
LMHanoi

Tower of Hanoi with Lego Mindstorms

Markus Flatz, Peter Palfrader, Andreas Rottmann

forename.surname@stud.sbg.ac.at

Report
created during the course

Embedded Software Engineering
winter semester 2010/11

Lecturer: Univ.-Prof. Dipl.-Inform. Dr.-Ing. Christoph Kirsch

University of Salzburg, Master program Applied Informatics

CONTENTS 1

Contents

1 Introduction 2

1.1 The puzzle . 2

1.2 Lego Mindstorms . 2

1.3 NXC . 2

2 The robot 3

3 Algorithms 4

3.1 Recursive algorithm . 4

3.2 Iterative algorithm . 4

4 Software 6

4.1 Application logic . 6

4.2 Inter-thread communication . 7

4.3 Robot controller . 7

4.4 Music . 9

5 Experiment 10

6 Closing remarks 11

A Subproject responsibilities 11

1 INTRODUCTION 2

Abstract

The project goal was building a Lego Mindstorms robot capable of
solving the puzzle “Tower of Hanoi”. Our apparatus has a fork to pick
up the disks, it can be moved in three directions and relies on color and
touch sensors to determine its position. Using the NXC language, we
created a three-threaded control software with one thread for application
logic, one for the actual robot control, and one for situational background
music. The moves are determined by an iterative algorithm yielding each
movement decision in constant time.

1 Introduction

1.1 The puzzle

The Tower of Hanoi is a stack of different-sized disks. There are three rods. In
the beginning, the first rod contains all the disks. The largest disk lies on the
bottom, the second largest one is directly above and so on, the smallest disk
lies on top. The goal is to move the whole tower to the third rod. In each step,
only the topmost disk of one rod can be moved onto the top of another rod’s
stack. Additionally, it is never allowed to pile a disk onto a smaller one.

1.2 Lego Mindstorms

Lego Mindstorms1 is a kit to build embedded systems consisting of a pro-
grammable brick, motors, sensors and a number of ordinary Lego parts.

The current version, Lego Mindstorms NXT 2.0, relies on a 32-bit ARM7 micro-
processor, 64 kB RAM and 256 kB Flash memory and offers three output ports
and four input ports, sound and connectivity via USB and Bluetooth. Three
servo motors with rotational sensors, two touch sensors, one color sensor and
one ultrasonic sensor are included in the box.

A graphical programming environment based on LabVIEW ships with the kit.

1.3 NXC

NXC2 (Not eXactly C) is a programming language similar to C to write code
for the Lego NXT brick. It relies on the assembly language NBC (Next Byte
Codes). The compiler is released under the Mozilla Public License.

We used this language to solve our problem, since it is more versatile and allows
more control than the graphical tool included in the kit.

1http://mindstorms.lego.com/
2http://bricxcc.sourceforge.net/nbc/

http://mindstorms.lego.com/
http://bricxcc.sourceforge.net/nbc/

2 THE ROBOT 3

2 The robot

Our robot is built of parts of the Lego Mindstorms NXT 2.0 set 8547 and
additional Lego bricks, except for the puzzle itself, which is made of wood. The
construct is pictured in Figure 1.

Figure 1: The robot, Klaus

Spacers between the disks allow the robot to pick them up with its fork, which
can be moved along three axes by motors.

One motor shifts the whole wagon (the construction on the green plate in Figure
1) left and right between the three pegs. It relies on a color sensor to recognize
colored Lego bricks marking the three pegs and an additional outer position
used in the initialization and termination phase.

The second motor moves the shuttle (the inner part, including the fork) up and
down along toothed racks. A touch sensor is triggered at the uppermost position
and also when an obstacle, i.e., a disk, is encountered while moving downwards.

Finally, a third motor is responsible for forward and backward motion of the
fork. We also use the ability of the NXT brick to play sounds.

3 ALGORITHMS 4

3 Algorithms

3.1 Recursive algorithm

The Tower of Hanoi problem is a common example used to introduce computer
science students to the concept of recursion, and as such the recursive solution
to the problem is well known. A possible formulation of the algorithm is shown
in Listing 1, where n, the first argument, is the number of disks.

