
© C. Kirsch 2009

Temporal and Spatial Complexity
per CF Configuration and Size-Class

4. If mj+ι ≥ β and s > 1, i.e., this is the last incremental step for the compaction

operation which still keeps the source page, then the number of source page-

blocks s decreases by 1, the variable mj is removed from the state.

5. If mj + ι ≥ β and s = 1, i.e., the compaction operation finishes after this

incremental step and the source page will no longer exist in the size-class,

then s gets the value 0. Furthermore, the source page either becomes a not-

full page if n < κ (in which case n increases by 1, un is assigned the value of

us, us becomes 0) or it is kept as a potential source page.

Finally, there is a possibility for incremental operations IE which do not

change the state, but only change the global pool E of emptying source pages.

We skip the details on the description and the update of E due to IE operations.

We remark that the behavior of any thread can be expressed by a sequence

of allocations and deallocations. If a deallocation triggers compaction, then be-

fore the thread can continue with any other allocation or deallocation operation

all incremental steps needed for the compaction must be finished. The first of

these steps is an initial incremental compaction step I which may be an initial

incremental moving step in case of compaction conflict. If it is the case, then

all other incremental steps are of type IE . Otherwise, if there is no compaction

conflict, a sequence of Ij incremental steps will be performed, and in case the

source page becomes emptying a sequence of IE incremental steps, in order to

complete the compaction operation.

6 Complexity vs. Fragmentation

malloc free latency
1-CF(∞,∞) O(n) O(n) O(1)
1-CF(κ,∞) O(n) O(n + β) O(β)

n-CF(∞,∞) O(1) O(1) O(1)
n-CF(κ,∞) O(1) O(β) O(β)

1-CF(κ, ι) O(n) O(n + β + �β
ι �) O(min(β, ι))

Table 1. Time complexity of malloc and free as well as worst-case system latency per
CF configuration and size-class

Table 1 shows the time complexity of malloc and free as well as the worst-case

system latency, and Table 2 shows the memory size and size-class fragmentation

per CF configuration with n threads and m per-thread-allocated page-blocks in

a size-class with π page-blocks of size β per page. The fragmentation caused

by partitioning memory [2, 7] is not considered here. Although the partial com-

paction bound κ and the compaction increment ι are kept constant in our current

implementations, both κ and ι may be changed dynamically at runtime, which

is an interesting topic for future work. System latency is here the portion of the

memory size size-class fragmentation
1-CF(∞,∞) O(n ∗m ∗ π ∗ β) O(n ∗m ∗ (π − 1) ∗ β)
1-CF(κ,∞) O((n ∗m + κ ∗ (π − 1)) ∗ β) O(κ ∗ (π − 1) ∗ β)

n-CF(∞,∞) O(n ∗m ∗ π ∗ β) O(n ∗m ∗ (π − 1) ∗ β)
n-CF(κ,∞) O(n ∗ (m + κ ∗ (π − 1)) ∗ β) O(n ∗ κ ∗ (π − 1) ∗ β)

1-CF(κ, ι) O((n ∗m + n ∗ π + κ ∗ (π − 1)) ∗ β) O((n ∗ π + κ ∗ (π − 1)) ∗ β)

Table 2. Worst-case memory size and size-class fragmentation per CF configuration
and size-class

delay a thread may experience, from invoking malloc or free until the operation

actually begins executing, caused by currently executing, non-preemptive CF

operations, not including the synchronization overhead.

Since all operations of the non-compacting 1-CF(∞,∞) configuration take

constant time, the complexity of malloc and free only depends linearly on

the number of competing threads assuming fair scheduling. System latency is

bounded by a constant. However, the worst case in memory consumption is

one page for each allocated object due to potentially high size-class fragmenta-

tion, which has asymptotically the same bound as the overall memory consump-

tion. The compacting 1-CF(κ,∞) configuration trades-off complexity of free and

worst-case latency for better bounds on memory consumption by limiting size-

class fragmentation through partial compaction. Note that in this case size-class

fragmentation is independent from the number of threads and allocated objects.

The results for the n-CF configurations, in particular the worst cases in

memory size and size-class fragmentation, as shown here, are obtained under

the assumption that there is no sharing among the n CF instances. The time

complexity of malloc and free of both multiple-instance configurations goes up

to the respective single-instance cases if there is sharing among the n CF in-

stances. While the non-compacting n-CF(∞,∞) configuration requires in the

worst case no more memory than the non-compacting single-instance configura-

tion, the compacting n-CF(κ,∞) configuration actually does require in the worst

case more memory than the compacting single-instance configuration since par-

tial compaction is performed per instance. However, allocation and deallocation

throughput may increase with both multiple-instance configurations with a de-

creasing degree of sharing among the n CF instances (without an increase in

worst-case system latency).

The incremental 1-CF(κ, ι) configuration actually improves the worst case

in system latency whenever the compaction increment ι is less than the page-

block size of the size-class with the largest page-blocks, at the expense of the

complexity of free through more preemptions and at the expense of memory

consumption through increased transient size-class fragmentation. In comparison

to the non-incremental, compacting 1-CF(κ,∞) configuration, there may be up

to n additional (emptying) source pages in the system where n is the number

of threads. The worst case in non-transient size-class fragmentation does not

increase.



© C. Kirsch 2009

Temporal and Spatial Complexity
per CF Configuration and Size-Class

4. If mj+ι ≥ β and s > 1, i.e., this is the last incremental step for the compaction

operation which still keeps the source page, then the number of source page-

blocks s decreases by 1, the variable mj is removed from the state.

