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Abstract. We introduce the paradigm of schedule-carrying code (SCC).
A hard real-time program can be executed on a given platform only if
there exists a feasible schedule for the real-time tasks of the program.
Traditionally, a scheduler determines the existence of a feasible sched-
ule according to some scheduling strategy. With SCC, a compiler proves
the existence of a feasible schedule by generating executable code that
is attached to the program and represents its schedule. An SCC exe-
cutable is a real-time program that carries its schedule as code, which is
produced once and can be revalidated and executed with each use. We
evaluate SCC both in theory and practice. In theory, we give two scenar-
ios, of nonpreemptive and distributed scheduling for Giotto programs,
where the generation of a feasible schedule is hard, while the validation
of scheduling instructions that are attached to the programs is easy. In
practice, we implement SCC and show that explicit scheduling instruc-
tions can reduce the scheduling overhead up to 35% and can provide an
efficient, flexible, and verifiable means for compiling Giotto programs on
complex architectures, such as the TTA.

1 Introduction

Giotto is a high-level programming language for hard real-time applications [4].
A Giotto program consists of a collection of modes, each specifying the release
times and deadlines of a set of periodic tasks. In Giotto, the semantics of value
propagation between tasks is defined independent of the system scheduler, and
therefore deterministic: as long as the scheduler maintains all deadlines, the
outputs of all task invocations are determined by the sensor inputs, and do
not depend on the task ordering, distribution, or preemption mechanism of a
particular RTOS. A Giotto program is executable only if there exists a schedule
that meets all deadlines on a given hardware platform, with given resources
and performance. An executable combination of Giotto program and platform
data (primarily worst-case execution times for all tasks) is called time-safe [5].
The Giotto compiler must, in addition to generating code, prove time safety [6].
The proof of time safety establishes the existence of a feasible schedule, and in
doing so, produces the schedule. We introduce the idea of schedule-carrying code
(SCC): once a feasible schedule has been produced, it can be attached to the code
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to serve as a witness for time safety, in case the code source is untrusted, or if the
code is moved to multiple targets. Thus, SCC is the paradigm of proof-carrying
code [10] extended from traditional safety properties, such as memory safety,
to real-time properties. SCC, however, offers an even more important capability
than the reuse of time-safety proofs. If the schedule itself is provided in the form
of executable instructions, properly attached to the code generated from Giotto,
then SCC renders the system scheduler of the target platform obsolete. This
leads to dramatic performance improvements in executing Giotto programs [7].

Let us be more precise. We define two virtual execution engines called the
E(mbedded) machine, and the S(cheduling) machine. The E machine executes
E code generated from a Giotto program [5]. E code is reactive code: it manages
the release times and deadlines of software tasks in reaction to environment
events, such as clock ticks. When an environment interrupt occurs, E code may
call a driver that reads a sensor port, or writes an actuator port, or transfers a
value between ports, and it may release a task to the system. If an RTOS is used,
the released task enters the ready queue, and can be dispatched by the system
scheduler. A Giotto compiler that proves time safety is a schedule-generating
compiler : it generates, in addition to E code, also S code, which represents a
feasible schedule for the generated E code. S code is executed by the S machine,
which replaces the system scheduler. S code is proactive code: it manages the
execution of released tasks on the available CPUs. S code may dispatch a task for
a certain amount of time (time-slice preemptive scheduling), or until another task
is released (priority preemptive), or until the task completes (nonpreemptive).
In other words, the S language is an expressive, executable schedule description
language. Our implementation executes intertwined E and S code produced by
the Giotto compiler, and thus provides the kernel functionality of an RTOS.

The usefulness of SCC rests on two premises. First, the execution of S code
is more efficient, and at least as flexible, as the use of the scheduler provided
by an RTOS. This is substantiated by our experiments, where we achieve up
to 35% overhead reduction and demonstrate the ability to change scheduling
strategies when switching Giotto modes [7]. Second, it is often more efficient to
check the feasibility of a schedule than to generate the schedule (“proof checking
is easier than proof generation”). Whenever this is the case, then it is beneficial
to have the Giotto compiler generate a feasible schedule once, and attach it to
the generated E code in the form of S code. Then, before execution, the target
platform may check the schedule in order to be sure that it can execute the
code without time-safety violations (i.e., without missing any deadlines specified
by the original Giotto program). While preemptive single-CPU scheduling for
Giotto is simple [6], it is NP-hard to generate nonpreemptive or distributed
schedules for Giotto programs, even if the program has only a single mode. We
show that these schedules, once expressed in S code, can be checked in time
linear in the size of the E code and the frequency of events. More generally,
SCC provides an efficient implementation of Giotto in the presence of many
scheduling constraints. In particular, in Section 4 we show how Giotto can be
compiled onto a time-triggered architecture using SCC.
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Fig. 1. The E machine and the S machine

2 SCC: Embedded Code Plus Scheduling Code

The E machine [5] is a virtual machine that interpretes E code, which supervises
the execution of software tasks in response to physical events. The S machine
is a virtual machine that interpretes S code, which specifies the temporal or-
der of task execution. Figure 1 shows how E and S machine interact with the
physical environment, software tasks, and hardware platform. We first review
the E machine and then introduce the S machine.

