Basics

The robo

Software

Inter-thread communication Application logi Robot controlle

Experimen

LMHanoi - Tower of Hanoi with Lego Mindstorms

Markus Flatz, Peter Palfrader, Andreas Rottmann

25.01.2011

Overview

Basics

The rob

C - G

Inter-thread communication Application log Robot controll Music

Experimen

- 1 Basics
- 2 The robot
- 3 Software

Inter-thread communication Application logic Robot controller Music

The puzzle

Basics

The robe

Softwar

Inter-thread communication Application logic Robot controller Music

Experimen

Move a set of disks from one rod to another

The puzzle

Basics

he robot

Software

Inter-thread communication Application logic Robot controller Music

Experimen

• Move a set of disks from one rod to another

• With moving only ever one disk

The puzzle

Basics

The rob

Softwar

communication Application log Robot controlle Music

Experimen

• Move a set of disks from one rod to another

- With moving only ever one disk
- No larger disk may rest on a smaller one

Lego Mindstorms

Basics

The rob

Softwar

Inter-thread communication Application log Robot controll Music

- Extends Lego with new building blocks:
 - Sensors
 - Motors
 - Programmable computer
- NXT 2.0: 32-bit ARM7 microprocessor, 64 kB RAM and 256 kB Flash memory
- 4 input, 3 output ports
- Bluetooth, USB
- Sound

LMHanoi -Tower of Hanoi with Lego Mindstorms

Basics

The rob

Softwar

Inter-thread communication Application log Robot controlle Music

Experimen

ABuNQEUC¹ NXC Not eXactly C

- Free compiler to build Lego Mindstorms executables from something similar to C
- Somewhat documented
- Several limitations, e.g., no recursion, no passing of mutexes as parameters
- Workarounds require abusing the preprocessor

The robot: Klaus

Rasics

The robot

Softwar

Inter-thread communication Application logic Robot controller Music

- Forklift
- Can move along three axes

- Movement limited by sensors for two of them
- Using touch and color sensors

LMHanoi -Tower of Hanoi with Lego Mindstorms

Rasics

The robot

Softwar

Inter-thread communication Application logic Robot controller Music

Software

Basics

The rob

Software

communication
Application log
Robot controlle
Music

Experimen

Three threads

- Application logic (Tower of Hanoi algorithm)
- Robot controller
- Music playback

Inter-thread communication

Inter-thread communication

NXC Primitives

Mutex

Mailbox

- Circular buffer
- Mutex (protects fill count and front pointer)
- Two counting semaphores (full, empty)[1]

Application logic

Basics

The robo

Softwar

Inter-thread

Application logic

Robot contro Music

Experimen

• Determine movement sequence

Recursive algorithm

Basics

The rob

Softwa

Inter-threa

Application logic Robot controller

```
void hanoi(int n, rod source, rod help, rod dest) {
   if (n > 0) {
      hanoi(n - 1, source, dest, help);
      move_disk(source, dest);
      hanoi(n - 1, help, source, dest);
   }
}
```

Recursive algorithm

Basics

The rob

Softwa

Inter-thread communication
Application logic

Application logi Robot controlle Music

Experiment

```
 \begin{array}{c} \textbf{void} \ \ \text{hanoi} (\textbf{int} \ n, \ \text{rod source} \ , \ \text{rod help} \ , \ \text{rod dest} \ ) \ \{ \\ \textbf{if} \ (n > 0) \ \{ \\ \text{hanoi} (n - 1, \ \text{source} \ , \ \text{dest} \ , \ \text{help} \ ); \\ \text{move\_disk} (\textbf{source} \ , \ \text{dest} \ ); \\ \text{hanoi} (n - 1, \ \text{help} \ , \ \text{source} \ , \ \text{dest} \ ); \\ \} \\ \} \end{array}
```

• $2^n - 1$ moves

Recursive algorithm

Basics

The rob

Softwa

Inter-thread communication
Application logic
Robot controller

```
void hanoi(int n, rod source, rod help, rod dest) {
   if (n > 0) {
      hanoi(n - 1, source, dest, help);
      move_disk(source, dest);
      hanoi(n - 1, help, source, dest);
   }
}
```

- $2^n 1$ moves
- Optimal movement sequence

Iterative algorithm [2],[3]

Basics

I he rob

Softwa

Inter-thread communicat

Application logic Robot controller Music

- Rods source, help and destination on a circle
- Even number of disks: ordered clockwise
- Odd number of disks: ordered counterclockwise

Iterative algorithm [2],[3]

Basics

The rob

Software

Inter three

Application logic

Robot controlle Music

- Rods source, help and destination on a circle
- Even number of disks: ordered clockwise
- Odd number of disks: ordered counterclockwise

```
while (not all disks on destination rod) {
   move the smallest disk one rod clockwise;
   if (a disk other than the smallest can be moved) {
      move this disk;
   }
}
```

Iterative algorithm [2],[3]