5. If mj + ι ≥ β and s = 1, i.e., the compaction operation finishes after this

incremental step and the source page will no longer exist in the size-class,

then s gets the value 0. Furthermore, the source page either becomes a not-

full page if n < κ (in which case n increases by 1, un is assigned the value of

us, us becomes 0) or it is kept as a potential source page.

Finally, there is a possibility for incremental operations IE which do not

change the state, but only change the global pool E of emptying source pages.

We skip the details on the description and the update of E due to IE operations.

We remark that the behavior of any thread can be expressed by a sequence

of allocations and deallocations. If a deallocation triggers compaction, then be-

fore the thread can continue with any other allocation or deallocation operation

all incremental steps needed for the compaction must be finished. The first of

these steps is an initial incremental compaction step I which may be an initial

incremental moving step in case of compaction conflict. If it is the case, then

all other incremental steps are of type IE . Otherwise, if there is no compaction

conflict, a sequence of Ij incremental steps will be performed, and in case the

source page becomes emptying a sequence of IE incremental steps, in order to

complete the compaction operation.

6 Complexity vs. Fragmentation

malloc free latency
1-CF(∞,∞) O(n) O(n) O(1)
1-CF(κ,∞) O(n) O(n + β) O(β)

n-CF(∞,∞) O(1) O(1) O(1)
n-CF(κ,∞) O(1) O(β) O(β)

1-CF(κ, ι) O(n) O(n + β + �β
ι �) O(min(β, ι))

Table 1. Time complexity of malloc and free as well as worst-case system latency per
CF configuration and size-class

Table 1 shows the time complexity of malloc and free as well as the worst-case

system latency, and Table 2 shows the memory size and size-class fragmentation

per CF configuration with n threads and m per-thread-allocated page-blocks in

a size-class with π page-blocks of size β per page. The fragmentation caused

by partitioning memory [2, 7] is not considered here. Although the partial com-

paction bound κ and the compaction increment ι are kept constant in our current

implementations, both κ and ι may be changed dynamically at runtime, which

is an interesting topic for future work. System latency is here the portion of the

memory size size-class fragmentation
1-CF(∞,∞) O(n ∗m ∗ π ∗ β) O(n ∗m ∗ (π − 1) ∗ β)
1-CF(κ,∞) O((n ∗m + κ ∗ (π − 1)) ∗ β) O(κ ∗ (π − 1) ∗ β)

n-CF(∞,∞) O(n ∗m ∗ π ∗ β) O(n ∗m ∗ (π − 1) ∗ β)
n-CF(κ,∞) O(n ∗ (m + κ ∗ (π − 1)) ∗ β) O(n ∗ κ ∗ (π − 1) ∗ β)

1-CF(κ, ι) O((n ∗m + n ∗ π + κ ∗ (π − 1)) ∗ β) O((n ∗ π + κ ∗ (π − 1)) ∗ β)

Table 2. Worst-case memory size and size-class fragmentation per CF configuration
and size-class

delay a thread may experience, from invoking malloc or free until the operation

actually begins executing, caused by currently executing, non-preemptive CF

operations, not including the synchronization overhead.

Since all operations of the non-compacting 1-CF(∞,∞) configuration take

constant time, the complexity of malloc and free only depends linearly on

the number of competing threads assuming fair scheduling. System latency is

bounded by a constant. However, the worst case in memory consumption is

one page for each allocated object due to potentially high size-class fragmenta-

tion, which has asymptotically the same bound as the overall memory consump-

tion. The compacting 1-CF(κ,∞) configuration trades-off complexity of free and

worst-case latency for better bounds on memory consumption by limiting size-

class fragmentation through partial compaction. Note that in this case size-class

fragmentation is independent from the number of threads and allocated objects.

The results for the n-CF configurations, in particular the worst cases in

memory size and size-class fragmentation, as shown here, are obtained under

the assumption that there is no sharing among the n CF instances. The time

complexity of malloc and free of both multiple-instance configurations goes up

to the respective single-instance cases if there is sharing among the n CF in-

stances. While the non-compacting n-CF(∞,∞) configuration requires in the

worst case no more memory than the non-compacting single-instance configura-

tion, the compacting n-CF(κ,∞) configuration actually does require in the worst

case more memory than the compacting single-instance configuration since par-

tial compaction is performed per instance. However, allocation and deallocation

throughput may increase with both multiple-instance configurations with a de-

creasing degree of sharing among the n CF instances (without an increase in

worst-case system latency).

The incremental 1-CF(κ, ι) configuration actually improves the worst case

in system latency whenever the compaction increment ι is less than the page-

block size of the size-class with the largest page-blocks, at the expense of the

complexity of free through more preemptions and at the expense of memory

consumption through increased transient size-class fragmentation. In comparison

to the non-incremental, compacting 1-CF(κ,∞) configuration, there may be up

to n additional (emptying) source pages in the system where n is the number

of threads. The worst case in non-transient size-class fragmentation does not

increase.

n is the # of threads



© C. Kirsch 2009

Temporal and Spatial Complexity
per CF Configuration and Size-Class

4. If mj+ι ≥ β and s > 1, i.e., this is the last incremental step for the compaction

operation which still keeps the source page, then the number of source page-

blocks s decreases by 1, the variable mj is removed from the state.

5. If mj + ι ≥ β and s = 1, i.e., the compaction operation finishes after this

incremental step and the source page will no longer exist in the size-class,

then s gets the value 0. Furthermore, the source page either becomes a not-

full page if n < κ (in which case n increases by 1, un is assigned the value of

us, us becomes 0) or it is kept as a potential source page.