2.1 The Embedded Machine

Interface. Physical environment processes communicate information to the E ma-
chine through environment ports, such as clocks and sensors, and application
software processes, called tasks, communicate information to the E machine
through task ports. The E machine communicates information to the environ-
ment and the tasks by calling system software processes, called drivers, which
write to driver ports, for instance actuators. The E machine releases tasks for
execution to the task scheduler (the S machine, or the scheduler of an RTOS)
by writing to release ports, and the scheduler signals the completion of tasks
to the E machine through completion ports. Hence, the environment, task, and
completion ports are the input ports of the E machine. A change of value at an
input port is an input event and causes an interrupt. The E machine monitors
the occurrence of input events through triggers. In this paper, we consider only
time triggers. A time trigger can be specified as a positive integer δ; it watches an
environment clock and becomes enabled δ clock ticks after its activation. Tasks,
drivers, and triggers are external to the E machine and must be implemented in
some programming language like C. Tasks are preemptive, user-level code with-
out internal synchronization points; drivers are system-level code during whose
execution all interrupts that correspond to input events are disabled. The task
idle is a special task that never completes.

E code. There are three non-control-flow E code instructions. The call(d) in-
struction initiates the execution of a driver d, and the E machine waits until d
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while ProgramCounter �= ⊥ do
i := Instruction(ProgramCounter)
if call(d) = i then
if driver d accesses a port of a task t that has been released but not completed
then throw a time-safety exception else execute d

else if schedule(t) = i then
if task t has already been released but not yet completed
then throw a time-safety exception else emit a signal on the release port of t

else if future(g, a) = i then
append the trigger binding (g, a, s) to TriggerQueue, where s is the current
state of the input ports that occur in g

end if
ProgramCounter := Next(ProgramCounter)

end while

Algorithm 1: The E code interpreter

is finished before proceeding to the next E code instruction. The schedule(t)
instruction releases a task t to be executed, concurrently with other released
tasks, and then the E machine proceeds immediately to the next E code instruc-
tion. The schedule instruction does not order the execution of tasks, nor does
it relinquish control of the CPU to the scheduler. The future(g, a) instruction
activates the trigger g and marks the E code at address a for execution at the
future time instant when g becomes enabled. In order to handle multiple active
triggers, the E machine maintains a queue of trigger bindings (g, a, s), where s is
the current state of the input ports watched by the trigger g, which is required
for evaluating g in the future. E code has also control-flow instructions such
as if(c, a) and return. In the former case, if the condition c (a predicate on
input ports) evaluates to true, then the E machine proceeds to address a; other-
wise it proceeds to the next instruction. The return instruction terminates the
execution of E code.

Algorithm 1 summarizes the E code interpreter. For each input event, the
E machine checks the trigger bindings in TriggerQueue. The first trigger binding
(g, a, s) in the queue with an enabled trigger g is removed from the queue and the
interpreter is invoked with ProgramCounter set to address a. This is repeated
until the queue contains no trigger binding with an enabled trigger. Then, the
E machine relinquishes control of the CPU to the task scheduler, which is either
provided by an RTOS [5] or implemented as S machine (see below). The goal
of the scheduler is to execute the released tasks so that they complete before
their deadlines. E code specifies task deadlines in two ways: once released, a task
t must complete (1) before any driver accesses a port of t, and (2) before t is
released again. If a task violates one of these conditions, then the E machine
throws a time-safety exception; otherwise the execution is time-safe.

Example. Figure 2 shows a Giotto program [4] in the left column and, in the
middle and right column, E code generated by the Giotto compiler [6]. The
Giotto program is a simplified version of a program that implements the flight
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start hover {
mode hover() period 120ms {
exitfreq 3 do cruise(switch);
taskfreq 1 do pilot();
taskfreq 2 do control();
taskfreq 3 do lieu(); }

mode cruise() period 120ms {
exitfreq 2 do hover(switch);
taskfreq 1 do pilot();
taskfreq 2 do control();
taskfreq 4 do move(); }

H0: if(switch, C0 + 1)
schedule(pilot)
schedule(control)
schedule(lieu)
future(40ms, H40a)
return[h0]

H40a: if(switch, H40b)
schedule(lieu)
future(20ms, H60)
return[h40]

H40b: future(20ms, C60)
return

H60: schedule(control)
future(20ms, H80a)
return[h60]

H80a: if(switch, H80b)
schedule(lieu)
future(40ms, H0)
return[h80]

H80b: future(10ms, C90)
return

C0: if(switch, H0 + 1)
schedule(pilot)
schedule(control)
schedule(move)
future(30ms, C30)
return[c0]

C30: schedule(move)
future(30ms, C60)
return[c30]

C60: if(switch, H60)
schedule(control)
schedule(move)
future(30ms, C90)
return[c60]

C90: schedule(move)
future(30ms, C0)
return[c90]

Fig. 2. A Giotto program with two modes, and the generated E code

controller of a model helicopter [8]. The program consists of a hover mode, in
which the helicopter maintains its airborne position, and a cruise mode. A Giotto
mode specifies a set of periodic tasks. The task periods are specified through
frequencies relative to the mode period, which is 120ms for both modes shown
here. The pilot task is invoked, in both modes, every 120ms to perform path
planning. The task outputs flight directions to the control task, which controls
the servos and is invoked every 60ms in both modes. In the hover mode, the
control task reads the current position estimation from the lieu task, which
is invoked every 40ms. In the cruise mode, the control task receives position
and velocity information from the move task, which is invoked every 30ms. The
system can switch mode every 40ms from hover to cruise, and every 60ms from
cruise to hover . A mode switch is initiated when the switch condition evaluates
to true. For simplicity, we omitted all sensor and actuator code.

