Embedded Software Engineering

3 Unit Course, Winter 2004
CS Department, Univ. of Salzburg

Chapter 2: RT Scheduling

Christoph Kirsch

www.cs.uni-salzburg.at/~ck/teaching/ESE-Winter-2004

Platform Time 1s Platform Memory

i NG NN

* Programming as 1f there 1s enough platform time

* Implementation checks whether there 1s enough of it

—>

© 2004 C.Kirsch -2-

A Task T,

: : vy —% | : —»
Release time r, C"r?‘p utation Deadline d,
time C;
C__k - - — —
Start time s, Finishing time f;
| | | Y | Y | | —»

© 2004 C.Kirsch -3-

Preemption

| | vy . | — —— | —>
Release time r, ompiaion Deadline d,
time in RT :
A
v _ _ T
: 11 C e :
Start time s, |1 Finishing time f;
| | | ' | I | ' | | |
1 1 1 1 1 I I 1 1 1 >

© 2004 C.Kirsch -4-

Worst-Case Execution Time: WCET(T))

i NG NN

y Y y'y . >
Release time 7, WCET(T)) I Deadline d,
) A ———
Start time s, Finishing time f;
Y v v .

© 2004 C.Kirsch -5-

Relative Deadline D,

i NG NG N

Release time 7 Relative Deadline Absolute
i D,=d,—r, Deadline d,
v — N ——
>

© 2004 C.Kirsch -6-

Some Vocabulary for a Task 7

* Lateness: L. = f, — d;1s the delay of T;’s completion with respect
to 1ts deadline; negative L, mean early completion

* Laxity (Slack time): X, = D, — C;1s the maximum time 7;can
be delayed on its start to complete within i1ts deadline

© 2004 C.Kirsch -7-

Triggering a Task T,

 Periodically: A periodic task T, 1s a task with a-priori known
release times regularly activated at a constant rate P,
 The first release time r; 1s called the phase ¢,

» The release time of the n-th instance 1s given by
ri+(m—-1)P,
 P1s called the period of T,

* Sporadically: A sporadic task T 1s a task with a minimum
(interarrival) time between any two release times

* Aperiodically: An aperiodic task T; 1s a task without any
constraints on the release times

© 2004 C.Kirsch -8-

Detinition: Schedule

* A schedule for a set T of tasks and a set S of shared resources
1s a function that maps a shared resource s € S

for any given (discrete) time instant to
a possibly empty subset of T (Non-Determinism)

A feasible schedule 1s a schedule in which each task can
complete within 1ts deadline

© 2004 C.Kirsch -9-

Schedulability Test vs. Scheduling Algorithm

» A schedulability test determines the existence of a feasible
schedule for a given set of tasks and shared resources

A schedulability test can be an exact, sufficient, or necessary
condition for the existence of a feasible schedule

* A scheduling algorithm computes a (possibly infeasible) schedule

A scheduling algorithm 1s called optimal with respect to
a cost function 1f 1t minimizes that cost function

A scheduling algorithm 1s called optimal with respect to
feasibility 1f 1t always computes a feasible schedule

provided that schedule exists
© 2004 C.Kirsch -10-

Earliest Due Date (EDD)

e The schedulability test for the earliest due date algorithm
holds for a given set of n tasks, if:

‘Yi€ {1,...n).f =dwhere f=2 _, C,

* The test 1s exact

e The earliest due date algorithm executes all tasks
in a given set of n tasks in the order of non-decreasing deadlines

© 2004 C.Kirsch -11-

EDD Example

T,|T,| Ty| T, | T.
1/1]1]3]2
3(10[7(8 |5

Buttazzo97

Processors
R d, ds d, d, d,
|)
POATy| Ts T3] T, |Ts
: — —t— >
10 Time

© 2004 C.Kirsch -12-

Assume, then Guarantee

* Resource assumptions:
e single processor
e no administrative overhead

e Task assumptions:
e independent, 1.€., N0 precedence constraints
* release times are equal for all tasks
« WCET(T)) = C, given
* absolute deadlines given

» Optimality guarantee:
 EDD is optimal wrt. feasibility
* EDD is optimal wrt. maximum lateness

© 2004 C.Kirsch -13-

Proof

» Interchange argument:
In a non-EDD schedule 37, T, with d; < d,

but 7, executes before 7

T T

2 > 1 n Any algorithm: L. :fj — d]
i ‘ i | i ' | —

2 /i
T I,

! > n EDD algorithm

] l + 1 : Y Y : : >
e, /" d 9,

» Exchanging does not increase maximum lateness
* There are only finitely many transpositions

© 2004 C.Kirsch -14-

Earliest Deadline First (EDF)

* The schedulability test for the earliest deadline first algorithm
holds for a given set of n tasks, if:
At any instant ¢ where a task 1s released

Vi€ {1,....n}. f, = d,where f,=2 ,_, ¢, () and
¢, (?) 1s the remaining WCET of 7’ at ¢

* The test 1s exact

» The earliest deadline first algorithm executes at any instant,
given a set of n tasks, the task with the earliest deadline:
dynamic priority assignment algorithm