Finally, there is a possibility for incremental operations IE which do not

change the state, but only change the global pool E of emptying source pages.

We skip the details on the description and the update of E due to IE operations.

We remark that the behavior of any thread can be expressed by a sequence

of allocations and deallocations. If a deallocation triggers compaction, then be-

fore the thread can continue with any other allocation or deallocation operation

all incremental steps needed for the compaction must be finished. The first of

these steps is an initial incremental compaction step I which may be an initial

incremental moving step in case of compaction conflict. If it is the case, then

all other incremental steps are of type IE . Otherwise, if there is no compaction

conflict, a sequence of Ij incremental steps will be performed, and in case the

source page becomes emptying a sequence of IE incremental steps, in order to

complete the compaction operation.

6 Complexity vs. Fragmentation

malloc free latency
1-CF(∞,∞) O(n) O(n) O(1)
1-CF(κ,∞) O(n) O(n + β) O(β)

n-CF(∞,∞) O(1) O(1) O(1)
n-CF(κ,∞) O(1) O(β) O(β)

1-CF(κ, ι) O(n) O(n + β + �β
ι �) O(min(β, ι))

Table 1. Time complexity of malloc and free as well as worst-case system latency per
CF configuration and size-class

Table 1 shows the time complexity of malloc and free as well as the worst-case

system latency, and Table 2 shows the memory size and size-class fragmentation

per CF configuration with n threads and m per-thread-allocated page-blocks in

a size-class with π page-blocks of size β per page. The fragmentation caused

by partitioning memory [2, 7] is not considered here. Although the partial com-

paction bound κ and the compaction increment ι are kept constant in our current

implementations, both κ and ι may be changed dynamically at runtime, which

is an interesting topic for future work. System latency is here the portion of the

memory size size-class fragmentation
1-CF(∞,∞) O(n ∗m ∗ π ∗ β) O(n ∗m ∗ (π − 1) ∗ β)
1-CF(κ,∞) O((n ∗m + κ ∗ (π − 1)) ∗ β) O(κ ∗ (π − 1) ∗ β)

n-CF(∞,∞) O(n ∗m ∗ π ∗ β) O(n ∗m ∗ (π − 1) ∗ β)
n-CF(κ,∞) O(n ∗ (m + κ ∗ (π − 1)) ∗ β) O(n ∗ κ ∗ (π − 1) ∗ β)

1-CF(κ, ι) O((n ∗m + n ∗ π + κ ∗ (π − 1)) ∗ β) O((n ∗ π + κ ∗ (π − 1)) ∗ β)

Table 2. Worst-case memory size and size-class fragmentation per CF configuration
and size-class

delay a thread may experience, from invoking malloc or free until the operation

actually begins executing, caused by currently executing, non-preemptive CF

operations, not including the synchronization overhead.

Since all operations of the non-compacting 1-CF(∞,∞) configuration take

constant time, the complexity of malloc and free only depends linearly on

the number of competing threads assuming fair scheduling. System latency is

bounded by a constant. However, the worst case in memory consumption is

one page for each allocated object due to potentially high size-class fragmenta-

tion, which has asymptotically the same bound as the overall memory consump-

tion. The compacting 1-CF(κ,∞) configuration trades-off complexity of free and

worst-case latency for better bounds on memory consumption by limiting size-

class fragmentation through partial compaction. Note that in this case size-class

fragmentation is independent from the number of threads and allocated objects.

The results for the n-CF configurations, in particular the worst cases in

memory size and size-class fragmentation, as shown here, are obtained under

the assumption that there is no sharing among the n CF instances. The time

complexity of malloc and free of both multiple-instance configurations goes up

to the respective single-instance cases if there is sharing among the n CF in-

stances. While the non-compacting n-CF(∞,∞) configuration requires in the

worst case no more memory than the non-compacting single-instance configura-

tion, the compacting n-CF(κ,∞) configuration actually does require in the worst

case more memory than the compacting single-instance configuration since par-

tial compaction is performed per instance. However, allocation and deallocation

throughput may increase with both multiple-instance configurations with a de-

creasing degree of sharing among the n CF instances (without an increase in

worst-case system latency).

The incremental 1-CF(κ, ι) configuration actually improves the worst case

in system latency whenever the compaction increment ι is less than the page-

block size of the size-class with the largest page-blocks, at the expense of the

complexity of free through more preemptions and at the expense of memory

consumption through increased transient size-class fragmentation. In comparison

to the non-incremental, compacting 1-CF(κ,∞) configuration, there may be up

to n additional (emptying) source pages in the system where n is the number

of threads. The worst case in non-transient size-class fragmentation does not

increase.



© C. Kirsch 2009

Temporal and Spatial Complexity
per CF Configuration and Size-Class

4. If mj+ι ≥ β and s > 1, i.e., this is the last incremental step for the compaction

operation which still keeps the source page, then the number of source page-

blocks s decreases by 1, the variable mj is removed from the state.

5. If mj + ι ≥ β and s = 1, i.e., the compaction operation finishes after this

incremental step and the source page will no longer exist in the size-class,

then s gets the value 0. Furthermore, the source page either becomes a not-

full page if n < κ (in which case n increases by 1, un is assigned the value of

us, us becomes 0) or it is kept as a potential source page.

Finally, there is a possibility for incremental operations IE which do not

change the state, but only change the global pool E of emptying source pages.

