
Parking Elvis

Back into a parking slot

Embedded Software Engeneering 2004

Introduction

• Purpose of the project
• Implement a Real Time Operating System

• Practical use of the RTOS is controlling a robot

Our Project

• Developed a Lego Mindstorm car
which parks automatically into a
free parking slot

• Conditions

• The car shall measure the lenght of the parking slot

• Reverse into the slot

• The car should never touch a box

Implementation
• Hardware

• Lego Mindstorms: Robotic Inventions (with RCX)

• Software
• Programming Language: Java

• RCX: Lejos

• Technical Implementation
• RTOS and vehicle control run on a PC

• Communication between RTOS and the vehicle runs via a Infrared sensor
and the package Rcxdirect (client/server tool).

• Advantage: We are not bounded to the limited capacity of the
RCX and lejos.

Hardware

 2 Motors

• one to direct the car

• one for driving forward and backwards

 2 Light –
sensors

• for
computing
the length
of the slot
and
• to controll
the steering

The parking Event
Position 0: start of the parking slot
start:
release (move forward)
release (check slot)
future (position1_reached,back_in)

Position 1: End of parking slot
back_in:
release (calculate_positions)

→ calculates: steering angle
 position 2 (time until position 2 reached)
 position 3 (time until position 3 reached)

realease (steer_right)
release (move backward)
future(position_2_reached, steer_left)

The parking Event

Position 2: change steering
steer_left:
release (center_gear)

release (steer_right)
release(move_backward)
future(position_3_reached, finish)
return

Position 3: finish

finish:
release (center_gear)
return

Calculate Position

From the time the car needs to pass the parking slot we
compute

• the angle of steering

Function: f(x) = 4000/x + x/5

• the time the car needs to reach its positions

Steering

• The wheel rotation controls the steering of the car

• The sensor interpretes the colors on the wheel to determine the
position of the gear

centered
position of
the gear

out of bounds

The OS

Based on the principles we heard in the course
– adjustable functionality (e-code)
– adjustable scheduler (s-code)
– interprocess communication via ports
– trigger based event handling

Capable of preemtive multitasking

E-Code/S-Code

E-Code Example:
release(move_forward)
future(position_1_reached, finish)

S-Code Example:
dispatch(move_forward, position_1_reached)