1 void hanoi (int n , rod source , rod help , rod d e s t i n a t i on) {
2 i f (n > 0) {
3 hanoi (n − 1 , source , de s t i na t i on , he lp) ;
4 move disk (source , d e s t i n a t i on) ;
5 hanoi (n − 1 , help , source , d e s t i n a t i on) ;
6 }
7 }

Listing 1: Recursive algorithm

First, n−1 disks are moved from source to help, using destination as temporary
storage. After that, the nth disk can be carried from source to destination.
Finally, the n − 1 disks that were previously parked on help are moved to
destination, with source as temporary storage.

Theorem 1 (Number of moves). Let n be the number of disks. Using the
recursive algorithm from Listing 1, the number of moves is 2n − 1.

Proof by induction. For n = 0, the number of moves is 0 = 20 − 1.
For n > 0, the number of moves is (2n−1 − 1) + 1 + (2n−1 − 1) = 2n − 1.

Moreover, this movement sequence is optimal, i.e., the shortest possible.

3.2 Iterative algorithm

One way to solve the problem without recursion is presented by Buneman and
Levy[2],[3]: The three rods are imagined to lie on a circle. If the number of
disks is even, the rods source, help and destination are ordered clockwise, if
the number is odd, they are ordered counterclockwise. Listing 2 depicts the
algorithm in pseudocode.

1 while (not a l l d i s k s on de s t i n a t i on rod) {
2 move the sma l l e s t d i sk one rod c l o ckw i s e ;
3 i f (a d i sk other than the sma l l e s t one can be moved) {
4 move t h i s d i sk ;
5 }
6 }

Listing 2: Pseudocode for the iterative algorithm

3.2 Iterative algorithm 5

This algorithm yields the same, optimal movement sequence as the recursive al-
gorithm from Listing 1. All steps are well-defined and deterministic. Especially
the condition in line 3 always holds for exactly one disk during the run, and for
no disk if all disks are on the destination rod, i.e., when the puzzle is finished.
The move in line 4 is clearly defined, too, since the disk cannot be piled onto
the smallest disk.

The Tower of Hanoi is a very popular puzzle, more algorithms to solve the
problem exist.

4 SOFTWARE 6

4 Software

Our application runs in three threads, called tasks in NXC lingo. Figure 2 shows
these threads and how they communicate.

App. Logic Controller

Music

MBox

Global
Variable

Robot

Figure 2: General structure of our program

One thread is responsible for the “application logic”, i.e., it makes decisions on
disk movement. The second thread, called robot controller, is responsible for
implementing these decisions, responding to sensor inputs and issuing motor
commands. The last one is challenged with providing entertaining and informa-
tive music during the run of the program.

4.1 Application logic

At first, we tried to apply the well-known recursive algorithm described in Sec-
tion 3.1, but it turned out that the NXC language does not support recursion.
Fortunately, the iterative solution from Section 3.2 can be implemented without
any problems.

Our first, näıve implementation used a single array with n elements, where n
is the number of disks, storing the current location of each disk, as pictured in
Figure 3.

help dest. source . . . dest.
disk 1 2 3 . . . n

Figure 3: Core data structure for the näıve implementation

To move the smallest disk, only the first element of the array had to be consid-
ered and changed. However, finding a movable disk other than the smallest one
required scanning the array, resulting in a time complexity of O(n) for a single
movement decision.

Our robot cannot support large numbers of disks because of its limited size.
Nevertheless, we wanted to refine the implementation to yield each disk move-
ment in constant time. We achieved this goal by using more memory, in a

4.2 Inter-thread communication 7

classical space-time trade-off. Although the memory consumption is now ap-
proximately three times as high, it is still linear in the number of disks, so we
considered this expense justified.

