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Motivation

The ideal allocator

Fast memory allocation and deallocation
m No "wasted” memory space

m Internal fragmentation
m External fragmentation

Predictable time and memory consumption

Fast compile-time
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Motivation

The problem

m Fast allocation — wasting memory

m Less fragmentation — slow allocation

OptimalMemoryConsumption ~ o

m Predictable memory consumption
< unreasonable run-time (memory copying)
< unreasonable compile-time (program analysis?!)
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Motivation

Typical program characteristics [1]
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Figure 1: Periodic memory allocation and deallocation
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Motivation

Memory consumption in

memory

Garbage Collectors

Figure 2: Garbage Collector loses periodic memory characteristics
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Motivation

Periodic memory allocation in the heap
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Figure 3: Periodic memory allocation and deallocation in the heap
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Motivation

Typical program characteristics [2]
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Figure 4: Periodic memory allocation with growing list
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Motivation

Semi-periodic memory allocation in the heap
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Figure 5: Periodic memory allocation with growing list in the heap
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Periodic Memory Consumption Analysis

Analyzing techniques

To analyze periodic memory consumption, we need...

m an allocator that provides information about fragmentation
— Compact-Fit

m a mutator that provides time information
— Self-Collecting Mutator
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Periodic Memory Consumption Analysis

Binding memory life-time to a clock
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Figure 6: Periodic memory allocation with self-collecting mutators
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Implementation

Implementation

m SCM eager collection — all expired objects will be
deallocated at scm_tick()

m SCM's malloc function uses cf_malloc() instead of
ptmalloc2()

m Example program with scm_malloc(), scm_refresh() and
scm_tick()
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Figure 7: Analyzing memory consumption behaviour with growing #ticks
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Results

Results

m Runtime increases with growing # ticks
— tick(), refresh() and compaction()

m Memory consumption decreases with # ticks
— max. fragmentation = #free()
< ...unlikely, because of periodic characteristic

m Compaction causes compaction
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Figure 8: Compaction causes compaction
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Results

Results

m 1 tick
® K = 1, compaction = 160
® K = 2, compaction = 520
® K = 3, compaction =
m K = 4, compaction = 0
[ -

m 3 ticks
® K = 1, compaction = 282
® K = 2, compaction = 12
® K = 3, compaction = 0
® K = 4, compaction = 0
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Outlook

Outlook

m Analyze K for non-trivial programs

m Find optimal middle ground for memory consumption and
compaction overhead

m Formalize relation of K and refresh() /tick()
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