The E code in the middle column of Figure 2 implements the hover mode,
and the right column implements the cruise mode. The execution of the pro-
gram starts in the hover mode, thus the E code execution starts with the
if(switch, C0 + 1) instruction at address H0. If switch evaluates to true, then
the E machine proceeds to the schedule(pilot) instruction that follows the in-
struction at address C0. This corresponds to a switch to the cruise mode. If
switch evaluates to false, then the E machine proceeds to the schedule(pilot) in-
struction that follows the if instruction. The subsequent schedule instructions
release the control and lieu tasks for execution. Then, the future(40ms, H40a)
instruction makes the E machine execute the E code at address H40a after 40ms
elapse. For now, the return[h0] instruction terminates the E code execution and
relinquishes control of the CPU to the task scheduler. The expression [h0] is an
E code annotation, which will be explained later.
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while ProgramCounter �= ⊥ do
i := Instruction(ProgramCounter)
ProgramCounter := Next(ProgramCounter)
if call(d) = i then
if driver d accesses a port of a task t that has been released but not completed
then throw a time-safety exception else execute d
else if dispatch(t, h, a) = i then

if there is a thread instance in ThreadSet with a non-idle task then
throw a time-sharing exception

else
insert the thread instance (t,ProgramCounter , h, a,ReferenceTime)
into ThreadSet and set ProgramCounter to ⊥

end if
else if idle(h) = i then

insert the thread instance (idle, ⊥, h,ProgramCounter ,ReferenceTime)
into ThreadSet and set ProgramCounter to ⊥

else if fork(a) = i then
insert the thread instance (idle, ⊥, true, a, s) into ThreadSet , where s is the
current value of the system clock

end if
end while

Algorithm 2: The S code interpreter

2.2 The Scheduling Machine

Interface. The hardware on which the S machine runs communicates information
to the S machine through hardware ports, such as clocks and message buffers,
and the tasks communicate information to the S machine through task ports.
The S machine communicates information to the hardware and the tasks by
calling drivers. An external task handler (in our case, the E machine) signals
the release of tasks to the S machine through release ports, and the S machine
signals the completion of tasks to the task handler by writing to completion
ports. Hardware, task, and release ports are input ports for the S machine, and
changes in their values are input events. The S machine monitors input events
through timeouts. In this paper, we consider two kinds of timeouts. A clock
timeout is specified by a nonnegative integer δ; it watches a system clock and
expires δ clock ticks into the S code thread that contains the timeout. The release
timeout Θ expires as soon as any task is released.

S code. There are four non-control-flow S code instructions. The call(d) instruc-
tion initiates the execution of a driver d. Similar to the E machine, the S machine
waits until d is finished before proceeding to the next S code instruction. The
dispatch(t, h, a) instruction begins or resumes the execution of a task t until the
timeout h expires. There are two possible outcomes: (1) the S machine proceeds
to the next instruction when t completes, in case this happens before the timeout
h expires, or (2) the S machine proceeds to the instruction at address a when the
timeout h expires, in case this happens before t completes. Case (1) applies also if
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RM: dispatch(lieu, +4)
dispatch(control, +3)
dispatch(pilot, +2)
idle()
fork(RM)
return

EDF0/60: dispatch(lieu, +4)
dispatch(control, +3)
dispatch(pilot, +2)
idle()
fork(EDF40/80)
return

EDF40/80: dispatch(control, +4)
dispatch(lieu, +3)
dispatch(pilot, +2)
idle()
fork(EDF0/60)
return

Fig. 3. Rate-monotonic (RM) and earliest-deadline-first (EDF) S programs for the
hover mode of the Giotto program from Figure 2

t has not been released or has already completed when the dispatch instruction
is encountered. The idle(h) instruction makes the S machine idle until the time-
out h expires even when there are released tasks that have not been completed.
The S machine proceeds to the subsequent instruction when the timeout expires.
The fork(a) instruction marks the S code at address a for execution in parallel
to the S code that follows the instruction. The S code at a is a new thread of
execution. In order to handle multiple threads, the S machine maintains a set of
thread instances. S code may also have control-flow instructions, but we do not
consider them here. The call, fork, and control-flow instructions of S code are
transient instructions, as they execute, like E code instructions, in logical zero
time. In contrast, the dispatch and idle instructions are timed instructions, as
they cause a passage of time.

Algorithm 2 summarizes the S code interpreter, which maintains the set
ThreadSet of thread instances. A thread instance has the form (t, b, h, a, s), where
either t is the idle task and b = ⊥, or t is a regular task and b is the address at
which the S machine continues executing when t completes before the timeout h
expires. When h expires before t completes, the S machine continues executing,
instead, the S code at address a. The reference time s is the time when the
thread instance was created by a fork instruction, which is required for evalu-
ating clock timeouts. The S machine is woken up by an input event: a hardware
port may signal the completion of a task or the expiration of a clock timeout,
or a release port may signal the release of a task. If a task t completes, then the
thread instances of the form (t, b, ·, ·, s) become enabled, with ProgramCounter
set to b, and ReferenceTime set to s. If a timeout h expires, then the thread in-
stances of the form (·, ·, h, a, s) become enabled, with ProgramCounter = a and
ReferenceTime = s. With each input event, every enabled thread instance is
removed from ThreadSet and executed until a timed instruction is encountered
(at that time, ProgramCounter is set to ⊥ by the interpreter). The execution
order for the enabled thread instances in ThreadSet is chosen nondeterministi-
cally. If control ends at dispatch instructions in more than one thread, then a
time-sharing exception occurs, because only one task can be dispatched on the
CPU; otherwise the execution is time-sharing.

