Self-Collecting Mutators are Self-Compacting

An analysis of memory consumption in real-periodic programs

Stephanie Stroka

Embedded Software Engineering
University of Salzburg

January 25, 2011

Outline

Motivation

Periodic Memory Consumption Analysis
Implementation

A Results

H Outlook

Stephanie Stroka Self-Collecting Mutators are Self-Compacting

Motivation

The ideal allocator

Fast memory allocation and deallocation
m No "wasted” memory space

m Internal fragmentation
m External fragmentation

Predictable time and memory consumption

Fast compile-time

Stephanie Stroka Self-Collecting Mutators are Self-Compacting

Motivation

The problem

m Fast allocation — wasting memory

m Less fragmentation — slow allocation

OptimalMemoryConsumption ~ o

m Predictable memory consumption
< unreasonable run-time (memory copying)
< unreasonable compile-time (program analysis?!)

Stephanie Stroka Self-Collecting Mutators are Self-Compacting

Motivation

Typical program characteristics [1]

memory

malloc()

B free()

DS Radas

4

»
time

Figure 1: Periodic memory allocation and deallocation

Stephanie Stroka Self-Collecting Mutators are Self-Compacting

Motivation

Memory consumption in

memory

Garbage Collectors

Figure 2: Garbage Collector loses periodic memory characteristics

Stephanie Stroka

Self-Collecting Mutators are Self-Compacting

Motivation

Periodic memory allocation in the heap

sumppoiner >

Long- Long: | mid- H

Living- Living- Living- H

Memory Memory | Memory H
mal | oc()

sumppointer 5>

Long: tong: M- [shon [shon [shon- :

Liing- twing |uving- [uving- |uving- |uwving- H

Memory Memory | Memory |Memory |Memory [Memory H

malToc()

<3 eumponer

Long- Long- Mid- H

Living- wving- | Living- H

Memory Memory | Memory H
mal | oc()

Figure 3: Periodic memory allocation and deallocation in the heap

Stephanie Stroka Self-Collecting tators are Sel

Motivation

Typical program characteristics [2]

memory

malloc()

Yoo > free()

4

—>
time

Figure 4: Periodic memory allocation with growing list

Stephanie Stroka Self-Collecting Mutators are Self-Compacting

Motivation

Semi-periodic memory allocation in the heap

sumpponer >

Long- Long- Mid- H
Living- Living- Living- H
Memory Memory | Memory H

malToc()

Bumppointer |:>

Long- Long- Mid- Short- [mid- Short- H

Living- Living- Living- [Living- [Living- [Living- H

Memory Memory [Memory memory [Memory [memory H
malToc()

<:| Bumppointer

Long- Long- Mid- Mid- H H

Living- Living- Living- Living- H H

Memory Memory Memory Memory H H

mal T oc()

Figure 5: Periodic memory allocation with growing list in the heap

Stephanie Stroka Self-Collecting tators are Sel

Periodic Memory Consumption Analysis

Analyzing techniques

To analyze periodic memory consumption, we need...

m an allocator that provides information about fragmentation
— Compact-Fit

m a mutator that provides time information
— Self-Collecting Mutator

Stephanie Stroka Self-Collecting Mutators are Self-Compacting

Periodic Memory Consumption Analysis

Binding memory life-time to a clock

memory 4 tick() tick() tick()

refresh(2)

B B
H H
H H
H H
H H
refresh(0) tick() tick() H H
\ . : H : H
' ! H H '
' H '
\D ' ' ' ' '
' : H H H tick() tick() tick()
' ' H '
refresh(4) | : — H : : f 7 T
' ' H H H ' ' 1
H H ' ' ' H ' '
H H ' ' ' H ' '
' ! ' H H H : H
refresh(7) ' . ' H ' H .
H !] ' ' H ' -+ -
[©2 13 [[3 6 7 B ime

Figure 6: Periodic memory allocation with self-collecting mutators

Stephanie Stroka Self-Collecting Mutators are Self-Compaci

Implementation

Implementation

m SCM eager collection — all expired objects will be
deallocated at scm_tick()

m SCM's malloc function uses cf_malloc() instead of
ptmalloc2()

m Example program with scm_malloc(), scm_refresh() and
scm_tick()

ti ck()

tick()

tick() tick()

tick() tick() tick()

Figure 7: Analyzing memory consumption behaviour with growing #ticks

Stephanie Stroka Self-Collecting Mutators are Self-Compacting

Results

Results

m Runtime increases with growing # ticks
— tick(), refresh() and compaction()

m Memory consumption decreases with # ticks
— max. fragmentation = #free()
< ...unlikely, because of periodic characteristic

m Compaction causes compaction

Short
Liing. i
emory |t

Mid-
Living:
Memory

ia.
Liing-
Memory

i
Living:
Memory

w

Figure 8: Compaction causes compaction

Stephanie Stroka Self-Collecting Mutators are Self-Compacting

Results

Results

m 1 tick
® K = 1, compaction = 160
® K = 2, compaction = 520
® K = 3, compaction =
m K = 4, compaction = 0
[-

m 3 ticks
® K = 1, compaction = 282
® K = 2, compaction = 12
® K = 3, compaction = 0
® K = 4, compaction = 0

Stephanie Stroka Self-Collecting Mutators are Self-Compacting

Outlook

Outlook

m Analyze K for non-trivial programs

m Find optimal middle ground for memory consumption and
compaction overhead

m Formalize relation of K and refresh() /tick()

Stephanie Stroka Self-Collecting Mutators are Self-Compacting

	Motivation
	Periodic Memory Consumption Analysis
	Implementation
	Results
	Outlook