© 2004 C.Kirsch

-15-

EDF Example

T ASKS e Tl T2 T3 T4 TS
\.Tl . ST d; 0[0|2]3]6
o cl1]2]2]2]>
... p—

o
T
—t— I\ IS ————F—F—F— >
10 Time

© 2004 C.Kirsch -16-

Assume, then Guarantee for EDF

* Resource assumptions:
e single processor
e no administrative overhead

e Task assumptions:
* preemptive
e independent, 1.€., N0 precedence constraints
e release times given
« WCET(T)) = C, given
e relative deadlines given

» Optimality guarantee:
* EDF is optimal wrt. feasibility

« EDF is optimal wrt. maximum lateness
© 2004 C.Kirsch -17-

Proof for EDF

* Based on the interchange argument for EDD:
» Exchange time slices instead of tasks
because of possible preemptions

© 2004 C.Kirsch -18-

Rate Monotonic Analysis (RMA)

» The schedulability test for the rate monotonic scheduling
algorithm holds for a given set of n tasks, if:

X C/P,<n*(@2Wn-1)

« The test 1s a utilization-based schedulability test
 The test 1s only sufficient

e The rate monotonic scheduling algorithm assigns a fixed
priority to each task in a set of n tasks proportional to the
task’s frequency: fixed-priority assignment algorithm

© 2004 C.Kirsch -19-

RMA Example

Tasks |

....................

..

1)
Cl2]1
p;| 5110

..

Tl
::[: >

Time

© 2004 C.Kirsch -20-

Assume, then Guarantee for RMA

* Resource assumptions:
e single processor
e no administrative overhead

e Task assumptions:
* preemptive
e independent, 1.€., N0 precedence constraints
* periodic
« WCET(T)) = C, given
e deadlines equal to periods

» Optimality guarantee:
« RMA 1s optimal wrt. fixed-priority feasibility

© 2004 C.Kirsch -21-

Utilization-Based Schedulability Tests

« EDF:
. Znizl C./P =1

* exact, but cannot be extended to more complex task models

« RMA.:
X C/P,<n*(@2Wn-1)
« sufficient but not necessary (for non-harmonic task sets)

© 2004 C.Kirsch -22-

RMA: 84% Utilization (Test: < 82.8%)

Tasksf
\ A I T
) :Tl: \ :Tl: l/ \ :Tl: i
6 9 12 18

© 2004 C.Kirsch -23-

RMA: 89% Utilization

Tasks |

....................

..................

...................

18

© 2004 C.Kirsch -24-

RMA: 95% Utilization

Tl T2
Ci 1|7
p;| 619
Tasksf
“\ T2 Tz\v T2 T2 b
Ldlei
T T T
\ 1./ : \ 1!/ \ 1/ —t»
6 9 12 18

© 2004 C.Kirsch -25-

RMA: 89% Utilization

1|12

C 4|2

p;| 619

Taks
T T

\ S I Tdle

© 2004 C.Kirsch -26-

RMA: 95% Utilization

Tl T2
C|5]1
p;| 619
Tasks b
T T
\ 21/ \ 21/ dle
T T T
AN A I N s LN R
6 9 12 18

© 2004 C.Kirsch -27-

EDF: 100% Utilization

Tasks |

..

.......................................

1T2
C.| 4|3
p;| 6|9

.......................................

© 2004 C.Kirsch -28-

RMA: The Critical Instant

...

© 2004 C.Kirsch -29-

EDF: Response Times

Tl T2
C.|5|3
pi| 6|9
A
Tasks
\ A
\ T, T,
—t R — —t>
6 0 12 18

© 2004 C.Kirsch -30-

Response Time Analysis

* Response time: R; = f, — r;1s the time 1t takes 7 to complete

e The critical instant of a task T 1s the time 1nstant at which
a release of T produces the largest response time

* Response time analysis 1s done 1n two stages:
» Compute the worst-case response times for all tasks 7':
R. = C;— I, where [, 1s the maximum interference 7; can
experience in any time interval [z, + R))
» Check 1f the worst-case response times are shorter
than the deadlines

© 2004 C.Kirsch -31-

Response Time Analysis

« Maximum interference occurs when all higher-priority tasks
are released at the same time as 7,

* Number_of releases = [R;/ P;]
where T’ 1s a higher-priority task than 7;

* Maximum_interference = [R;/ P;| * C,

* [;= Zthp(i) [Ri/Pj] * CJ

where hp(i) 1s the set of higher-priority tasks than T;

* Fixed-point computation: R, = C,+ Zthp(i) [R;/ P;] * C,

© 2004 C.Kirsch -32-

Busy Period

« Compute recurrence relation: w/*/ = C.+ Zthp(i) [w/P;]* C,

e Solution is found when w/ "/ = w/

* From the time a task 7; is released until 7; completes
the processor 1s said to execute (continuously)
a p—busy period where p; 1s the priority of 7,

e Time window starts with w/ = C,+ 2 enpy C; and

may have to be pushed out further

© 2004 C.Kirsch -33-