Examples. The left column of Figure 3 shows an S program with the initial
address RM which implements rate-monotonic (RM) scheduling of the tasks in the
hover mode of the Giotto program from Figure 2. The S program only works if
no mode switching occurs; S code that supports mode switching will be discussed
below. We use idle() to abbreviate idle(Θ) and dispatch(t, +n) to abbreviate
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NP0: dispatch(move)
dispatch(control)
idle()
fork(NP30)
return

NP30: dispatch(move)
dispatch(pilot, NP60)
idle()
fork(NP60)
return

NP60: dispatch(pilot)
dispatch(move)
idle()
fork(NP90)
return

NP90: dispatch(control)
dispatch(move)
idle()
fork(NP0)
return

Fig. 4. Nonpreemptive (NP) S program for the cruise mode

dispatch(t, Θ, a + n), where a is the address of the instruction itself and n is a
relative offset. In the example, the offsets in dispatch instructions always point
to fork instructions. The S program dispatches the tasks in a fixed, RM order
starting with the task that has the highest frequency. Suppose that the tasks
in the hover mode have been released by the E machine. Now, the S machine
starts executing the dispatch(lieu, +4) instruction. The lieu task executes until
it either completes or is preempted by the release of some other task. If the lieu
task completes first, then the S machine proceeds to the dispatch(control , +3)
instruction and executes the control task. Otherwise, if some task is released
before lieu completes, the S machine proceeds to the fork(RM) instruction and
forks a new thread starting again at address RM. The following return instruction
terminates the current thread. If all tasks complete during the execution of a
thread, then the idle() instruction is reached and the S machine waits until some
task is released to start a new thread. Note that the execution of the S code is
time sharing, and if there exists a feasible RM schedule for the tasks of the hover
mode, then the S code guarantees the time-safe execution of the E code for the
hover mode.

As an alternative to RM scheduling, the S code in the middle and right
column implements earliest-deadline-first (EDF) scheduling of the tasks in the
hover mode. The initial address of the EDF S program is EDF0/60. The thread
at EDF0/60 initially dispatches the lieu task followed by the control and pilot
tasks. However, unlike the RM S program, as soon as the lieu task is released
again, the S machine forks a new thread at address EDF40/80 and terminates the
current thread. Now, at the 40ms instant, the control task is dispatched before
the lieu task, because the control task has an earlier absolute deadline than the
lieu task. If the control task already completed before the 40ms instant, then
the S machine immediately proceeds to the next instruction and dispatches the
lieu task. At the 60ms instant, the situation is the same as at 0ms. So, we fork
again a thread at EDF0/60. At the 80ms instant, the absolute deadlines of all
tasks are the same. Thus we can use the thread at EDF40/80 again.

The S code of Figure 4 implements nonpreemptive (NP) scheduling of the
tasks in the cruise mode. The initial address of the NP S program is NP0. We use
dispatch(t) to abbreviate dispatch(t, false, a), where a is the address of the next
instruction. Thus a dispatch(t) instruction executes the task t until completion.
Given the worst-case execution time w(t) of each task t, the S program guaran-
tees time safety if w(move) + w(control) ≤ 30ms and 2 · w(move) + w(pilot) ≤
60ms. Time sharing is ensured because the S program dispatches all tasks non-
preemptively, i.e., each task completes before another task is dispatched. Tasks
may still be preempted by E code and S code, but not by other tasks.
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h0/h60:
dispatch(lieu, +3)
dispatch(control, +2)
dispatch(pilot, +1)
return

h40/h80:
dispatch(control, +3)
dispatch(lieu, +2)
dispatch(pilot, +1)
return

c0/c30/c60/c90:
dispatch(move, +3)
dispatch(control, +2)
dispatch(pilot, +1)
return

Fig. 5. Earliest-deadline-first (EDF) S program for both modes

Figure 5 shows an S program that EDF schedules the tasks of both modes. In
order to facilitate the interaction of E and S code in the presence of conditional-
branch instructions (mode switching) in E code, we allow the E code to fork a
new thread instance of S code through E code annotations. Recall the E code of
Figure 2. The return[h0] instruction of the code block at address H0 terminates
the execution of the code block and, in addition, forks a new thread of S code
at address h0. We start running the E program and S program by executing the
E code at the initial address H0. Now the initial address of the S program is
not required and thus ⊥. The E code releases all three tasks of the hover mode
and then creates a new S code thread starting at h0. The thread dispatches
the three tasks in EDF order. Suppose that the lieu task completes before the
40ms instant, but not the control task. Thus, at the 40ms instant, the E code at
H40a preempts the control task. Now, suppose that we switch from the hover to
the cruise mode. We branch to the E code at H40b, which does not release any
tasks but only jumps to the E code at C60 after another 20ms elapse. Therefore,
after executing the E code at H40b, the current S code thread continues where it
was preempted by resuming the execution of the control task. No new thread is
created. Now, suppose that the control task completes before the 60ms instant,
but not the pilot task. Now, at the 60ms instant, the E code at C60 preempts the
pilot task. Unlike before, the control task is released now, no matter if we switch
mode or not. Since the current S code thread becomes enabled upon the release
of a task, the thread is terminated by jumping to the return instruction of the
code block at h0. Suppose that we stay in the cruise mode, i.e., the code block
at C60 is executed. In addition to the control task, the move task is released
and a new S code thread at c60 is created, which dispatches now the tasks of
the cruise mode in EDF order. Note that the S code for the cruise mode is
equivalent to RM S code, because the task frequencies in the cruise mode are
harmonic. The execution of the remaining E and S code works in a similar way.
The S program is time sharing, and since EDF is optimal for Giotto programs
with multiple modes [6], if there exists a feasible, preemptive schedule for the
tasks of the hover and cruise modes, then the EDF S program guarantees the
time-safe execution of the E program regardless of any mode switching.

