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Part I

Introduction
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Andreas Haas developed a memory management system, self-collecting mu-
tators. The aim of this project was to develop benchmarks to compare self-
collecting mutators with other memory management systems. The project doc-
umentation is structured as follows:

1. First we discuss the systems which we compared with self-collecting mu-
tators

2. Then we describe the metrices we want to use

3. We present the programs we used as benchmarks

4. At last we show the results of the benchmarks

More speci�c details about the system can be found in the paper �Short-term
Memory for Self-collecting Mutators" by Haas, Kirsch, Payer, Schönegger and
Sokolova.
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Part II

Systems
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Self-collecting mutator were implemented in the Jikes research virtual ma-
chine. There already exist many implementations of garbage collectors in Jikes.
We decided to compare self-collecting mutators with the mark-sweep garbage
collector [5] and a two-generation copying collector where the higher generation
is handled by an Immix collector [2]. We chose the generational garbage col-
lector because it is the default memory management system used in Jikes, and
we decided for the mark-weep garbage collector because it is fast and it was the
former default system. We disables all optimizations of Jikes to avoid distortion
of the results.
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Part III

Metrices
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We decided for three metrics to compare the performance of the systems:

• Total runtime

� We measured the system time at the beginning and at the end of the
benchmark. The total runtime is then determined by the di�erence
of these two time values.

• Latency

� The major part of all of our benchmarks is regular loop. To deter-
mine the latency we measure the execution time of each single loop
iteration.

• Memory Consumption

� We log the amout of free memory at the end of every loop iteration.

6



Part IV

Benchmarks
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benchmark LOC added LOCs

Monte Carlo 1450 10
JLayer mp3-to-wav converter 8247 1

Table 1: The lines of code of the benchmarks and the e�ort of adepting them
for self-collecting mutators

We chose two benchmarks: the Monte Carlo program of the Grande Java
Benchmark Suite [4] and the mp3-to-wav converter JLayer1. The code of both
benchmarks was easy to adapt for self-collecting mutators. Metrices of the
benchmarks are shown in Table 1.

The Monte Carlo benchmark contained a reachable memory leak which was
automatically resolved by self-collecting mutators. This was an advantage for
our system. However we also executed a benchmark con�guration without the
memory leak.

In the Monte Carlo benchmark a result object is generated in every loop
iteration in the main loop. These result objects are collected in a result set.
The performance of self-collecting mutators increases when the result objects
are preallocated already before the main loop. We therefore modi�ed the Monte
Carlo benchmark to use preallocated result objects.

We also measured the time-space trade-o� of self-collecting mutators which
is controlled by the tick-frequency and by the number of refreshing (Both is
described in the paper). In order to measure this trade-o� we used the Monte
Carlo benchmark without preallocated result objects.

We executed both benchmarks, the Monte Carlo- and the mp3-benchmark,
in parallel to measure the behavior of self-collecting mutators executing multi-
threaded applications. We also executed four instances of Monte Carlo at the
same time.

We tried to adept programs of the dacapo benchmark suite [1] and the
CDX benchmark [3] for self-collecting mutators. However, all programs of the
dacapo benchmark suite use re�ection which does not work with self-collecting
mutators. The results of the CDX benchmark were not feasible for our metrices,
because they do not use the memory management system enough.

1http://www.javazoom.net/javalayer/javalayer.html
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Part V

Results
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Figure 1: Total runtime of the benchmarks in percent of the runtime of the
benchmark using self-collecting mutators

Figure 1, 2, 3, 4 and 5 show the results of the benchmarks. A discussion of
the benchmark results can be found in the paper.
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Figure 2: Free memory and loop execution time of the Monte Carlo benchmark
without memory leak
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Figure 3: Free memory and loop execution time of the parallel Monte Carlo
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Figure 4: Loop execution time of Monte Carlo with di�erent tick-frequencies
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Figure 5: Free memory of Monte Carlo with di�erent tick-frequencies
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