
3 Unit Course, Winter 2004
CS Department, Univ. of Salzburg

Chapter 1: RTOS Concepts

Embedded Software Engineering

www.cs.uni-salzburg.at/~ck/teaching/ESE-Winter-2004

Christoph Kirsch

© 2004 C. Kirsch -2-

Environment

Software

Embedded Programming

The Art of Embedded Programming

© 2004 C. Kirsch -3-

Environment

Software

Software Processes

Environment Processes

What Do We Really Need From an RTOS?

© 2004 C. Kirsch -4-

Environment

Software

Environment Communication Services

Sensing

Actuating

Memory

© 2004 C. Kirsch -5-

Environment

Software

Environment Trigger Services

© 2004 C. Kirsch -6-

Software

Software Communication Services

Sending

Receiving

Software

Memory

© 2004 C. Kirsch -7-

Software

Software Trigger Services

Software

© 2004 C. Kirsch -8-

Software

Software Scheduling Services

Software

Real-Time Scheduler

© 2004 C. Kirsch -9-

Summary: RTOS Services

Device DriversSensing/Actuating

SchedulerSoftware Scheduling

SignalsSoftware Triggering

Shared VariablesSoftware Communication

Interrupt HandlersEnvironment Triggering

ImplementationService

© 2004 C. Kirsch -10-

Software

The Illusion of Concurrent Software

Software

t1 t2 t1 t3 t2 t1

© 2004 C. Kirsch -11-

Abstractions for Multiprogramming

Process

Thread

Task

Subroutine/Coroutine

Protected Behavioral Function

Behavioral Function

Triggered Function Subroutine

Coroutine

Coroutine/MMU

Function Stack/List

Programming Abstraction Runtime Overhead

© 2004 C. Kirsch -12-

Environment Ports

Task Ports

reads

reads actuates

updates

Driver PortsReal-Time
Operating System

reads

writes

Memory Model

© 2004 C. Kirsch -13-

Definition: Task

• A task is a function from its input and state ports to
its output and state ports

• A task runs to completion (cannot be killed)
• A task is preemptable

• A task does not use signals (except at completion)
• A task does not use semaphores (as a consequence)

• API (used by the RTOS):
• initialize {task: state ports}
• release {task}
• dispatch {task: function}

© 2004 C. Kirsch -14-

So, what’s the difference between a task and a function?

• A task has an operational semantics:

• A task is implemented by a subroutine and a trigger
• A task is either environment- or software-triggered
• The completion of a task may trigger another task

© 2004 C. Kirsch -15-

Task t2

Task t2 Preempts Task t1

Task t1

t1

t2

© 2004 C. Kirsch -16-

Task t2

Who Triggers Task t2?

t1

t2

Environment

© 2004 C. Kirsch -17-

Definition: Event and Signal

• An event is a change of state in some environment ports
• A signal is a change of state in some task ports

• A synchronous signal is a change of state in some driver ports

© 2004 C. Kirsch -18-

Definition: Trigger

• A trigger is a predicate on environment, task, driver ports

• A trigger awaits events and/or signals
• A trigger is enabled if its predicate evaluates to true
• Trigger evaluation is atomic (non-preemptable)

• A trigger can be activated by the RTOS
• A trigger can be cancelled by the RTOS
• A trigger can be enabled by an event or a signal

• API (used by the RTOS):
• activate {trigger}
• cancel {trigger}
• evaluate {trigger: predicate}

© 2004 C. Kirsch -19-

My First RTOS

react() {
 ∀ tasks t: initialize(t);
 ∀ triggers g: activate(g);
 while (true) {
 if ∃ trigger g: evaluate(g) == true then
 released-tasks := ∀ to-be-released-tasks t: release(t);
 schedule();
 }
}

schedule() {
∀ released-tasks t: dispatch(t);

 released-tasks := {};
}

© 2004 C. Kirsch -20-

Environment

Software

Tasks

Events

schedule()

react()

RTOS Model: Reaction vs. Scheduling

© 2004 C. Kirsch -21-

Reactor vs. Scheduler vs. Processor
(Kirsch in the Proceedings of EMSOFT 2002)

Tasks

Processor

SchedulerStrategy

ReactorEvents

Disabled
Code

Enabled
Code

Running
Code

© 2004 C. Kirsch -22-

RTOS with Preemption

react() {
 ∀ tasks t: initialize(t);
 ∀ triggers g: activate(g);
 while (true) {
 if ∃ trigger g: evaluate(g) == true then
 released-tasks := ∀ to-be-released-tasks t: release(t);
 schedule_concurrently();
 }
}

schedule_concurrently() {
∀ released-tasks t: dispatch(t);

 released-tasks := {};
}

© 2004 C. Kirsch -23-

Corrected RTOS with Preemption

react() {
 ∀ tasks t: initialize(t);
 ∀ triggers g: activate(g);
 while (true) {
 if ∃ trigger g: evaluate(g) == true then
 released-tasks := released-tasks ∪
 ∀ to-be-released-tasks t: release(t);}}

schedule() {
 while (true) {
 t := select(released-tasks);

 dispatch(t);
 released-tasks := released-tasks \ { t }; }}

© 2004 C. Kirsch -24-

Environment

Software

Tasks

Events

schedule()

react()

