
Direction Invariant Path Rover

Bernhard Mühlbacher Hannes Payer

Abstract

The Rover is an autonomous direction invariant pathfinder, based on the Lego Mindstorm
System and is implemented in Java and Giotto. The challenge is to follow an arbitrary line
and adapt the speed of the Rover to the color of the line. Additionally, the Rover should
communicate with its environment using an infrared device.
Interpreting and executing Giotto code on the Lego Mindstorm RCX implies developing
a customized lightweight Giotto virtual machine and an adapted Giotto compiler. These
implementations can be re-used by other Giotto implementations on devices which offer for
performance reasons just a small Java API.

1 Introduction

The goal of the Rover project was to develop a direction invariant pathfinder using the
Lego Mindstorm System Hardware[1], the Java programming language and Giotto, a high-
level programming language for control applications. Additionally, the color1 of the path
should determine the speed of the Rover and it should use the infrared port of the Lego
Mindstorm RCX to communicate with its environment. A smart controller is needed to get
direction invariance. There exist high demands for hardware and software.
In the following sections, the design and the implementation of the project are presented.
In section 2, the Lego Mindstorm Hardware is introduced and the hardware design of the
Rover is explained. The developed software is discussed in section 4 and the last two
sections give a resume of the project.

2 Hardware

The Rover is fully composed of the Lego Mindstorm System Hardware. The sensors are:

• 2 light sensors
• 1 rotation sensor

and the actuators are

• 2 motors.

The two light sensors are needed to recognize the direction of the curve, and the two
motors are used to react. To steer, the motors run with different speed, depending on the
curve direction. To go right, the left motor has to run faster and vice versa. Therefore, no
additional steering is necessary. In the front of the Rover is a small steering support unit

1Differentiation between two colors: black means fast speed, green means slow speed

1

which is able to rotate. This construction has one disadvantage: the speed of the motors is
unbalanced and therefore the Rover begins to drift in one direction in the “drive straight
forward” mode. To handle this, a differential gear and a rotation sensor is used to correct
motor speed differences.

The construction plan is taken from [2] and modified by adding a second light sensor.

Figure 1. Rover bottom view

3 Implementations

The implementations are based on the [3] replacement firmware for the Lego Mindstorms
RCX brick. It offers a Java virtual machine that fits within the 32KB on the RCX and
comes with a slim Java API. The major drawback of the API is the lack of a file I/O
subsystem. There exists no possibility to read some content from an external file.
The following section describes two different implementations of the Rover. The first one is
a straightforward implementation of a simple controller, used to explore the functionality
of the hardware and to achieve the project goal of an invariant path finder. The second one
is a Giotto Compiler extension and a Giotto Virtual Machine implementation to consider
the logical execution time[4] aspects.

2

3.1 leJOS

The leJOS API offers calls to the hardware units:

• motor: The motor speed is configurable with integers between [0, 7]. This implies
that there is not much latitude for different speeds.

• light sensor: The light sensor returns luminance values. Black is a value between
[36, 43] and green represents a value between [43, 48]. The light sensor is very sensitive
and depends on the room light. A 100% correct color classification is not possible.

• rotation sensor: The rotation sensor returns the angle of the path deviation.

3.2 Tasks

Three tasks are defined, which force the Rover to follow the path:

• Straightforward Task:

– precondition: Both light sensors have to be on the path.

– Both motors run with the same speed and the rotation sensor is used to correct
motor-speed differences.

• Curve Task:

– precondition: Only one light sensor is on the path.

– One motor runs with normal speed, the other one with slower speed, with respect
to the curve direction.

• Security Task:

– precondition: Both light sensors are not on the path.

– Circular Buffers2 are used to analyze the light sensor history. A history size of
20 entries satisfies the Rover.

Figure 2. controller states

2Whenever one of the light sensor returns a value to the controller, this value is stored in the circular
buffer of the light sensor.

3

3.3 Simple Controller

The Simple Controller implementation is very elementary. The Controller checks the
input ports and executes one of the predefined tasks. The goal was to test the vision
of a direction invariant path finder and to build a fundamental solution for the Giotto
implementation.

3.4 Giotto

There was no need to implement a Giotto program, because in the “simple Controller”
implementation are only three tasks and three modes. However, implementing Giotto on
leJOS was a big goal and challenge to see, how this high-level programming language works
for control applications.

The Rover Giotto program3 in short:

• 3 modes
• 3 tasks
• 2 actuators (right wheel or motor 1, left wheel or motor 2)
• 3 sensors (light left, light right, rotation)
• 3 outputs to communicate between the tasks
• 3 mode switch drivers to switch between the modes.

The hovercraft example implementation in Giotto, which can be found in the Giotto
tutorial [5], was useful to understand the basics of the programming language and what
happens in the Giotto VM internals. All the hovercraft operation classes, which are needed
for the simulation, are implemented and reused on the RCX for the Rover again. The
strict memory boundary of the RCX and the missing file I/O subsystem leads to build a
special Giotto on leJOS implementation. The output files of the Giotto compiler needs
some modifications and a lightweight Giotto VM, which uses no file I/O, is needed too.

