Collecting Mutators are Self-Compacting
An analysis of memory consumption in real-periodic programs

Stephanie Stroka

Embedded Software Engineering
University of Salzburg

January 25, 2011



Motivation Periodic Memory Consumption Analysis Implementation Results Outlook

Outline

1 Motivation

2 Periodic Memory Consumption Analysis

3 Implementation

4 Results

5 Outlook

Stephanie Stroka Self-Collecting Mutators are Self-Compacting



Motivation Periodic Memory Consumption Analysis Implementation Results Outlook

The ideal allocator

Fast memory allocation and deallocation

No ”wasted” memory space

Internal fragmentation
External fragmentation

Predictable time and memory consumption

Fast compile-time

Stephanie Stroka Self-Collecting Mutators are Self-Compacting



Motivation Periodic Memory Consumption Analysis Implementation Results Outlook

The problem

Fast allocation ↪→ wasting memory

Less fragmentation ↪→ slow allocation

OptimalMemoryConsumption ∼ 1
AllocationTime

Predictable memory consumption
↪→ unreasonable run-time (memory copying)
↪→ unreasonable compile-time (program analysis?!)

Stephanie Stroka Self-Collecting Mutators are Self-Compacting



Motivation Periodic Memory Consumption Analysis Implementation Results Outlook

Typical program characteristics [1]

time

memory

malloc()

free()

Figure 1: Periodic memory allocation and deallocation

Stephanie Stroka Self-Collecting Mutators are Self-Compacting



Motivation Periodic Memory Consumption Analysis Implementation Results Outlook

Memory consumption in Garbage Collectors

time

memory

GC

Figure 2: Garbage Collector loses periodic memory characteristics

Stephanie Stroka Self-Collecting Mutators are Self-Compacting



Motivation Periodic Memory Consumption Analysis Implementation Results Outlook

Periodic memory allocation in the heap

Bumppointer

Long-
Living-
Memory

Long-
Living-
Memory

Mid-
Living-
Memory

malloc()

Bumppointer

Long-
Living-
Memory

Long-
Living-
Memory

Mid-
Living-
Memory

malloc()

Short-
Living-
Memory

Short-
Living-
Memory

Short-
Living-
Memory

Bumppointer

Long-
Living-
Memory

Long-
Living-
Memory

Mid-
Living-
Memory

malloc()

Figure 3: Periodic memory allocation and deallocation in the heap

Stephanie Stroka Self-Collecting Mutators are Self-Compacting



Motivation Periodic Memory Consumption Analysis Implementation Results Outlook

Typical program characteristics [2]

time

memory

malloc()

free()

Figure 4: Periodic memory allocation with growing list

Stephanie Stroka Self-Collecting Mutators are Self-Compacting



Motivation Periodic Memory Consumption Analysis Implementation Results Outlook

Semi-periodic memory allocation in the heap

Bumppointer

Long-
Living-
Memory

Long-
Living-
Memory

Mid-
Living-
Memory

malloc()

Bumppointer

Long-
Living-
Memory

Long-
Living-
Memory

Mid-
Living-
Memory

malloc()

Short-
Living-
Memory

Short-
Living-
Memory

Bumppointer

Long-
Living-
Memory

Long-
Living-
Memory

Mid-
Living-
Memory

malloc()

Mid-
Living-
Memory

Mid-
Living-
Memory

Figure 5: Periodic memory allocation with growing list in the heap

Stephanie Stroka Self-Collecting Mutators are Self-Compacting



Motivation Periodic Memory Consumption Analysis Implementation Results Outlook

Analyzing techniques

To analyze periodic memory consumption, we need...

an allocator that provides information about fragmentation
↪→ Compact-Fit

a mutator that provides time information
↪→ Self-Collecting Mutator

Stephanie Stroka Self-Collecting Mutators are Self-Compacting



Motivation Periodic Memory Consumption Analysis Implementation Results Outlook

Binding memory life-time to a clock

time

memory

tick()

t1 t2 t3 t4 t5 t6 t7 t8

refresh(7)

refresh(4)

refresh(2)

tick()

tick() tick() tick()

tick() tick() tick()

refresh(0)

Figure 6: Periodic memory allocation with self-collecting mutators

Stephanie Stroka Self-Collecting Mutators are Self-Compacting



Motivation Periodic Memory Consumption Analysis Implementation Results Outlook

Implementation

SCM eager collection ↪→ all expired objects will be
deallocated at scm tick()
SCM‘s malloc function uses cf malloc() instead of
ptmalloc2()
Example program with scm malloc(), scm refresh() and
scm tick()

stm

stm

mtm

ltm

stm

stm

mtm

ltm

stm

stm

mtm

ltm

tick() tick()

tick()

tick()

tick()

tick()

tick()

Figure 7: Analyzing memory consumption behaviour with growing #ticks

Stephanie Stroka Self-Collecting Mutators are Self-Compacting



Motivation Periodic Memory Consumption Analysis Implementation Results Outlook

Results

Runtime increases with growing # ticks
↪→ tick(), refresh() and compaction()

Memory consumption decreases with # ticks
↪→ max. fragmentation = #free()
↪→ ...unlikely, because of periodic characteristic

Compaction causes compaction

Long-

Living-

Memory

Long-

Living-

Memory

Mid-

Living-

Memory

Mid-

Living-

Memory

Mid-

Living-

Memory

Short-

Living-

Memory

Short-

Living-

Memory

Short-

Living-

Memory

Short-

Living-

Memory

Figure 8: Compaction causes compaction

Stephanie Stroka Self-Collecting Mutators are Self-Compacting



Motivation Periodic Memory Consumption Analysis Implementation Results Outlook

Results

1 tick

k = 1, compaction = 160
k = 2, compaction = 520
k = 3, compaction = 0
k = 4, compaction = 0
...

3 ticks

k = 1, compaction = 282
k = 2, compaction = 12
k = 3, compaction = 0
k = 4, compaction = 0

Stephanie Stroka Self-Collecting Mutators are Self-Compacting



Motivation Periodic Memory Consumption Analysis Implementation Results Outlook

Outlook

Analyze k for non-trivial programs

Find optimal middle ground for memory consumption and
compaction overhead

Formalize relation of k and refresh()/tick()

Stephanie Stroka Self-Collecting Mutators are Self-Compacting


	Motivation
	Periodic Memory Consumption Analysis
	Implementation
	Results
	Outlook