2.3 Schedule-Carrying Code

An SCC program is a pair (E , S) consisting of an E program E that shares a set
of tasks with an S program S. If E contains conditional-branch instructions, then
its return instructions may be annotated with S code addresses as shown in the
example above. The runtime system for SCC is the E machine interacting with
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the S machine through release and completion ports. The machines are invoked
as follows: (1) if there is an enabled thread instance that contains a completed
task, then the S machine must handle that thread instance before the E machine
handles any enabled triggers; (2) if there is an enabled trigger binding, then
the E machine must handle that trigger binding before the S machine handles
any expired timeouts. The reason for (1) is that, when a task completes, the
dispatching thread must be processed before any E code is executed in order to
enable the prompt handling of output data upon task completion, say through
driver calls in S code. The reason for (2) is that the E machine must be invoked
before the S machine when an E code trigger is enabled at the same time when
an S code timeout expires, because the E code may release tasks that require
scheduling service from the S code. This will be formalized in the next section.

Implementation. With the help of Marco Sanvido, we have developed a mi-
crokernel on a StrongARM SA-1110 processor with 206MHz which executes
SCC programs using an integrated implementation of the E and S machine [7].
The microkernel has a footprint of 8kB. We have tested the microkernel with
SCC programs that implement four periodic, nonharmonic task sets with 4,
10, 50, and 100 tasks. Each set consists of four equally large task groups with
16.66Hz, 33.33Hz, 50Hz, and 100Hz tasks. The microkernel is invoked every 1ms
by a timer. The periodic release of the tasks is described by E code. We have
compared the performance of an EDF scheduler with S code that specifies EDF
scheduling. The average time spent in the EDF scheduler is 1.4µs to schedule
4 tasks and 35µs to schedule 100 tasks. The average time to execute, instead, the
EDF S code grows from 2.2µs for scheduling 4 tasks to only 3.9µs for schedul-
ing 100 tasks. With 100 tasks, EDF S code performs 35% better than the EDF
scheduler (51% vs. 78% CPU utilization). For details, the reader is referred to [7].

3 Generating SCC vs. Checking SCC

We show that checking the time safety of given S code can be exponentially
simpler than generating time-safe S code. Checking the time safety of SCC is a
program-analysis problem. Following the tradition of path-insensitive program
analysis, we define the abstract semantics of SCC, which ignores all port values
and assumes that both branches of conditionals can be taken. On this abstract
semantics, we present an efficient algorithm that provides a sufficient check for
the time safety of SCC generated from single-mode Giotto, which specifies a set
of periodic tasks.

3.1 Abstract Semantics of SCC

An abstract E program E = (V, E, κ, λ, v̂) over a set T of tasks consists of a
control-flow graph (V, E) which is a binary1 digraph, two edge-labeling functions
κ and λ, and an initial node v̂ ∈ V . Each edge e ∈ E is labeled with an instruction
κ(e) and an argument λ(e) as follows:
1 Each node has at most two successors.
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– κ(e) = call and λ(e) ⊆ T . The execution of e calls a driver that accesses
ports of the tasks in λ(e).

– κ(e) = schedule and λ(e) ∈ T . The execution of e releases the task λ(e).
– κ(e) = future and λ(e) ∈ N>0 × V . The execution of e activates the trigger

with the binding λ(e) = (δ, u), which means that after δ time units, E code
will be executed starting from control location u.

We require that the initial node v̂ has a single successor v̂′ ∈ V such that
κ(v̂, v̂′) = future and v̂′ is a leaf. We assume that a driver can access the ports
of at most two (or any fixed number) of tasks, and that all integers δ can be
stored in constant space; hence the size of E is |V |. A state q = (v, r, s, τ) of E
consists of a program counter v ∈ V , a status s: T → N ∪ {�, ⊥} for each task,
and a queue τ ⊆ (N × V )∗ of trigger bindings. For each task t ∈ T , the status
s(t) = � indicates that t has been released at the current time instant and not
yet executed; the status s(t) ∈ N indicates that t has been released at a previous
time instant and executed for s(t) ≥ 0 time units; the status s(t) = ⊥ indicates
that t has been completed (or not yet released). Note that the number of different
status functions, and hence the number of states, is exponential in |T |.

An abstract S program S = (V, E, µ, ν, κ, λ) over a set T of tasks consists of a
control-flow graph (V, E) which is a binary digraph, two node-labeling functions
µ and ν, and two edge-labeling functions κ and λ. Each control location v ∈ V
is labeled by one of the following:

– µ(v) = dispatch and ν(v) ∈ T and v has a successor v1 such that
λ(v, v1) = ⊥, and possibly a second successor v2 such that either λ(v, v2) = ∗
or λ(v, v2) ∈ N. The execution of v dispatches the task ν(v). If λ(v, v2) = ∗
and a task is released before ν(v) completes, control proceeds to v2; if
λ(v, v2) ∈ N and ν(v) does not complete within the first λ(v, v2) time units
from the time at which the current thread was created, control proceeds
to v2; otherwise, control proceeds to v1 when ν(v) completes.