We skip the details on the description and the update of E due to IE operations.

We remark that the behavior of any thread can be expressed by a sequence

of allocations and deallocations. If a deallocation triggers compaction, then be-

fore the thread can continue with any other allocation or deallocation operation

all incremental steps needed for the compaction must be finished. The first of

these steps is an initial incremental compaction step I which may be an initial

incremental moving step in case of compaction conflict. If it is the case, then

all other incremental steps are of type IE . Otherwise, if there is no compaction

conflict, a sequence of Ij incremental steps will be performed, and in case the

source page becomes emptying a sequence of IE incremental steps, in order to

complete the compaction operation.

6 Complexity vs. Fragmentation

malloc free latency
1-CF(∞,∞) O(n) O(n) O(1)
1-CF(κ,∞) O(n) O(n + β) O(β)

n-CF(∞,∞) O(1) O(1) O(1)
n-CF(κ,∞) O(1) O(β) O(β)

1-CF(κ, ι) O(n) O(n + β + �β
ι �) O(min(β, ι))

Table 1. Time complexity of malloc and free as well as worst-case system latency per
CF configuration and size-class

Table 1 shows the time complexity of malloc and free as well as the worst-case

system latency, and Table 2 shows the memory size and size-class fragmentation

per CF configuration with n threads and m per-thread-allocated page-blocks in

a size-class with π page-blocks of size β per page. The fragmentation caused

by partitioning memory [2, 7] is not considered here. Although the partial com-

paction bound κ and the compaction increment ι are kept constant in our current

implementations, both κ and ι may be changed dynamically at runtime, which

is an interesting topic for future work. System latency is here the portion of the

memory size size-class fragmentation
1-CF(∞,∞) O(n ∗m ∗ π ∗ β) O(n ∗m ∗ (π − 1) ∗ β)
1-CF(κ,∞) O((n ∗m + κ ∗ (π − 1)) ∗ β) O(κ ∗ (π − 1) ∗ β)

n-CF(∞,∞) O(n ∗m ∗ π ∗ β) O(n ∗m ∗ (π − 1) ∗ β)
n-CF(κ,∞) O(n ∗ (m + κ ∗ (π − 1)) ∗ β) O(n ∗ κ ∗ (π − 1) ∗ β)

1-CF(κ, ι) O((n ∗m + n ∗ π + κ ∗ (π − 1)) ∗ β) O((n ∗ π + κ ∗ (π − 1)) ∗ β)

Table 2. Worst-case memory size and size-class fragmentation per CF configuration
and size-class

delay a thread may experience, from invoking malloc or free until the operation

actually begins executing, caused by currently executing, non-preemptive CF

operations, not including the synchronization overhead.

Since all operations of the non-compacting 1-CF(∞,∞) configuration take

constant time, the complexity of malloc and free only depends linearly on

the number of competing threads assuming fair scheduling. System latency is

bounded by a constant. However, the worst case in memory consumption is

one page for each allocated object due to potentially high size-class fragmenta-

tion, which has asymptotically the same bound as the overall memory consump-

tion. The compacting 1-CF(κ,∞) configuration trades-off complexity of free and

worst-case latency for better bounds on memory consumption by limiting size-

class fragmentation through partial compaction. Note that in this case size-class

fragmentation is independent from the number of threads and allocated objects.

The results for the n-CF configurations, in particular the worst cases in

memory size and size-class fragmentation, as shown here, are obtained under

the assumption that there is no sharing among the n CF instances. The time

complexity of malloc and free of both multiple-instance configurations goes up

to the respective single-instance cases if there is sharing among the n CF in-

stances. While the non-compacting n-CF(∞,∞) configuration requires in the

worst case no more memory than the non-compacting single-instance configura-

tion, the compacting n-CF(κ,∞) configuration actually does require in the worst

case more memory than the compacting single-instance configuration since par-

tial compaction is performed per instance. However, allocation and deallocation

throughput may increase with both multiple-instance configurations with a de-

creasing degree of sharing among the n CF instances (without an increase in

worst-case system latency).

The incremental 1-CF(κ, ι) configuration actually improves the worst case

in system latency whenever the compaction increment ι is less than the page-

block size of the size-class with the largest page-blocks, at the expense of the

complexity of free through more preemptions and at the expense of memory

consumption through increased transient size-class fragmentation. In comparison

to the non-incremental, compacting 1-CF(κ,∞) configuration, there may be up

to n additional (emptying) source pages in the system where n is the number

of threads. The worst case in non-transient size-class fragmentation does not

increase.

β is the page-block size



© C. Kirsch 2009

Temporal and Spatial Complexity
per CF Configuration and Size-Class

4. If mj+ι ≥ β and s > 1, i.e., this is the last incremental step for the compaction

operation which still keeps the source page, then the number of source page-

blocks s decreases by 1, the variable mj is removed from the state.

5. If mj + ι ≥ β and s = 1, i.e., the compaction operation finishes after this

incremental step and the source page will no longer exist in the size-class,

then s gets the value 0. Furthermore, the source page either becomes a not-

full page if n < κ (in which case n increases by 1, un is assigned the value of

us, us becomes 0) or it is kept as a potential source page.

Finally, there is a possibility for incremental operations IE which do not

change the state, but only change the global pool E of emptying source pages.

We skip the details on the description and the update of E due to IE operations.