3.4.1 Compiler

The target system comes without a file I/O subsystem, therefore a complete image of
the executable code for the RCX has to be created at compile time. The compiler has to
create dynamically program specific handler classes. To create these classes, a menu “Write
Handler Class” was added to the Giotto compiler tool. The “Show Ecode” output of the
Giotto-Tool was the guideline for the handler classes design.

ECode Ecode is code, which is executed by the Embedded Machine and supervises the
timing constraints. Further information can be found at [6].

Handler Classes There are 3 Handler classes. The first one is the ECode.java which
holds a vector in which all instructions are stored in the right order. This means that the
instructions are in the order of their execution. The second one is the Porthandler.java
which holds all ports in a hash map and the keys of the ports are the port names. How

3For details please look at the rover05.giotto file on the Rover project webpage.

4

the ports get their names, why there are so many ports, and how the information flows is
explained in figure 3.

Figure 3. port information flow

The third one is the OperationHandler.java. As expected the OperationHandler holds
all operations in a hash map and the keys are again their names. All the operations have
to implement the abstract class Operation with the abstract method int op(int pc, Vector
params). The problem specific operation code has to be inserted in the method body. This
basis offers the possibility, to implement a smart VM which is described in detail later in
this section.

The “Apache Velocity Project” [7] is used to generate the handler classes dynamically.
The dynamic classes are defined in specific template files. The following example shows the
template file for the ECode class:

5

private stat ic void initECode () {
Vector tmp ;
#fo reach ($value in $ecode)

tmp = new Vector () ;
#fo r each ($elem in $value)

tmp . addElement (”$elem”) ;
#end

code . addElement (tmp) ;
#end

}

The result after compiling the rover05.giotto is the following for the ECode:

private stat ic void initECode () {
Vector tmp ;
tmp = new Vector () ;
tmp . addElement (”2”) ;
tmp . addElement (”vm. f u n c t i o n a l i t y . ” +

” operat ion . c opy r e a l p o r t ”) ;
tmp . addElement (” va lueRightLight ”) ;
code . addElement (tmp) ;

tmp = new Vector () ;
tmp . addElement (”2”) ;
tmp . addElement (”vm. f u n c t i o n a l i t y . ” +

” operat ion . ComputeLeftMotorPower”) ;
tmp . addElement (” l e f tWhee l ”) ;
code . addElement (tmp) ;
. . .

}

The other templates are OperationHandler.template and PortHandler.template. The
resulting java files are OperationHandler.java and PortHandler.java.

3.4.2 Virtual Machine

The interpreter uses the generated ECode class to execute the defined operations. The
OperationHandler loads registered operation objects and the PortHandler is used to load
registered ports. The operations and the tasks communicate via ports and the hardware
specific calls are executed within the different operations.

The design of the interpreter is pretty easy and the dynamic is still kept. Just a few case
differentiations are needed to execute the ecode. The nop command is just an increment
of the program counter. All the operation commands are combined to a single case. Every
operation is responsible for a correct program counter update. The jump instruction rep-
resents a program counter update and the return statement is not used.

6

Vector i n s t r u c t i o n ;
while (pc < l im i t) {

i n s t r u c t i o n = eCode . g e t I n s t r u c t i o n (pc) ;
op = VMUtils . s t r ingToInt ((S t r ing) i n s t r u c t i o n . elementAt (0)) ;

i f (op==0){ //nop
pc++;

}
else i f (op==1 | | op==2 | | op==3 | | op==4){// opera t i ons

opera t i on = (Operation) oHandler .
getOperat ion ((S t r ing) i n s t r u c t i o n . elementAt (1)

) ;
pc = operat i on . op (pc , i n s t r u c t i o n) ;

}
else i f (op==5){//jump

pc = VMUtils . s t r i n tTo In t ((S t r ing) i n s t r u c t i o n . elementAt (1))
;

}
else i f (op==6){// re turn
}

}

4 Effort

The man hours of the project:

Hardware Design 10h
Simple Controller 52h
Giotto 16h
Giotto-Compiler 24h
velocity package 7h
Giotto-VM 82h
Total 191h

5 Conclusion

The experiment to build a direction invariant path Rover was successfully completed.
Several tests on a testplattform acknowledged our project goal.
The communication with the Rovers environment is used for debugging concerns. The
Rover sends messages about his task status to a second receiver RCX.

7

References

[1] Lego Mindstorm. http://mindstorms.lego.com.
[2] Stephan Höhrmann. Rover. http://www.informatik.uni-kiel.de/inf/von-

Hanxleden/mindstorms/Bauplan/Rover/Dateien/rover.pdf, 2002.
[3] leJOS Software. http://lejos.sourceforge.net.
[4] C.M. Kirsch A. Ghosal, T.A. Henzinger and M.A.A. Sanvido. Event-driven program-

ming with logical execution times. Proc. International Workshop on Hybrid Systems:
Computation and Control (HSCC), volume 2993 of LNCS,, pages 357–371, 2004.

[5] M.A.A. Sanvido and Aaron Walburg. GiottoTutorial. 2004.
[6] Thomas A. Henzinger and Christoph M. Kirsch. The Embedded Machine: Predictable,

Portable Real-Time Code. ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 315–326, 2002.

[7] The Apache Velocity Project. http://velocity.apache.org.

8

