reMOTEable

Embeded Software Engineering Course

Winter 2005/06
Prof. Kirsch

Alois Hofstatter
Bernhard Kast
Horst Stadler

26.01.2006

http://www.cs.uni-salzburg.at/~ck/wiki/index.php?n=ESE-Winter-2005.ReMOTEable
http://student.cosy.sbg.ac.at/~ahofsta
http://student.cosy.sbg.ac.at/~bkast
http://student.cosy.sbg.ac.at/~hstadler

Introduction
Design
Implementation
Demo

Outlook

Overview

Introduction — Project

* Project outline

— Agent system
— Independent embedded devices
— Radio communication

— Sensor the environment

Introduction - Motes

* Telos mote IV Revision A (mote = A very small particle)

* Wireless Ad hoc Sensor Networks (e.g. habitat
monitoring)

* Advantages:

— small

— durable

— low power usage

— communication devices
— sensors (optional)

Introduction — Existing Solutions
e Agilla
— existing running agent system
— strong mobility (code + state)
— too high hardware requirements (41.6k code and 3.59k data)
e Maté

— not an agent system

— a mote reprogramming system

— hence not suitable for our project
e Sensorware

— high hardware requirements &
weak mobility

Introduction — Conclusion

e Own requirements

— run on Telos mote IV Rev A (2k RAM, 60k ROM)
— strong mobility
— multiple agents in one network

— mote2mote (IEEE 802.15.4) and mote2pc (USB)
communication

* inject new agents
* get collected data from motes

=> Implement own virtual machine
on top of TinyOS

Design - Overview

e \/irtual Machine
e Protocols
* Agents

e Example Agent

Design — VM (1)

e Architecture:

— 4 Registers (addressing 2 bit, value size 8 bit)

— half byte alignment (addresses, commands)

— Code Segment and Data Segment (CS + DS < 418 half-bytes)
— Flags (cmp, remainder, overflow)

Design — VM (2)

e Basic Assembler commands

— logical operations

— arithmetic operations

— branches (cmp, jnz)

— memory operations (load, store)

* Enhanced high level calls (use of Capability model)

— capcall package_number,
procedure_number (4 bit each)

- e.g. send_agent(), get_neighbours(),...

Design — Protocols

Agents Application Layet
unreliable Protocol reliable Protocol Transport Layer
TinyOS Network Laver

Data Link Laver
[EEER02.15.4 Physical Layer

Design — Discovery Protocol

Header

— source address (4 bit)
— destination address (4 bit)

no payload
Discovery

- Request (broadcast)
— Answer (unicast — cast type used to distinguish packets)

Distinguish Discovery Protocol from
Transport Protocol
(length field of TinyOS Packet)

Design — Transport Protocol (1)

* Header (2 byte)

— source address (4 bit)

— destination address (4 bit)
— session number (3 bit)

— sequence number (3 bit)
— reserved (1 bit)

— last packet bit (1 bit)

Design — Transport Protocol (2)

27 byte payload
reliable
used to transport agent fragments

no route information (mote to mote — one hop)

=> Agent contains route information if required

Design — Transport Protocol (3)

16
4 4 3 2
Source Destination SessionNr Sﬂquenr:eNEF -
Reszerved
Payload Last Packet |

(27 Bytes)

29 Bytes

Design — Agent (1)

* Strong mobility
— Highly Stateful (PC, registers, CS, DS, flags)

— Mote provides

* point-to-point communication

— Transport Protocol (reliable)
— Discovery Protocol (unreliable)

* neighbour mote cache
— whole program logic contained in the agent

e Data

— variable size of CS and DS

up to 432 HaliBytes
(up to 8 Packets)

Design -

Agent (2)

5

5

Code Segment Length (HaltBytes)

Data Segment Length {HaltBytes}

Register 1 Register 2
Register 3 Regiater 4
P [
rogrameounter 1| | _____x
Cc:mpare‘ﬁ’/} % ¢

Remainder Owvertlow

Divigion by zero

Code Segment

fup to 256

HalfBytes)

Data Segment

fupto 256

HaltBytes)

Design — Agents

* Route Acquiring Agent
— Basic agent that is hard coded onto every mote

— Replicates itself around the network to get a route to the target
mote

 Data Collection Agent

Design — RAA Rules

save current mote address (route information)

new neighbours -> replicate agent to each neighbour
only known neighbours (circle!) -> kill agent

target found -> go back to source using route information
dead end -> kill agent

back home -> transfer route information
to calling agent

Design - RAA

* Type 1.
RAA - redundant for reliability
Explained in the following slides

* Type 2.
RAA - optimized for less traffic
Little modifications to Type 1

Design — RAA — Step 01

MOTE
|

MOTE

MOTE

-

MOTE
2

MOTE

MOTE

i

MOTE
4

S

Design — RAA — Step 02

MOTE MOTE
1 2 \
MOTE MOTE
3 4
MOTE MOTE MOTE /
S5 6 7

MOTE

Design — RAA — Step 03

MOTE MOTE
1 2 '\
MOTE MOTE
3 4
MOTE MOTE MOTE /
S5 6 > 7

MOTE

Design — RAA - Step 04

MOTE B MOTE
1 2 \
MOTE MOTE
3 4

MOTE

MOTE /

MOTE

Design — RAA — Step 05

MOTE MOTE
1 2 \
MOTE MOTE
3 4
MOTE MOTE MOTE /
S5 6 > 7

MOTE

Design — RAA — Step 06

MOTE MOTE
1 2 \
MOTE MOTE
3 4
MOTE MOTE MOTE /
S5 6 ™ 7

MOTE

Design — RAA - Step 07

MOTE MOTE
1 2 \
MOTE MOTE
3 4
MOTE MOTE MOTE /
S5 6 7

MOTE

Design — RAA — Step 08

MOTE MOTE
1 2 \
MOTE MOTE
3 4
MOTE MOTE MOTE /
S5 6 ™ 7

MOTE

Design — RAA — Step 09

MOTE MOTE
1 2 \
MOTE MOTE
3 4
MOTE MOTE MOTE /
S5 6 7

MOTE

Design — RAA — Step 10

MOTE MOTE
1 2 \
MOTE MOTE
3 4
MOTE MOTE MOTE /
S5 6 7

MOTE

Design — RAA — Step 11

MOTE MOTE
1 2 \
MOTE MOTE
3 4
MOTE MOTE MOTE /
S5 6 7

MOTE

Design — RAA — Step 12

MOTE MOTE
1 2 \
MOTE MOTE
3 4
MOTE MOTE MOTE /
S5 6 7

MOTE

Implementation - Overview

e OS: TinyOS
* Programming language: nesC

* Virtual Machine also in C for testing/debugging
purpose

* mote2pc communication via javax.comm

Implementation - Status

* \Iirtual Machine

— all assembler commands working and tested
— few capability calls working and tested
— support four agents at the same time (simple scheduling policy)

* Discovery Protocol
- Request

— Answer
— Neighbour caching

Demo - Test of Discovery Protocol

* Simple Agent which loops forever and calls
request_neighbours()

* five motes with the same implementation
* |eds

— blue led toggles if request sent
— red led toggles If answer received
— green led toggles if request received

Outlook

* Transport Protocol

* Application for injecting new agents into and retrieving
data from the system

— Translator for agent code to virtual machine code
— Ul for reading data

e Some basic Agents

The End

Questions &
Discussion