We remark that the behavior of any thread can be expressed by a sequence

of allocations and deallocations. If a deallocation triggers compaction, then be-

fore the thread can continue with any other allocation or deallocation operation

all incremental steps needed for the compaction must be finished. The first of

these steps is an initial incremental compaction step I which may be an initial

incremental moving step in case of compaction conflict. If it is the case, then

all other incremental steps are of type IE . Otherwise, if there is no compaction

conflict, a sequence of Ij incremental steps will be performed, and in case the

source page becomes emptying a sequence of IE incremental steps, in order to

complete the compaction operation.

6 Complexity vs. Fragmentation

malloc free latency
1-CF(∞,∞) O(n) O(n) O(1)
1-CF(κ,∞) O(n) O(n + β) O(β)

n-CF(∞,∞) O(1) O(1) O(1)
n-CF(κ,∞) O(1) O(β) O(β)

1-CF(κ, ι) O(n) O(n + β + �β
ι �) O(min(β, ι))

Table 1. Time complexity of malloc and free as well as worst-case system latency per
CF configuration and size-class

Table 1 shows the time complexity of malloc and free as well as the worst-case

system latency, and Table 2 shows the memory size and size-class fragmentation

per CF configuration with n threads and m per-thread-allocated page-blocks in

a size-class with π page-blocks of size β per page. The fragmentation caused

by partitioning memory [2, 7] is not considered here. Although the partial com-

paction bound κ and the compaction increment ι are kept constant in our current

implementations, both κ and ι may be changed dynamically at runtime, which

is an interesting topic for future work. System latency is here the portion of the

memory size size-class fragmentation
1-CF(∞,∞) O(n ∗m ∗ π ∗ β) O(n ∗m ∗ (π − 1) ∗ β)
1-CF(κ,∞) O((n ∗m + κ ∗ (π − 1)) ∗ β) O(κ ∗ (π − 1) ∗ β)

n-CF(∞,∞) O(n ∗m ∗ π ∗ β) O(n ∗m ∗ (π − 1) ∗ β)
n-CF(κ,∞) O(n ∗ (m + κ ∗ (π − 1)) ∗ β) O(n ∗ κ ∗ (π − 1) ∗ β)

1-CF(κ, ι) O((n ∗m + n ∗ π + κ ∗ (π − 1)) ∗ β) O((n ∗ π + κ ∗ (π − 1)) ∗ β)

Table 2. Worst-case memory size and size-class fragmentation per CF configuration
and size-class

delay a thread may experience, from invoking malloc or free until the operation

actually begins executing, caused by currently executing, non-preemptive CF

operations, not including the synchronization overhead.

Since all operations of the non-compacting 1-CF(∞,∞) configuration take

constant time, the complexity of malloc and free only depends linearly on

the number of competing threads assuming fair scheduling. System latency is

bounded by a constant. However, the worst case in memory consumption is

one page for each allocated object due to potentially high size-class fragmenta-

tion, which has asymptotically the same bound as the overall memory consump-

tion. The compacting 1-CF(κ,∞) configuration trades-off complexity of free and

worst-case latency for better bounds on memory consumption by limiting size-

class fragmentation through partial compaction. Note that in this case size-class

fragmentation is independent from the number of threads and allocated objects.

The results for the n-CF configurations, in particular the worst cases in

memory size and size-class fragmentation, as shown here, are obtained under

the assumption that there is no sharing among the n CF instances. The time

complexity of malloc and free of both multiple-instance configurations goes up

to the respective single-instance cases if there is sharing among the n CF in-

stances. While the non-compacting n-CF(∞,∞) configuration requires in the

worst case no more memory than the non-compacting single-instance configura-

tion, the compacting n-CF(κ,∞) configuration actually does require in the worst

case more memory than the compacting single-instance configuration since par-

tial compaction is performed per instance. However, allocation and deallocation

throughput may increase with both multiple-instance configurations with a de-

creasing degree of sharing among the n CF instances (without an increase in

worst-case system latency).

The incremental 1-CF(κ, ι) configuration actually improves the worst case

in system latency whenever the compaction increment ι is less than the page-

block size of the size-class with the largest page-blocks, at the expense of the

complexity of free through more preemptions and at the expense of memory

consumption through increased transient size-class fragmentation. In comparison

to the non-incremental, compacting 1-CF(κ,∞) configuration, there may be up

to n additional (emptying) source pages in the system where n is the number

of threads. The worst case in non-transient size-class fragmentation does not

increase.



© C. Kirsch 2009

Temporal and Spatial Complexity
per CF Configuration and Size-Class

4. If mj+ι ≥ β and s > 1, i.e., this is the last incremental step for the compaction

operation which still keeps the source page, then the number of source page-

blocks s decreases by 1, the variable mj is removed from the state.

5. If mj + ι ≥ β and s = 1, i.e., the compaction operation finishes after this

incremental step and the source page will no longer exist in the size-class,

then s gets the value 0. Furthermore, the source page either becomes a not-

full page if n < κ (in which case n increases by 1, un is assigned the value of

us, us becomes 0) or it is kept as a potential source page.

Finally, there is a possibility for incremental operations IE which do not

change the state, but only change the global pool E of emptying source pages.

We skip the details on the description and the update of E due to IE operations.

We remark that the behavior of any thread can be expressed by a sequence

of allocations and deallocations. If a deallocation triggers compaction, then be-

fore the thread can continue with any other allocation or deallocation operation

all incremental steps needed for the compaction must be finished. The first of

these steps is an initial incremental compaction step I which may be an initial

incremental moving step in case of compaction conflict. If it is the case, then

all other incremental steps are of type IE . Otherwise, if there is no compaction

conflict, a sequence of Ij incremental steps will be performed, and in case the

source page becomes emptying a sequence of IE incremental steps, in order to

complete the compaction operation.