The basic idea is using an array of size r · n, containing the current disks (at
most n) on each of the r rods. Additionally, an array with r elements holds the
current height of each rod’s stack, allowing direct access to their topmost disks
(see Figure 4). It is only necessary to regard these disks to find the next move,
therefore the time complexity per move is O(r), i.e., O(1), since r is constant
(r = 3).

source 3
help 4 1

destination 5 2

height: 1 2 2
source help dest.

Figure 4: Core data structures for the refined implementation

4.2 Inter-thread communication

While the application logic thread runs without any prerequisites, the calculated
disk moves must be announced to the robot controller. For this sake, we created
a mailbox containing movement instructions. Such an instruction specifies a
source and a destination rod. The size of the disk is not enclosed, since the robot
controller can only ever move the topmost disk anyway. No further information
is needed.

The mailbox provides a put and a get function, and is internally implemented
as a circular FIFO buffer of configurable size. To guarantee correct behavior in
a multi-threaded context, two counting semaphores (for states empty and full)
are used. NXC provides only binary semaphores (mutexes), so we had to create
a counting semaphore ourselves. Trono et al. provide an interesting insight into
the difficulties of this task in [1]; we implemented the method proposed by Barz,
shown there in Figure 2.

Besides this, the music thread also depends on status information from the robot
controller. However, this need can be simply satisfied with a global variable.

4.3 Robot controller

The robot controller processes moving instructions one by one. A disk move al-
ways follows the following pattern: moving the wagon to the source rod, lifting
the topmost disk, moving to the destination rod and dropping the disk (cf. Fig-
ure 5). These steps are further refined to functions containing actual sensor
checks and motor commands.

4.3 Robot controller 8

move_to(src) lift_disk()

move_to(dest)drop_disk()

Figure 5: High-level operation of controller

As described in Section 2, the robot contains three motors, a touch sensor and
color sensor, with the color sensor governing the wagon movement while the
touch sensor is responsible for detecting when the fork is at the upmost position
or just below the topmost disk, ready to pick it up. Accordingly, the routine
implementing vertical movement of the shuttle (and thus the fork) is rather
straightforward.

The horizontal movement of the fork is even simpler: the associated motor is
just turned on for a fixed number of rotations. The mechanical constraints
ensure that the fork always stops at the backmost and frontmost positions. By
using a rubber strap drive, we can safely oversteer a little bit without straining
the mechanics.

4.3.1 Wagon positioning

Wagon movement is conceptually simple as well: in either direction, stop when
the color sensor detects the color corresponding to the desired rod. However,
the actual implementation is a bit more involved, employing two small tricks to
ensure exact positioning and accurate color detection.

The first problem is that the colored Lego bricks indicating the rod position
have a non-negligible horizontal extent, as can be seen in Figure 6, where the
blue rectangle depicts a Lego brick to be detected by the color sensor. When
approaching the brick from the right, we stop at the indicated target position,
just as the color sensor detects the colored brick. However, when approaching
from the left, we would stop at the left side of the brick, well off the target
position.

Hence, we don’t stop when detecting the desired color, but instead carry on
until that color is no longer detected, then turn and approach from the right,
hitting the same spot as if we approached from the right from the outset.

The second problem is related to reading the color sensor’s value. Normally,
this is a single integer indicating the color, such as white, blue, or red. While
convenient, this this did not work too well for detecting the blue-colored brick,
making the robot unreliable and very sensitive to lighting conditions. However,
the sensor also allows the raw RGB values to be read. Using these, we were able
to correctly identify the blue brick much more reliably.

4.4 Music 9

Target Position

Sensor Path

Figure 6: Using overshoot for exact positioning

4.4 Music

Besides the core task of solving the puzzle, a third thread uses the ability of the
NXC brick to issue background sounds. We did this for entertainment, as well
as for the challenge of additional concurrency.

As briefly mentioned in Section 4.2, the music is situational, depending on the
current state of the robot. There are different themes for initialization (no
sound), wagon movement, wagon halt or vertical movement, finishing a disk
move and completion of the puzzle.

The music thread reads a global variable set by the robot controller, then plays
the corresponding theme. The variable is read again when the theme is finished,
a theme is never interrupted.

