
Project Documentation: Short-term Memory for

Self-collecting Mutators: Benchmarks

Andreas Haas, 0421949
Andreas Schönegger, 0420929

Adviser: Christoph Kirsch

University of Salzburg
Department of Computer Science

Embedded Software Engineering, WS 2009/10

February 7, 2010

Part I

Introduction

1

Andreas Haas developed a memory management system, self-collecting mu-
tators. The aim of this project was to develop benchmarks to compare self-
collecting mutators with other memory management systems. The project doc-
umentation is structured as follows:

1. First we discuss the systems which we compared with self-collecting mu-
tators

2. Then we describe the metrices we want to use

3. We present the programs we used as benchmarks

4. At last we show the results of the benchmarks

More speci�c details about the system can be found in the paper �Short-term
Memory for Self-collecting Mutators" by Haas, Kirsch, Payer, Schönegger and
Sokolova.

2

Part II

Systems

3

Self-collecting mutator were implemented in the Jikes research virtual ma-
chine. There already exist many implementations of garbage collectors in Jikes.
We decided to compare self-collecting mutators with the mark-sweep garbage
collector [5] and a two-generation copying collector where the higher generation
is handled by an Immix collector [2]. We chose the generational garbage col-
lector because it is the default memory management system used in Jikes, and
we decided for the mark-weep garbage collector because it is fast and it was the
former default system. We disables all optimizations of Jikes to avoid distortion
of the results.

4

Part III

Metrices

5

We decided for three metrics to compare the performance of the systems:

• Total runtime

� We measured the system time at the beginning and at the end of the
benchmark. The total runtime is then determined by the di�erence
of these two time values.

• Latency

� The major part of all of our benchmarks is regular loop. To deter-
mine the latency we measure the execution time of each single loop
iteration.

• Memory Consumption

� We log the amout of free memory at the end of every loop iteration.

6

Part IV

Benchmarks

7

benchmark LOC added LOCs

Monte Carlo 1450 10
JLayer mp3-to-wav converter 8247 1

Table 1: The lines of code of the benchmarks and the e�ort of adepting them
for self-collecting mutators

We chose two benchmarks: the Monte Carlo program of the Grande Java
Benchmark Suite [4] and the mp3-to-wav converter JLayer1. The code of both
benchmarks was easy to adapt for self-collecting mutators. Metrices of the
benchmarks are shown in Table 1.

The Monte Carlo benchmark contained a reachable memory leak which was
automatically resolved by self-collecting mutators. This was an advantage for
our system. However we also executed a benchmark con�guration without the
memory leak.

In the Monte Carlo benchmark a result object is generated in every loop
iteration in the main loop. These result objects are collected in a result set.
The performance of self-collecting mutators increases when the result objects
are preallocated already before the main loop. We therefore modi�ed the Monte
Carlo benchmark to use preallocated result objects.

We also measured the time-space trade-o� of self-collecting mutators which
is controlled by the tick-frequency and by the number of refreshing (Both is
described in the paper). In order to measure this trade-o� we used the Monte
Carlo benchmark without preallocated result objects.

We executed both benchmarks, the Monte Carlo- and the mp3-benchmark,
in parallel to measure the behavior of self-collecting mutators executing multi-
threaded applications. We also executed four instances of Monte Carlo at the
same time.

We tried to adept programs of the dacapo benchmark suite [1] and the
CDX benchmark [3] for self-collecting mutators. However, all programs of the
dacapo benchmark suite use re�ection which does not work with self-collecting
mutators. The results of the CDX benchmark were not feasible for our metrices,
because they do not use the memory management system enough.

1http://www.javazoom.net/javalayer/javalayer.html

8

Part V

Results

9

MP3 MC leaky MC fixed 4x MC
fixed

MP3 +
MC

90.00%

100.00%

110.00%

120.00%

130.00%

140.00%

150.00%

160.00%

SCM
GEN
MS

Figure 1: Total runtime of the benchmarks in percent of the runtime of the
benchmark using self-collecting mutators

Figure 1, 2, 3, 4 and 5 show the results of the benchmarks. A discussion of
the benchmark results can be found in the paper.

10

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 100 200 300 400 500 600 700 800 900 1000
 1

 100

 10000

fr
ee

 m
em

or
y

in
 M

B

lo
op

 e
xe

cu
tio

n
tim

e
in

 m
s

(lo
ga

rit
hm

ic
)

loop index

Gen free memory
MS free memory

SCM free memory
Gen loop execution time
MS loop execution time

SCM loop execution time

Figure 2: Free memory and loop execution time of the Monte Carlo benchmark
without memory leak

11

 25.2

 25.22

 25.24

 25.26

 25.28

 25.3

 25.32

 25.34

 25.36

 25.38

 25.4

 0 2 4 6 8 10 12 14 16 18 20
 0

 5

 10

 15

 20

fr
ee

 m
em

or
y

in
 M

B

lo
op

 e
xe

cu
tio

n
tim

e
in

 m
s

loop index

free memory thread1
free memory thread2
free memory thread3
free memory thread4

loop execution time thread1
loop execution time thread2
loop execution time thread3
loop execution time thread4

Figure 3: Free memory and loop execution time of the parallel Monte Carlo

 1

 10

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

lo
op

 e
xe

cu
tio

n
tim

e
in

 m
s

(lo
ga

rit
hm

ic
)

loop index

no Refresh
1 tick/1 iteration

1 tick/50 iterations
1 tick/200 iterations

Figure 4: Loop execution time of Monte Carlo with di�erent tick-frequencies

12

 0

 1

 2

 3

 4

 5

 6

 7

 1 10 100 1000

fr
ee

 m
em

or
y

in
 M

B

loop index (logarithmic)

no Refresh
1 tick/1 iteration

1 tick/50 iterations
1 tick/200 iterations

Figure 5: Free memory of Monte Carlo with di�erent tick-frequencies

13

Bibliography

[1] S. M. Blackburn, R. Garner, C. Ho�mann, A. M. Khang, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, B. Moss, A. Phansalkar, D. Ste-
fanovi¢, T. VanDrunen, D. von Dincklage, and B. Wiedermann. The dacapo
benchmarks: java benchmarking development and analysis. In OOPSLA

'06: Proceedings of the 21st annual ACM SIGPLAN conference on Object-

oriented programming systems, languages, and applications, pages 169�190,
New York, NY, USA, 2006. ACM.

[2] Stephen M. Blackburn and Kathryn S. McKinley. Immix: a mark-region
garbage collector with space e�ciency, fast collection, and mutator perfor-
mance. In PLDI '08: Proceedings of the 2008 ACM SIGPLAN conference on

Programming language design and implementation, pages 22�32, New York,
NY, USA, 2008. ACM.

[3] Tomas Kalibera, Je� Hagelberg, Filip Pizlo, Ales Plsek, Ben Titzer, and Jan
Vitek. Cdx: a family of real-time java benchmarks. In JTRES '09: Proceed-

ings of the 7th International Workshop on Java Technologies for Real-Time

and Embedded Systems, pages 41�50, New York, NY, USA, 2009. ACM.

[4] J. A. Mathew, P. D. Coddington, and K. A. Hawick. Analysis and devel-
opment of java grande benchmarks. In JAVA '99: Proceedings of the ACM

1999 conference on Java Grande, pages 72�80, New York, NY, USA, 1999.
ACM.

[5] J. McCarthy. Recursive functions of symbolic expressions and their compu-
tation by machine, part i. Commun. ACM, 3(4):184�195, 1960.

14