6 Complexity vs. Fragmentation

malloc free latency
1-CF(∞,∞) O(n) O(n) O(1)
1-CF(κ,∞) O(n) O(n + β) O(β)

n-CF(∞,∞) O(1) O(1) O(1)
n-CF(κ,∞) O(1) O(β) O(β)

1-CF(κ, ι) O(n) O(n + β + �β
ι �) O(min(β, ι))

Table 1. Time complexity of malloc and free as well as worst-case system latency per
CF configuration and size-class

Table 1 shows the time complexity of malloc and free as well as the worst-case

system latency, and Table 2 shows the memory size and size-class fragmentation

per CF configuration with n threads and m per-thread-allocated page-blocks in

a size-class with π page-blocks of size β per page. The fragmentation caused

by partitioning memory [2, 7] is not considered here. Although the partial com-

paction bound κ and the compaction increment ι are kept constant in our current

implementations, both κ and ι may be changed dynamically at runtime, which

is an interesting topic for future work. System latency is here the portion of the

memory size size-class fragmentation
1-CF(∞,∞) O(n ∗m ∗ π ∗ β) O(n ∗m ∗ (π − 1) ∗ β)
1-CF(κ,∞) O((n ∗m + κ ∗ (π − 1)) ∗ β) O(κ ∗ (π − 1) ∗ β)

n-CF(∞,∞) O(n ∗m ∗ π ∗ β) O(n ∗m ∗ (π − 1) ∗ β)
n-CF(κ,∞) O(n ∗ (m + κ ∗ (π − 1)) ∗ β) O(n ∗ κ ∗ (π − 1) ∗ β)

1-CF(κ, ι) O((n ∗m + n ∗ π + κ ∗ (π − 1)) ∗ β) O((n ∗ π + κ ∗ (π − 1)) ∗ β)

Table 2. Worst-case memory size and size-class fragmentation per CF configuration
and size-class

delay a thread may experience, from invoking malloc or free until the operation

actually begins executing, caused by currently executing, non-preemptive CF

operations, not including the synchronization overhead.

Since all operations of the non-compacting 1-CF(∞,∞) configuration take

constant time, the complexity of malloc and free only depends linearly on

the number of competing threads assuming fair scheduling. System latency is

bounded by a constant. However, the worst case in memory consumption is

one page for each allocated object due to potentially high size-class fragmenta-

tion, which has asymptotically the same bound as the overall memory consump-

tion. The compacting 1-CF(κ,∞) configuration trades-off complexity of free and

worst-case latency for better bounds on memory consumption by limiting size-

class fragmentation through partial compaction. Note that in this case size-class

fragmentation is independent from the number of threads and allocated objects.

The results for the n-CF configurations, in particular the worst cases in

memory size and size-class fragmentation, as shown here, are obtained under

the assumption that there is no sharing among the n CF instances. The time

complexity of malloc and free of both multiple-instance configurations goes up

to the respective single-instance cases if there is sharing among the n CF in-

stances. While the non-compacting n-CF(∞,∞) configuration requires in the

worst case no more memory than the non-compacting single-instance configura-

tion, the compacting n-CF(κ,∞) configuration actually does require in the worst

case more memory than the compacting single-instance configuration since par-

tial compaction is performed per instance. However, allocation and deallocation

throughput may increase with both multiple-instance configurations with a de-

creasing degree of sharing among the n CF instances (without an increase in

worst-case system latency).

The incremental 1-CF(κ, ι) configuration actually improves the worst case

in system latency whenever the compaction increment ι is less than the page-

block size of the size-class with the largest page-blocks, at the expense of the

complexity of free through more preemptions and at the expense of memory

consumption through increased transient size-class fragmentation. In comparison

to the non-incremental, compacting 1-CF(κ,∞) configuration, there may be up

to n additional (emptying) source pages in the system where n is the number

of threads. The worst case in non-transient size-class fragmentation does not

increase.

m is the # of
per-thread-allocated

page-blocks



© C. Kirsch 2009

Temporal and Spatial Complexity
per CF Configuration and Size-Class

4. If mj+ι ≥ β and s > 1, i.e., this is the last incremental step for the compaction

operation which still keeps the source page, then the number of source page-

blocks s decreases by 1, the variable mj is removed from the state.

5. If mj + ι ≥ β and s = 1, i.e., the compaction operation finishes after this

incremental step and the source page will no longer exist in the size-class,

then s gets the value 0. Furthermore, the source page either becomes a not-

full page if n < κ (in which case n increases by 1, un is assigned the value of

us, us becomes 0) or it is kept as a potential source page.

Finally, there is a possibility for incremental operations IE which do not

change the state, but only change the global pool E of emptying source pages.

We skip the details on the description and the update of E due to IE operations.

We remark that the behavior of any thread can be expressed by a sequence

of allocations and deallocations. If a deallocation triggers compaction, then be-

fore the thread can continue with any other allocation or deallocation operation

all incremental steps needed for the compaction must be finished. The first of

these steps is an initial incremental compaction step I which may be an initial

incremental moving step in case of compaction conflict. If it is the case, then

all other incremental steps are of type IE . Otherwise, if there is no compaction

conflict, a sequence of Ij incremental steps will be performed, and in case the

source page becomes emptying a sequence of IE incremental steps, in order to

complete the compaction operation.