Basics

The rob

Software

Inter-threa

Application logic Robot controller

Robot controlle Music

Experimer

- Rods source, help and destination on a circle
- Even number of disks: ordered clockwise
- Odd number of disks: ordered counterclockwise

```
while (not all disks on destination rod) {
   move the smallest disk one rod clockwise;
   if (a disk other than the smallest can be moved) {
      move this disk;
   }
}
```

• Same movement sequence

Implementation

Basics

The robo

Softwar

Inter-thread

Application logic Robot controller

Robot control Music

- No support for recursion
- Choose iterative algorithm

Naïve implementation

Basics

The rob

Software

Inter-thread

Application logic

Robot contro Music

Experimen

	help	dest.	source	 dest.
disk	1	2	3	 n

• Store the current location of each disk

Naïve implementation

Basics

The rob

Software

Inter-thread

Application logic

Robot contro Music

	help	dest.	source	 dest.
disk	1	2	3	 n

- Store the current location of each disk
- Space complexity: $\mathcal{O}(n)$

Naïve implementation

Basics

The rob

Software

Inter-threa

Application logic

Robot control Music

Experimer

	help	dest.	source		dest.
disk	1	2	3		n

- Store the current location of each disk
- Space complexity: $\mathcal{O}(n)$
- Time complexity per move: $\mathcal{O}(n)$

Basics

The rob

Softwar

Inter-thread

Application logic

Robot control Music

Experimen

source	3			
help	4	1		
destination	5	2		

height: 1 2 2 source help dest.

Store the disks on each rod

THE TOD

Softwar

Inter-thread

Application logic Robot controller

Robot contro Music

source	3			
help	4	1		
destination	5	2		

height:	1	2	2
	source	help	dest.

- Store the disks on each rod
- Store the height of each rod's stack

I he rob

Softwar

Inter-thread

Application logic Robot controller

Robot control Music

source	3			
help	4	1		
destination	5	2		

height:	1	2	2
	source	help	dest.

- Store the disks on each rod
- Store the height of each rod's stack
- Approximately three times as much memory

The rob

Softwar

Inter-thread

Application logic Robot controller

Robot control Music

source	3			
help	4	1		
destination	5	2		

height:	neight: 1		2	
	source	help	dest.	

- Store the disks on each rod
- Store the height of each rod's stack
- Approximately three times as much memory
- Space complexity: $\mathcal{O}(n)$

Application logic

source	3			
help	4	1		
destination	5	2		

height:

1	2	2
source	help	dest.

- Store the disks on each rod
- Store the height of each rod's stack
- Approximately three times as much memory
- Space complexity: $\mathcal{O}(n)$
- Time complexity per move: $\mathcal{O}(1)$

Robot controller (1)

Basics

The rob

Softwar

Inter-thread communication Application logic Robot controller

Experimen

General structure

- Get movements from mailbox and execute them
- Maintains current position
- Wagon position stops on color sensor readings
- Fork vertical movement stops on touch sensor
- Fork moves horizontally by fixed amount

Robot controller (2)

Basics

The rob

Softwar

Inter-thread communication Application lo

Application logic Robot controller Music

Experimen

Specialties

Overshoot

Robot controller (2)

Basics

The rob

Softwar

Inter-thread communication Application logic Robot controller

_

Specialties

Overshoot

• Use raw mode of color sensor to detect blue

Music

Basics

The robo

Software

Inter-thread communication Application logic Robot controller

Music

Experimen

Additional concurrency

Music

Dasics

The robo

Software

Inter-thread communication Application logic Robot controller

Music

- Additional concurrency
- Situational

$$duration(n) = (2^n - 1) \cdot d + c$$

Basics

The robo

Software

Inter-thread communication Application logic Robot controller Music

Experiment

$$duration(n) = (2^n - 1) \cdot d + c$$

Softwar

Inter-thread communication Application logic

Music Experiment

Experiment

$$duration(n) = (2^n - 1) \cdot d + c$$

Softwar

Inter-thread communication Application logi Robot controller Music

$$expreg(x) = (e^{0.693 \cdot x} - 1) \cdot 23.2 + 12.7$$

References

Basics

The rob

Softwar

Inter-thread communication Application logic Robot controller Music

Experimen

John A. Trono and William E. Taylor. Further comments on "a correct and unrestrictive implementation of general semaphores". SIGOPS Oper. Syst. Rev., 34:5–10, July 2000.

Wikipedia.

Tower of Hanoi - Wikipedia, The Free Encyclopedia, 2011. https://secure.wikimedia.org/wikipedia/en/w/index.php?title=Tower_of_Hanoi&oldid=407310252.

Wikipedia.

Türme von Hanoi – Wikipedia, Die freie Enzyklopädie, 2011.

https:

//secure.wikimedia.org/wikipedia/de/w/index.
php?title=T%C3%BCrme_von_Hanoi&oldid=83701385.

LMHanoi -Tower of Hanoi with Lego Mindstorms

Basics

The robot

Softwar

Inter-thread communication Application logic Robot controller Music

Experimen

Thank you for your attention.