– µ(v) = idle and v has a single successor v′ such that either λ(v, v′) = ∗ or
λ(v, v′) ∈ N. The execution of v idles the processor until a task is released
(if λ(v, v′) = ∗), or until λ(v, v′) ∈ N time units pass from the time at which
the current thread was created.

– µ(v) = �. This indicates that control is at a transient instruction.

If e = (v, v′) and µ(v) = �, then the edge e ∈ E is labeled by one of the following:

– κ(e) = call and λ(e) ⊆ T . The execution of e calls a driver that accesses
ports of the tasks in λ(e).

– κ(e) = fork and λ(e) ∈ V . If λ(e) = u, then the execution of e creates a
new thread, which starts at control location u.

By our assumptions, the size of S is |V |. A state q = (s, θ) of S consists of the
status s: T → N ∪ {�, ⊥} for each task, and a set θ of threads. Each thread
(u, δ) consists of a program counter u ∈ V and a number δ ∈ N of time units
for which the thread has been executed. If u is a leaf, then the thread (u, δ) has
terminated and may be removed from θ.
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An abstract single-processor SCC program Π = (E , S, Φ) over a set T of tasks
consists of an abstract E program E over T , an abstract S program S over T , and
an annotation function Φ that maps each leaf in the control graph of E to a node
in the control graph of S. When the E code execution arrives at a leaf v, this
creates a new thread of S code which starts at control location Φ(v). A state of Π
is a tuple q = (v, s, τ, θ) such that (v, s, τ) is a state of E , and (s, θ) is a state of S.
The state q violates nonpreemption if there exist two different tasks t1, t2 ∈ T
such that s(t1), s(t2) 
∈ {�, 0, ⊥}. The state q violates time sharing if there exist
two different threads (u1, ·), (u2, ·) ∈ θ such that µ(u1) = µ(u2) = dispatch and
s(ν(u1)) 
= ⊥ and s(ν(u2)) 
= ⊥. The state q violates time safety if there exists
a task t ∈ T with s(t) 
= ⊥ and one of the following: (1) v has a successor v′

in E with either κ(v, v′) = call and t ∈ λ(v, v′), or κ(v, v′) = schedule and
t = λ(v, v′); or (2) there exists a thread (u, ·) ∈ θ such that µ(u) = � and u
has a successor u′ in S with κ(u, u′) = call and t ∈ λ(u, u′). The state q has a
transition to the state q′ = (v′, s′, τ ′, θ′) if one of the following:

Completion S transition The state q is completion enabling, that is, there
exist a thread (u, δ) ∈ θ and a successor u′ of u in S such that µ(u) =
dispatch and s(ν(u)) = ⊥ and λ(u, u′) = ⊥. Then (v′, s′, τ ′) = (v, s, τ) and
θ′ = (θ\{(u, δ)}) ∪ {(u′, δ)}.

Transient S transition The state q is transient enabling, that is, there exist
a thread (u, δ) ∈ θ and a successor u′ of u in S such that µ(u) = �. Then
(v′, s′, τ ′) = (v, s, τ) and one of the following:
– κ(u, u′) = call and θ′ = (θ\{(u, δ)}) ∪ {(u′, δ)}.
– κ(u, u′) = fork and λ(u, u′) = û and θ′ = (θ\{(u, δ)}) ∪ {(u′, δ), (û, 0)}.

E transition q is neither completion nor transient enabling but E enabling,
that is, either (1) v has no successor and (0, u) ∈ τ for some u, or (2) v has
a successor v′ in E . If (1) let (0, u′) be the first such pair in τ . Then v′ = u′

and s′ = s and τ ′ = τ \ {(0, u′)} and θ′ = θ. If (2) then one of the following:
– κ(v, v′) = call and s′ = s and τ ′ = τ .
– κ(v, v′) = schedule and λ(v, v′) = t and s′(t) = � and s′(t′) = s(t′) for

all tasks t′ ∈ T\{t}, and τ ′ = τ .
– κ(v, v′) = future and s′ = s and τ ′ = τ ◦ {λ(v, v′)}.

In all three cases, if v′ is a leaf, then θ′ = θ ∪ {(Φ(v′), 0)}; otherwise θ′ = θ.
Timeout S transition The state q is neither completion nor transient nor E

enabling but timeout enabling, that is, there exist a thread (u, δ) ∈ θ and
a successor u′ of u in S such that µ(u) ∈ {dispatch, idle} and either
(1) λ(u, u′) ∈ N and λ(u, u′) ≤ δ, or (2) λ(u, u′) = ∗ and s(t) = � for some
task t ∈ T . Then (v′, s′, τ ′) = (v, s, τ) and θ′ = (θ\{(u, δ)}) ∪ {(u′, δ)}.

Time transition The state q is neither completion nor transient nor timeout
nor E enabling. Then v′ = v. For all tasks t ∈ T , if there exists a thread
(u, δ) ∈ θ with µ(u) = dispatch and ν(u) = t, then either s(t) = � and
s′(t) = 1, or s(t) ∈ N and s′(t) = s(t) + 1, or s′(t) = ⊥; if no such thread
exists, then either s(t) = � and s′(t) = 0, or s′(t) 
= � and s′(t) = s(t). In
case s′(t) = ⊥, we say that on the transition (q, q′), task t completes after
execution time s(t)+1. The queue τ ′ results from τ by replacing each trigger
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binding (δ, u) by (δ−1, u). The set θ′ results from θ by replacing each thread
(u, δ) by (u, δ + 1).