6 Complexity vs. Fragmentation

malloc free latency
1-CF(∞,∞) O(n) O(n) O(1)
1-CF(κ,∞) O(n) O(n + β) O(β)

n-CF(∞,∞) O(1) O(1) O(1)
n-CF(κ,∞) O(1) O(β) O(β)

1-CF(κ, ι) O(n) O(n + β + �β
ι �) O(min(β, ι))

Table 1. Time complexity of malloc and free as well as worst-case system latency per
CF configuration and size-class

Table 1 shows the time complexity of malloc and free as well as the worst-case

system latency, and Table 2 shows the memory size and size-class fragmentation

per CF configuration with n threads and m per-thread-allocated page-blocks in

a size-class with π page-blocks of size β per page. The fragmentation caused

by partitioning memory [2, 7] is not considered here. Although the partial com-

paction bound κ and the compaction increment ι are kept constant in our current

implementations, both κ and ι may be changed dynamically at runtime, which

is an interesting topic for future work. System latency is here the portion of the

memory size size-class fragmentation
1-CF(∞,∞) O(n ∗m ∗ π ∗ β) O(n ∗m ∗ (π − 1) ∗ β)
1-CF(κ,∞) O((n ∗m + κ ∗ (π − 1)) ∗ β) O(κ ∗ (π − 1) ∗ β)

n-CF(∞,∞) O(n ∗m ∗ π ∗ β) O(n ∗m ∗ (π − 1) ∗ β)
n-CF(κ,∞) O(n ∗ (m + κ ∗ (π − 1)) ∗ β) O(n ∗ κ ∗ (π − 1) ∗ β)

1-CF(κ, ι) O((n ∗m + n ∗ π + κ ∗ (π − 1)) ∗ β) O((n ∗ π + κ ∗ (π − 1)) ∗ β)

Table 2. Worst-case memory size and size-class fragmentation per CF configuration
and size-class

delay a thread may experience, from invoking malloc or free until the operation

actually begins executing, caused by currently executing, non-preemptive CF

operations, not including the synchronization overhead.

Since all operations of the non-compacting 1-CF(∞,∞) configuration take

constant time, the complexity of malloc and free only depends linearly on

the number of competing threads assuming fair scheduling. System latency is

bounded by a constant. However, the worst case in memory consumption is

one page for each allocated object due to potentially high size-class fragmenta-

tion, which has asymptotically the same bound as the overall memory consump-

tion. The compacting 1-CF(κ,∞) configuration trades-off complexity of free and

worst-case latency for better bounds on memory consumption by limiting size-

class fragmentation through partial compaction. Note that in this case size-class

fragmentation is independent from the number of threads and allocated objects.

The results for the n-CF configurations, in particular the worst cases in

memory size and size-class fragmentation, as shown here, are obtained under

the assumption that there is no sharing among the n CF instances. The time

complexity of malloc and free of both multiple-instance configurations goes up

to the respective single-instance cases if there is sharing among the n CF in-

stances. While the non-compacting n-CF(∞,∞) configuration requires in the

worst case no more memory than the non-compacting single-instance configura-

tion, the compacting n-CF(κ,∞) configuration actually does require in the worst

case more memory than the compacting single-instance configuration since par-

tial compaction is performed per instance. However, allocation and deallocation

throughput may increase with both multiple-instance configurations with a de-

creasing degree of sharing among the n CF instances (without an increase in

worst-case system latency).

The incremental 1-CF(κ, ι) configuration actually improves the worst case

in system latency whenever the compaction increment ι is less than the page-

block size of the size-class with the largest page-blocks, at the expense of the

complexity of free through more preemptions and at the expense of memory

consumption through increased transient size-class fragmentation. In comparison

to the non-incremental, compacting 1-CF(κ,∞) configuration, there may be up

to n additional (emptying) source pages in the system where n is the number

of threads. The worst case in non-transient size-class fragmentation does not

increase.



© C. Kirsch 2009

8.2 Concurrent Non-incremental CF

The microbenchmarks run mutator threads that each allocate 2048 objects of
random size, then deallocate the objects, and then start over again. The sizes
of allocated objects correspond to the distribution of object sizes allocated in a
popular optimizer for programmable logic arrays called Espresso used in several
memory allocator performance evaluations, e.g. in [11]. Each microbenchmark
runs for ten seconds performing more than one million allocation/deallocation
operations.

 1e+06

 1.05e+06

 1.1e+06

 1.15e+06

 1.2e+06

 1.25e+06

 1.3e+06

 1.35e+06

1 3 5 !

a
llo

c
a

ti
o

n
s
/s

e
c

partial compaction bound "

size-class lock, global size-class
size-class lock, thread-local size-class

page lock, global size-class
page lock, thread-local size-class

Fig. 8. Allocation throughput of a single thread with decreasing partial compaction

Figure 8 shows the impact of partial compaction on the allocation throughput
of a single thread. Larger partial compaction bounds κ provide higher allocation
throughput because of less compaction activity. Independently of κ, the size-
class lock configuration performs better then the page-lock configuration since
the latter needs locks for both the size-class and the source and target pages.

