

Parking Elvis

Back into a parking slot

Embedded Software Engeneering 2004

Introduction

• Purpose of the project

- Implement a Real Time Operating System
- Practical use of the RTOS is controlling a robot

Our Project

 Developed a Lego Mindstorm car which parks automatically into a free parking slot

- Conditions
 - The car shall measure the lenght of the parking slot
 - Reverse into the slot
 - The car should never touch a box

Implementation

- Hardware
 - Lego Mindstorms: Robotic Inventions (with RCX)
- Software
 - Programming Language: Java
 - RCX: Lejos
- Technical Implementation
 - RTOS and vehicle control run on a PC
 - Communication between RTOS and the vehicle runs via a Infrared sensor and the package Rcxdirect (client/server tool).

• Advantage: We are not bounded to the limited capacity of the RCX and lejos.

Hardware

2 Light – sensors

for
computing
the length
of the slot
and
to controll
the steering

• one for driving forward and backwards

The parking Event

Position 0: start of the parking slot

```
start:
release (move forward)
release (check slot)
future (position1_reached,back_in)
```

Position 1: End of parking slot


```
back_in:

release (calculate_positions)

→ calculates: steering angle

position 2 (time until position 2 reached)

position 3 (time until position 3 reached)

realease (steer_right)

release (move backward)

future(position_2_reached, steer_left)
```

The parking Event

Position 2: change steering

steer_left: release (center_gear) release (steer_right) release(move_backward) future(position_3_reached, finish) return

Position 3: finish

finish: release (center_gear) return

Calculate Position

From the time the car needs to pass the parking slot we compute

• the angle of steering

Function: f(x) = 4000/x + x/5

• the time the car needs to reach its positions

Steering

- The wheel rotation controls the steering of the car
- The sensor interpretes the colors on the wheel to determine the position of the gear

The OS

Based on the principles we heard in the course

- adjustable functionality (e-code)
- adjustable scheduler (s-code)
- interprocess communication via ports
- trigger based event handling

Capable of preemtive multitasking

E-Code/S-Code

E-Code Example:

release(move_forward)
future(position_1_reached, finish)

S-Code Example:

dispatch(move_forward, position_1_reached)