Note the priorities implied by this definition: transient S code that is enabled
by the completion of tasks has priority over E code, which has priority over
all remaining S code. A trace of the abstract single-processor SCC program Π
is a sequence γ = q0, q1, . . . , qn of states of Π such that (1) q0 = (v̂, ŝ, ∅, ∅),
where v̂ is the initial node of E , and ŝ(t) = ⊥ for all tasks t ∈ T , and (2) for
all i ≥ 0, there is a transition from qi to qi+1. The trace γ is time-safe (resp.
time-sharing ; nonpreemptive) if no state of γ violates time safety (time sharing;
nonpreemption).

An abstract multiprocessor SCC program Π over a set P of processors and a
set T of tasks is a function that assigns to each processor p ∈ P a pair (Tp, Πp),
where Tp ⊆ T such that {Tp | p ∈ P} is a partition of the task set T , and Πp

is an abstract single-processor SCC program over the set Tp of tasks. A trace γ
of Π is a function that assigns to each processor p ∈ P a trace γp of Πp such
that all single-processor traces γp contain the same number of time transitions.
The trace γ is time-safe (resp. time-sharing; nonpreemptive) if γp is time-safe
(time-sharing; nonpreemptive) for all p ∈ P . A wcet map w: P × T → N assigns
to every processor p and task t a worst-case execution time w(p, t) > 0. There are
a number of techniques for obtaining wcet maps, e.g. [2]. If P is a set of identical
processors, then w(p1, t) = w(p2, t) for all processors p1, p2 ∈ P and tasks t ∈ T .
The trace γ of Π is an w-trace if for all processors p ∈ P , tasks t ∈ T , and i ≥ 0,
if t completes on the transition (qi, qi+1) of γp, then it completes with execution
time at most w(p, t). The abstract (single- or multiprocessor) SCC program Π is
time-safe (resp. time-sharing ; nonpreemptive) for wcet map w if all w-traces of
Π are time-safe (time-sharing; nonpreemptive). The time safety (time sharing;
nonpreemption) of an abstract SCC program can be checked by searching the
state space, but the number of states is exponential in the number of tasks. We
will see that the check is simpler for SCC programs of a special form.

3.2 Giotto-Generated SCC

The E programs generated from Giotto programs have a special form [6]. Let G
be a Giotto program [4] with task set T and a single mode m, let πm be the period
of m, let ft be the frequency in mode m of task t, and let fm be the least common
multiple of all task and actuator frequencies in m. Then dm = πm/fm denotes
the time interval between consecutive input events. The abstract E program
E = (V, E, κ, λ, v̂) over a set T ′ ⊆ T of tasks is G-generated if the control graph
(V, E) consists, in addition to the initial location v̂ and its successor v̂′, of a set
of fm acyclic digraphs Ei, for 0 ≤ i < fm, such that every node in Ei has at most
one successor, and Ei consists of a source node vi followed by (1) a sequence of
O(|G|) edges (v, v′) with κ(v, v′) = call, followed by (2) a sequence of edges
(v, v′) with κ(v, v′) = schedule and λ(v, v′) = t for each task t ∈ T ′ for which
(i · ft/fm) ∈ N, followed by (3) a single edge (v, v′) with κ(v, v′) = future
and λ(v, v′) = (dm, v(i+1)modfm

). Moreover, λ(v̂, v̂′) = (0, v0). If all numbers in G
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(mode period as well as task and actuator frequencies) are bounded by n, we have
|V | = O(|G| · n). An abstract single-processor SCC program Π = (E , ·, ·) is G-
generated if E is a G-generated abstract E program over the set T of all Giotto
tasks. An abstract multiprocessor SCC program Π is G-generated if for each
processor p ∈ P , if Πp = (Ep, ·, ·), then Ep is a G-generated abstract E program
over the set Tp of tasks that are assigned to processor p.

Proposition 1. Let P be a set of identical processors, let G be a single-mode
Giotto program with task set T , and let w be a wcet map for P and T . It is NP-
hard in the strong sense to decide if there is a G-generated abstract multiprocessor
SCC program over P and T which is time-safe and time-sharing for w.

Proof. Reduction from bin packing [3]. Given an instance of bin packing, we
choose as many processors as there are bins, and construct a single-mode Giotto
program whose tasks have periods equal to the bin capacity. �

Proposition 2. Let G be a single-mode Giotto program with task set T , and let
w be a wcet map for T . It is NP-hard in the strong sense to decide if there is a G-
generated abstract single-processor SCC program over T which is nonpreemptive,
time-safe, and time-sharing for w.