Figure 9 depicts the allocation throughput with an increasing number of
threads. Up to seven threads run in parallel on seven cores while the eighth core
is used to minimize the influence of collecting data on the performance data. The
performance of the fully compacting and the optimized, non-compacting version
of CF without abstract addressing (in both cases with no sharing across the
thread-local CF instances) are shown in Figures 9(a) and 9(b), respectively. The
thread-local size-class versions show linear scalability in the number of threads
whereas the global size-class versions neither scale in the fully compacting nor
in the non-compacting configurations. Again, the size-class lock configurations
result in better allocation throughput than the page lock configurations. Scala-
bility only improves by a constant factor with increasing partial compaction (cf.
Figures 9(a) versus 9(b)). Scalability of the thread-local size-class versions de-
pends on the degree of sharing across the thread-local CF instances. Figure 9(c)
shows allocation throughput at varying degrees of sharing: mutator threads al-
locate and deallocate 512 objects periodically according to the Espresso object
size distribution. Each mutator frees its own just allocated objects and objects
previously allocated by other threads in a ratio that determines the degree of
sharing.

Single Thread
Allocation Throughput



© C. Kirsch 2009

8.2 Concurrent Non-incremental CF

The microbenchmarks run mutator threads that each allocate 2048 objects of
random size, then deallocate the objects, and then start over again. The sizes
of allocated objects correspond to the distribution of object sizes allocated in a
popular optimizer for programmable logic arrays called Espresso used in several
memory allocator performance evaluations, e.g. in [11]. Each microbenchmark
runs for ten seconds performing more than one million allocation/deallocation
operations.

 1e+06

 1.05e+06

 1.1e+06

 1.15e+06

 1.2e+06

 1.25e+06

 1.3e+06

 1.35e+06

1 3 5 !

a
llo

c
a

ti
o

n
s
/s

e
c

partial compaction bound "

size-class lock, global size-class
size-class lock, thread-local size-class

page lock, global size-class
page lock, thread-local size-class

Fig. 8. Allocation throughput of a single thread with decreasing partial compaction

Figure 8 shows the impact of partial compaction on the allocation throughput
of a single thread. Larger partial compaction bounds κ provide higher allocation
throughput because of less compaction activity. Independently of κ, the size-
class lock configuration performs better then the page-lock configuration since
the latter needs locks for both the size-class and the source and target pages.

Figure 9 depicts the allocation throughput with an increasing number of
threads. Up to seven threads run in parallel on seven cores while the eighth core
is used to minimize the influence of collecting data on the performance data. The
performance of the fully compacting and the optimized, non-compacting version
of CF without abstract addressing (in both cases with no sharing across the
thread-local CF instances) are shown in Figures 9(a) and 9(b), respectively. The
thread-local size-class versions show linear scalability in the number of threads
whereas the global size-class versions neither scale in the fully compacting nor
in the non-compacting configurations. Again, the size-class lock configurations
result in better allocation throughput than the page lock configurations. Scala-
bility only improves by a constant factor with increasing partial compaction (cf.
Figures 9(a) versus 9(b)). Scalability of the thread-local size-class versions de-
pends on the degree of sharing across the thread-local CF instances. Figure 9(c)
shows allocation throughput at varying degrees of sharing: mutator threads al-
locate and deallocate 512 objects periodically according to the Espresso object
size distribution. Each mutator frees its own just allocated objects and objects
previously allocated by other threads in a ratio that determines the degree of
sharing.

Single Thread
Allocation Throughputconcurrency

per
size-class



© C. Kirsch 2009

8.2 Concurrent Non-incremental CF

The microbenchmarks run mutator threads that each allocate 2048 objects of
random size, then deallocate the objects, and then start over again. The sizes
of allocated objects correspond to the distribution of object sizes allocated in a
popular optimizer for programmable logic arrays called Espresso used in several
memory allocator performance evaluations, e.g. in [11]. Each microbenchmark
runs for ten seconds performing more than one million allocation/deallocation
operations.

 1e+06

 1.05e+06

 1.1e+06

 1.15e+06

 1.2e+06

 1.25e+06

 1.3e+06

 1.35e+06

1 3 5 !

a
llo

c
a

ti
o

n
s
/s

e
c

partial compaction bound "

size-class lock, global size-class
size-class lock, thread-local size-class

page lock, global size-class
page lock, thread-local size-class

Fig. 8. Allocation throughput of a single thread with decreasing partial compaction

Figure 8 shows the impact of partial compaction on the allocation throughput
of a single thread. Larger partial compaction bounds κ provide higher allocation
throughput because of less compaction activity. Independently of κ, the size-
class lock configuration performs better then the page-lock configuration since
the latter needs locks for both the size-class and the source and target pages.

Figure 9 depicts the allocation throughput with an increasing number of
threads. Up to seven threads run in parallel on seven cores while the eighth core
is used to minimize the influence of collecting data on the performance data. The
performance of the fully compacting and the optimized, non-compacting version
of CF without abstract addressing (in both cases with no sharing across the
thread-local CF instances) are shown in Figures 9(a) and 9(b), respectively. The
thread-local size-class versions show linear scalability in the number of threads
whereas the global size-class versions neither scale in the fully compacting nor
in the non-compacting configurations. Again, the size-class lock configurations
result in better allocation throughput than the page lock configurations. Scala-
bility only improves by a constant factor with increasing partial compaction (cf.
Figures 9(a) versus 9(b)). Scalability of the thread-local size-class versions de-
pends on the degree of sharing across the thread-local CF instances. Figure 9(c)
shows allocation throughput at varying degrees of sharing: mutator threads al-
locate and deallocate 512 objects periodically according to the Espresso object
size distribution. Each mutator frees its own just allocated objects and objects
previously allocated by other threads in a ratio that determines the degree of
sharing.

Single Thread
Allocation Throughput

concurrency
per
page



• less compaction may result in 
better allocation throughput

•size-class locks better than 
page locks


