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Platform Time 1s Platform Memory
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* Programming as 1f there 1s enough platform time

* Implementation checks whether there 1s enough of it
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A Task T,
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Preemption
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Worst-Case Execution Time: WCET(T))
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Relative Deadline D,
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Some Vocabulary for a Task 7

* Lateness: L. = f, — d;1s the delay of T;’s completion with respect
to 1ts deadline; negative L, mean early completion

* Laxity (Slack time): X, = D, — C;1s the maximum time 7;can
be delayed on its start to complete within i1ts deadline
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Triggering a Task T,

 Periodically: A periodic task T, 1s a task with a-priori known
release times regularly activated at a constant rate P,
 The first release time r; 1s called the phase ¢,

» The release time of the n-th instance 1s given by
ri+(m—-1)P,
 P1s called the period of T,

* Sporadically: A sporadic task T 1s a task with a minimum
(interarrival) time between any two release times

* Aperiodically: An aperiodic task T; 1s a task without any
constraints on the release times
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Detinition: Schedule

* A schedule for a set T of tasks and a set S of shared resources
1s a function that maps a shared resource s € S

for any given (discrete) time instant to
a possibly empty subset of T (Non-Determinism)

A feasible schedule 1s a schedule in which each task can
complete within 1ts deadline
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Schedulability Test vs. Scheduling Algorithm

» A schedulability test determines the existence of a feasible
schedule for a given set of tasks and shared resources

A schedulability test can be an exact, sufficient, or necessary
condition for the existence of a feasible schedule

* A scheduling algorithm computes a (possibly infeasible) schedule

A scheduling algorithm 1s called optimal with respect to
a cost function 1f 1t minimizes that cost function

A scheduling algorithm 1s called optimal with respect to
feasibility 1f 1t always computes a feasible schedule

provided that schedule exists
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Earliest Due Date (EDD)

e The schedulability test for the earliest due date algorithm
holds for a given set of n tasks, if:

‘Yi€ {1,...n).f =dwhere f=2 _, C,

* The test 1s exact

e The earliest due date algorithm executes all tasks
in a given set of n tasks in the order of non-decreasing deadlines
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EDD Example
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Assume, then Guarantee

* Resource assumptions:
e single processor
e no administrative overhead

e Task assumptions:
e independent, 1.€., N0 precedence constraints
* release times are equal for all tasks
« WCET(T)) = C, given
* absolute deadlines given

» Optimality guarantee:
 EDD is optimal wrt. feasibility
* EDD is optimal wrt. maximum lateness
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Proof

» Interchange argument:
In a non-EDD schedule 37, T, with d; < d,

but 7, executes before 7

T T

2 > 1 n Any algorithm: L. :fj — d]
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» Exchanging does not increase maximum lateness
* There are only finitely many transpositions
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Earliest Deadline First (EDF)

* The schedulability test for the earliest deadline first algorithm
holds for a given set of n tasks, if:
At any instant ¢ where a task 1s released

Vi€ {1,....n}. f, = d,where f,=2 ,_, ¢, () and
¢, (?) 1s the remaining WCET of 7’ at ¢

* The test 1s exact

» The earliest deadline first algorithm executes at any instant,
given a set of n tasks, the task with the earliest deadline:
dynamic priority assignment algorithm
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EDF Example
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Assume, then Guarantee for EDF

* Resource assumptions:
e single processor
e no administrative overhead

e Task assumptions:
* preemptive
e independent, 1.€., N0 precedence constraints
e release times given
« WCET(T)) = C, given
e relative deadlines given

» Optimality guarantee:
* EDF is optimal wrt. feasibility

« EDF is optimal wrt. maximum lateness
© 2004 C.Kirsch -17-



Proof for EDF

* Based on the interchange argument for EDD:
» Exchange time slices instead of tasks
because of possible preemptions

© 2004 C.Kirsch -18-



Rate Monotonic Analysis (RMA)

» The schedulability test for the rate monotonic scheduling
algorithm holds for a given set of n tasks, if:

X C/P,<n*(@2Wn-1)

« The test 1s a utilization-based schedulability test
 The test 1s only sufficient

e The rate monotonic scheduling algorithm assigns a fixed
priority to each task in a set of n tasks proportional to the
task’s frequency: fixed-priority assignment algorithm
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RMA Example
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Assume, then Guarantee for RMA

* Resource assumptions:
e single processor
e no administrative overhead

e Task assumptions:
* preemptive
e independent, 1.€., N0 precedence constraints
* periodic
« WCET(T)) = C, given
e deadlines equal to periods

» Optimality guarantee:
« RMA 1s optimal wrt. fixed-priority feasibility
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Utilization-Based Schedulability Tests

« EDF:
. Znizl C./P =1

* exact, but cannot be extended to more complex task models

« RMA.:
X C/P,<n*(@2Wn-1)
« sufficient but not necessary (for non-harmonic task sets)
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RMA: 84% Utilization (Test: < 82.8%)

Tasksf
\ A I T
) :Tl: \ :Tl: l/ \ :Tl: i
6 9 12 18

© 2004 C.Kirsch -23-



RMA: 89% Utilization
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RMA: 95% Utilization
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RMA: 89% Utilization
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RMA: 95% Utilization
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EDF: 100% Utilization
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RMA: The Critical Instant
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EDF: Response Times
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Response Time Analysis

* Response time: R; = f, — r;1s the time 1t takes 7 to complete

e The critical instant of a task T 1s the time 1nstant at which
a release of T produces the largest response time

* Response time analysis 1s done 1n two stages:
» Compute the worst-case response times for all tasks 7':
R. = C;— I, where [, 1s the maximum interference 7; can
experience in any time interval [z,  + R))
» Check 1f the worst-case response times are shorter
than the deadlines
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Response Time Analysis

« Maximum interference occurs when all higher-priority tasks
are released at the same time as 7,

* Number_of releases = [R;/ P;]
where T’ 1s a higher-priority task than 7;

* Maximum_interference = [R;/ P;| * C,

* [;= Zthp(i) [Ri/Pj] * CJ

where hp(i) 1s the set of higher-priority tasks than T;

* Fixed-point computation: R, = C,+ Zthp(i) [R;/ P;] * C,

© 2004 C.Kirsch -32-



Busy Period

« Compute recurrence relation: w/*/ = C.+ Zthp(i) [w/P;]* C,

e Solution is found when w/ "/ = w/

* From the time a task 7; is released until 7; completes
the processor 1s said to execute (continuously)
a p—busy period where p; 1s the priority of 7,

e Time window starts with w/ = C,+ 2 enpy C; and

may have to be pushed out further
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