Proof. Reduction from nspt (nonpreemptive scheduling of periodic tasks) [1]. �

Checking time safety becomes simpler if we restrict also the shape of S code.
Let G be a Giotto program with task set T and numbers bounded by n, as
above. The abstract S program S = (V, E, µ, ν, κ, λ) is simple if the control
graph (V, E) is acyclic and for every node v ∈ V , (1) if µ(v) = �, then v has
at most one successor, and (2) if µ(v) = � and v′ is a successor of v with
κ(v, v′) = fork, then v′ is a leaf. Condition (1) ensures that the S code does
not contain conditional branching. Condition (2) ensures that the S code is
single-threaded, i.e., during execution, there is always at most one thread in
the thread set. Single-threadedness, in turn, implies time sharing. An abstract
single-processor SCC program Π = (E , S, Φ) is simple G-generated if (1) E is a
G-generated abstract E program over T , (2) S is a simple abstract S program of
size O(|G| · n) which does not contain numbers (clock timeouts) larger than the
time step dm, and (3) for each leaf v of E , if v is not the successor of the initial
node of E , then Φ(v) is a leaf of S. An abstract multiprocessor SCC program Π
is simple G-generated if for each processor p ∈ P , the single-processor program
Πp over Tp satisfies conditions (1)–(3). Note that for the Giotto program G
from Figure 2, the E code from Figure 2 together with the S code samples from
Figures 3 and 4 yields simple G-generated SCC programs.

Proposition 3. Let P be a set of (nonidentical) processors, let G be a single-
mode Giotto program with task set T and numbers bounded by n, and let w be
a wcet map for P and T . It can be checked in time O(|G| · n) if a given simple
G-generated abstract multiprocessor SCC program is time-safe (resp. nonpreemp-
tive) for w.
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h0:
dispatch(lieu, 10, +2)
idle(10)
call(ctrl in)
dispatch(lieu, +2)
dispatch(control, +1)
return

h40:
dispatch(control, +2)
dispatch(lieu, +1)
return

h60:
dispatch(lieu, +2)
dispatch(control, +1)
return

h80:
dispatch(lieu, 30, +4)
dispatch(control, 30, +2)
idle(30)
call(lieu out)
dispatch(control, +1)
return

c0:
dispatch(move, 10, +2)
idle(10)
call(ctrl in)
dispatch(move, +2)
dispatch(control, +1)
return

c30/c60:
dispatch(move, +2)
dispatch(control, +1)
return

c90:
dispatch(move, 20, +4)
dispatch(control, 20, +2)
idle(20)
call(move out)
dispatch(control, +1)
return

p0:
call(pilot in)
dispatch(pilot, +3)
idle(120)
call(pilot out)
return

Fig. 6. Distributed, TDMA-based S code for a two-processor TTA

Proof. For unconditional single-threaded S code, if all traces in which each task
completes with an execution time equal to the time given by the wcet map w
is time-safe, than all w-traces are time-safe. Therefore all transitions are deter-
ministic, and it suffices to check the time-safety of a trace whose duration corre-
sponds to one mode period. The number of states thus explored is O(|G| · n). �

For multimode Giotto programs, we know that if each mode in isolation is time-
safe under EDF scheduling, then the whole program is time-safe under EDF [6].
Furthermore, we can check the EDF schedulability of a single mode by solving
a utilization equation [6]. Hence, for SCC, it remains to be checked if a given
abstract SCC program represents an EDF schedule, such as the example from
Figure 5. This can be done in time linear in the size of the Giotto program.

4 SCC for Time-Triggered Networks

We illustrate how to generate distributed SCC programs that run on a time-
triggered architecture (TTA) [9], whose nodes are connected by a bus on which
all communication is scheduled according to a collision-free TDMA protocol.
Each time slot assigns exclusive network access to one of the nodes to send data.
Each node has a host and a network processor connected by a send and a receive
buffer. Thus the host processor can execute programs while data is being sent or
received. To send data, the host processor loads the send buffer before its time
slot arrives. Similarly, to receive data, the host reads the receive buffer after a
time slot ends. There are an E machine and an S machine running on each host
processor. The E code portion of a distributed SCC program may be generated
from Giotto. The S code portion specifies the execution order of released tasks,
and also calls drivers that transport data between message buffers and tasks
before and after the appropriate time slots. Thus the TDMA protocol imposes
additional timing constraints on the tasks.

Example. Figure 6 shows distributed, TDMA-based S code for two host proces-
sors, p0 and p1, which execute the Giotto program from Figure 2. Suppose that
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p0 executes the pilot task, while p1 takes care of the other tasks by executing
the E code in Figure 2 with the schedule(pilot) instructions removed. For p1,
we use the E code P0: schedule(pilot); future(120, P0); return[p0]. Suppose
that the output of the pilot task is read by the control task, while the outputs
of the lieu and move tasks are read by the pilot task. For this purpose, we use a
TDMA-schedule with two time slots, l0 and l1, where l0 is from 0ms to 10ms, and
l1 is from 110ms to 120ms. Processor p0 sends during l0, and p1 sends during l1.
The pilot out driver writes the output of the pilot task into the send buffer of p0.
Similarly, the pilot in driver reads the input for the pilot task from the receive
buffer of p0. On processor p1, the ctrl in driver reads the input for the control
task from the receive buffer. The lieu out and move out drivers write the out-
puts of the lieu and move tasks, respectively, to the send buffer. Note that tasks
may be executed during the time slots l0 and l1, because in a TTA each host has
a separate network processor that handles the network traffic. For example, the
pilot task may run for its full period of 120ms. The control task, on the other
hand, cannot start before 10ms elapse from the beginning of the mode period,
because its inputs depend on values received during the time slot l0. Likewise,
the lieu and move tasks must complete before 110ms. The S code represents an
EDF schedule under the constraints imposed by the TDMA protocol. As the
constraints are the same for all modes of the Giotto program, it can be shown
that this schedule is optimal.
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