5 EXPERIMENT 10

5 Experiment

Beyond the ability to actually solve the puzzle, we tested whether our robot
shows the expected timing behavior in dependence of the number of disks. The-
orem 1 states that the number of moves is 2n − 1, where n is the number of
disks. Our experiment reveals that this property holds true for our robot as
well, suggesting that we implemented the algorithm correctly.

We were interested in the actual execution times for n = 1, 2, 3, 4 disks. The
mechanical dimensions of our robot allow only up to three disks, so the experi-
ment with four disks is partially simulated. When the robot wants to move the
nonexistent lowermost disk, the touch sensor is triggered at the bottom, causing
a move without payload.

The results are shown in Figure 7. The red crosses labeled with ′lmhanoi.dat′

are the measured values, while the green line expreg(x) is a calculated regression
function.

 0

 100

 200

 300

 400

 500

 0 1 2 3 4 5

d
u
ra

ti
o
n
 [
s
]

number of disks

’lmhanoi.dat’
expreg(x)

Figure 7: Puzzle-solving duration for different numbers of disks

The expected behavior is duration(n) = (2n − 1) · d + c = (en·ln(2) − 1) · d + c,
where d is the mean time per disk move and c is a constant initial and terminal
overhead. This leads to the regression function

expreg(x) = (e0.693·x − 1) · 23.2 + 12.7

which approximates the data points fairly well. (Final sum of squares of resid-
uals: 6.11.)

6 CLOSING REMARKS 11

6 Closing remarks

The presented robot is able to successfully solve the Tower of Hanoi puzzle. Our
project page3 provides the NXC source code, as well as a short demonstration
video.

A Subproject responsibilities

Most of the work on the project was done during regular team meetings, where
we sat together discussing and solving the problems at hand. So, all team
members contributed to nearly all parts of the project. Nevertheless, we tried
to create a list giving the four fields each person made the most important
contributions to.

Markus Flatz:

• algorithms and application logic

• music and music thread

• experiment

• report and project page

Peter Palfrader:

• robot construction

• robot control

• counting semaphores

• application logic

Andreas Rottmann:

• mechanical issues

• concurrency

• inter-thread communication

• drawings

3http://www.cs.uni-salzburg.at/~ck/wiki/index.php?n=ESE-Winter-2010.LMHanoi

http://www.cs.uni-salzburg.at/~ck/wiki/index.php?n=ESE-Winter-2010.LMHanoi

REFERENCES 12

References

[1] John A. Trono and William E. Taylor. Further comments on “a correct and
unrestrictive implementation of general semaphores”. SIGOPS Oper. Syst.
Rev., 34:5–10, July 2000.

[2] Wikipedia. Tower of Hanoi – Wikipedia, The Free Encyclope-
dia, 2011. https://secure.wikimedia.org/wikipedia/en/w/index.php?
title=Tower_of_Hanoi&oldid=407310252.

[3] Wikipedia. Türme von Hanoi – Wikipedia, Die freie Enzyklopädie,
2011. https://secure.wikimedia.org/wikipedia/de/w/index.php?

title=T%C3%BCrme_von_Hanoi&oldid=83701385.

https://secure.wikimedia.org/wikipedia/en/w/index.php?title=Tower_of_Hanoi&oldid=407310252
https://secure.wikimedia.org/wikipedia/en/w/index.php?title=Tower_of_Hanoi&oldid=407310252
https://secure.wikimedia.org/wikipedia/de/w/index.php?title=T%C3%BCrme_von_Hanoi&oldid=83701385
https://secure.wikimedia.org/wikipedia/de/w/index.php?title=T%C3%BCrme_von_Hanoi&oldid=83701385

	Introduction
	The puzzle
	Lego Mindstorms
	NXC

	The robot
	Algorithms
	Recursive algorithm
	Iterative algorithm

	Software
	Application logic
	Inter-thread communication
	Robot controller
	Music

	Experiment
	Closing remarks
	Subproject responsibilities