Signals

RTOS Model with Signals

© 2004 C. Kirsch -25-

Definition: Thread

• A thread is a behavioral function (with a trace semantics)

• A thread may be killed
• A thread is preemptable

• A thread may use signals
• A thread may use semaphores

• API (used by the RTOS or threads):
• initialize {thread: ports}
• release {thread}
• dispatch {thread: function}
• kill {thread}

© 2004 C. Kirsch -26-

So, what’s the difference between a thread and a task?

• A thread is a collection of tasks:

• A thread is implemented by a coroutine
• A thread requires signals

© 2004 C. Kirsch -27-

Task t2

Task t2 Kills Task t1

Task t1

t1

t2

Kill t1

© 2004 C. Kirsch -28-

Signal API

• A signal can be awaited by a thread
• A signal can be emitted by a thread
• Signal emission is atomic (non-preemptable)

• API (used by threads):
• wait {signal}
• emit {signal}

• Literature:
• emit: send(signal)

© 2004 C. Kirsch -29-

Definition: Semaphore

• A semaphore consists of a signal and a port

• A semaphore can be locked by a thread
• A semaphore can be released by a thread
• Semaphore access is atomic (non-preemptable)

• API (used by threads):
• lock {semaphore}
• release {semaphore}

• Literature:
• lock: P(semaphore)
• release: V(semaphore)

© 2004 C. Kirsch -30-

Binary Semaphore (Signal)

lock(semaphore) {
 if (semaphore.lock == true) then
 wait(semaphore.signal);

 semaphore.lock := true;
}

release(semaphore) {
 semaphore.lock := false;
 emit(semaphore.signal);
}

must be atomic

© 2004 C. Kirsch -31-

Binary Semaphore (Busy Wait)

lock(semaphore) {
 while (semaphore.lock == true) do {}
 semaphore.lock := true;
}

release(semaphore) {
 semaphore.lock := false;
}

each round
must be atomic

© 2004 C. Kirsch -32-

The Embedded Machine

Environment

Software

Tasks

Events

schedule(): The Scheduler and Dispatcher

react(): The Embedded Machine

© 2004 C. Kirsch -33-

Environment

Software

Human: Programming in terms of environment time

Compiler: Implementation in terms of platform time

Proposal

© 2004 C. Kirsch -34-

Environment

Software

• Programming as if there is enough platform time

• Implementation checks whether there is enough of it

Platform Time is Platform Memory

© 2004 C. Kirsch -35-

Environment

Software

• Programming in terms of environment time
yields platform-independent code

Portability

© 2004 C. Kirsch -36-

Environment

Software

• Programming in terms of environment time
yields deterministic code

Predictability

© 2004 C. Kirsch -37-

Environment

Software

sense actuate

endstart

The Task Model

© 2004 C. Kirsch -38-

Environment

Software

sense actuate

endstart

Preemptable…

© 2004 C. Kirsch -39-

Environment

Software

1 2

f() = 1

…but Atomic

© 2004 C. Kirsch -40-

Environment

Software

1 2

The Driver Model

© 2004 C. Kirsch -41-

Environment

Software

1 2

f() = 1

f() = 2

Non-preemptable, Synchronous

© 2004 C. Kirsch -42-

Environment

Software

1 2

s

a

t1

Syntax

© 2004 C. Kirsch -43-

Program

A Trigger g

g

g : c’ ≠ c

b:

c

© 2004 C. Kirsch -44-

Environment

Software

1 2

s

a

t1
call(s)

release(t)

future(g,b)

call(a)b:

2

a

1

s

An Embedded Machine Program

© 2004 C. Kirsch -45-

Environment

Software

1 2

s

a

t1
call(s)

release(t)

future(g,b)

call(a)b:

2

a

1

s

Synchronous vs. Scheduled Computation

© 2004 C. Kirsch -46-

INACTIVE

Synchronous vs. Scheduled Computation

releases

• Scheduled computation
• User context

• Synchronous computation
• Kernel context
• Trigger related interrupts disabled

g’
c:

READY RUN

g
b:

c

e

© 2004 C. Kirsch -47-

Environment

Software

1 2

Environment-triggered Code

© 2004 C. Kirsch -48-

Environment

Software

1 2

Software-triggered Code

© 2004 C. Kirsch -49-

Trigger g: Input-, Environment-Triggered

g
call(s)

release(t)

future(g,b)

call(a)b:

© 2004 C. Kirsch -50-

Environment

Software

1 2

Time Safety

© 2004 C. Kirsch -51-

Environment

Software

1

s

11 t 2a

ss

t 2a2

Input-determined If Time Safe

© 2004 C. Kirsch -52-

Environment

Software

1

s

1

s

t 2

a

1

s

2

a

2

a

t

Environment-determined If Environment-triggered

© 2004 C. Kirsch -53-

The Zürich Helicopter

© 2004 C. Kirsch -54-

Navigation

Control

Sensor

Actuator
10

5

Helicopter Control Software

a

s

i

g

c

Clock

g : c’ = c + 5

© 2004 C. Kirsch -55-

sensor gps_type GPS uses c_gps_device ;

actuator servo_type Servo := c_servo_init
uses c_servo_device ;

output

ctr_type CtrOutput := c_ctr_init ;

nav_type NavOutput := c_nav_init ;

driver sensing (GPS) output (gps_type gps)
{ c_gps_pre_processing (GPS, gps) }

task Navigation (gps_type gps) output (NavOutput)
{ c_matlab_navigation_code (gps, NavOutput) }

…

Giotto Syntax (Functionality)

© 2004 C. Kirsch -56-

…

mode Flight () period 10ms

 {

 actfreq 1 do Servo (actuating) ;

 taskfreq 1 do Control (input) ;

 taskfreq 2 do Navigation (sensing) ;

 }

…

Giotto Syntax (Timing)

© 2004 C. Kirsch -57-

a ia

s
Navigation Navigation

Control
i

s s

Block of synchronous
code (nonpreemptable)

Scheduled tasks
(preemptable)

Environment Timeline
0ms 5ms 10ms

© 2004 C. Kirsch -58-

a ia

s
Navigation Navigation

Control
i

s s

E Code
0ms 5ms 10ms

b1: call(a_ctuating)
call(s_ensing)
call(i_nput)
release(Control [10])
release(Navigation[5])
future(g,b2)

© 2004 C. Kirsch -59-

a ia

s
Navigation Navigation

Control
i

s s

E Code
0ms 5ms 10ms

b2: call(s_ensing)
release(Navigation[5])
future(g,b1)

© 2004 C. Kirsch -60-

a ia

s

i

s s

Platform Timeline: EDF
0ms 5ms 10ms

2ms 2ms
5ms

Navigation
Control

3ms

© 2004 C. Kirsch -61-

Environment

Software

1 2

s

a

t1

Time Safety

© 2004 C. Kirsch -62-

Environment

Software

1 2

s

a call(a_ctuating)

Runtime Exceptions I

© 2004 C. Kirsch -63-

Environment

Software

1 2

s

a

call(s_ensing)

Runtime Exceptions II

© 2004 C. Kirsch -64-

Environment

Software

1 2

s

a

release(t)

Runtime Exceptions III

© 2004 C. Kirsch -65-

Environment

Software

1 2

s

a

release(t,e)
call(a’)e:

call(s)

release(t)

future(g,b)

call(a)b:

a’

An Exception Handler e

© 2004 C. Kirsch -66-

a ia

s

i

s s

0ms 5ms 10ms

2ms 4ms
2ms

Navigation
Control

2ms

How to Loose Determinism: Task Synchronization

3ms

© 2004 C. Kirsch -67-

Environment

Software

1 2

s

a

terminate(t)

How to Loose Determinism: Termination

© 2004 C. Kirsch -68-

Environment

Software

1 2

s

a

s

1

Time Liveness: Infinite Traces

© 2004 C. Kirsch -69-

Dynamic Linking

t

Functionality
CodeE Code

E Machine

d

call(s)

release(t)

future(g,b)

call(a)b:

g

© 2004 C. Kirsch -70-

The Berkeley Helicopter

© 2004 C. Kirsch -71-

t+10mst+10mst t t+5ms t+5ms t+7ms

HeliCtr

HeliNav

TDMA Slot

HeliNet

Platform Timeline: Time-triggered Communication

© 2004 C. Kirsch -72-

t+10mst+10mst t t+5ms t+5ms t+7ms

HeliCtr

HeliNav

b2: call(s_ensing)
release(Navigation[2])
release(Connection[(7,10)])
future(g,b1)

Code Generation for HeliNav

© 2004 C. Kirsch -73-

Instructions

Triggering: future(g,b)b:

Scheduled
Task:

release(t)

tSynchronous
Driver:

call(d)

d

g : c’ ≠ c

g

