\V

Boustrophedon Bandit.

Doug Densmore
Will Plishker

May 9, 2002
EE2900 Final Demo

N

Outline

#Goals
#Coverage Path Planning Algorithms
#Design Issues

System Structure
s Grid System
= Overall System Picture
= Code Segments

#Conclusion

Physical Goals

N

#Sweep a predefined, obstacle free,
environment for a predetermined
target.

#0nce the target is acquired, return to
the point at which the search started
with the target in tow.

#Perform the task with no human
Interaction.

N

Software Goals

#Potential to discuss time safety
#Task and driver separation

#|nner task communication
#EMachine structure

Coverage Path Planning
Algorithms

N

Emphasize the space swept out by the robots
sensor.

Requires integrating the robot’s footprint
(detector range) along the coverage path.

Similar to the traveling salesman problem but
Instead of just visiting neighborhoods, one
must visit all points in the target environment

Coverage Path Planning

Algorithms

N

Four types
= Heuristic (and random), approximate, partial-
approximate, and exact cellular decomposition.
Many variations within each to include
obstacles and multiple searching parties.

\We focused on exact cellular decompositions.
These are sets of non-intersecting regions
and therefore planning is reduced to planning
motions from one region to another.

N

Exact Cellular Decompositions

Boustrophedon Morton Order

These patterns often used
o } in raster scan

LD e Boustrophedon means “way
Pi-Order of the ox” in Greek.

Physical Design Issues

N

#Environment

m Lighting, search surface, search size,
traction

#\ehicle

x Weight, sensor input limitations, funneling
mechanism limitations

Software Design Issues

N

#Trigger logic vs. Task Logic

m Put effort into tasks and kept basic trigger
system. Same behavior, potentially time
safe.

#Granularity of Task
#Mode Switching

N

System Relationships

B # Navigation
Navigation = Tracks location, turning

decisions
Beep @ Beep

= Plays notes from “Mary
LCD LCD Had a Little Lamb”
LCD
Move Move

= Displays information such
as position, rotation and
light measurements.

@ Move

s Powers motor for one X
or Y movement

10

N

Grid System

Based on simple x and y
coordinates

Theoretically the
movement required to

make a change in x Is
equal to the distance to
changey.
Starting point is (0,0)
Location in reference to
the starting point.

Change in (X,Y)

NP

€

Returning to origin

y

Two Tu

s

One T

urn

‘TW

0 Turns

11

Overall System Diagram

Rotation

Sensor
Driver
Light

Sensor Rotgtion
Driver Beep Task

Light
Driver
' Driver Motors
-Task ¥
Navigation Move Task
Task

Inter-Task LC D
Driver LCD TaSk SCI’een

12

N

Code Segments

ecode[0].opcode = call;
ecode[1].opcode = call;
ecode[2].opcode = call;
ecode[3].opcode = call;
ecode[4].opcode = call;
ecode[5].opcode = call;
ecode[6].opcode = schedule;
ecode[7].opcode = schedule;
ecode[8].opcode = schedule;

ecode[9].opcode = schedule;
ecode[10].opcode = future;

ecode[20].opcode = call;
ecode[21].opcode = call;
ecode[22].opcode = call;

ecode[23].opcode = call;
ecode[24].opcode = call;
ecode[25].opcode = schedule;

ecode[26].opcode = schedule;
ecode[27].opcode = future;

ecode[0].driver = beep_driver;

ecode[1].driver = lcd_driver;

ecode[2].driver = rotation_driver;

ecode[3].driver = motor_driver;

ecode[4].driver = intertask_driver;

ecode[5].driver = light_driver;

ecode[6].task.fp = beep_task; ecode[6].task.priority=2;
ecode[7].task.fp = lcd_task; ecode[7].task.priority=1;
ecode[8].task.fp = navigation_task; ecode[8].task.priority=1;
ecode[9].task.fp = move_task; ecode[9].task.priority=1;
ecode[10].index = 20;

ecode[20].driver = rotation_driver;

ecode[21].driver = Icd_driver;

ecode[22].driver = motor_driver;

ecode[23].driver = intertask_driver;

ecode[24].driver = light_driver;

ecode[25].task.fp = lcd_task; ecode[25].task.priority=1;
ecode[26].task.fp = move_task; ecode[26].task.priority=1;
ecode[27].index = 0;

13

Driver Code

N

%
void intertask_driver(){
movelnput.action_state = navigateOutput;
navigatelnput.done_moving = moveOutput;

}

void beep_driver(){
dsound_play(beep_in);
wait_event(dsound_finished,0);

}//end beep
void lcd_driver(){

cputw(lcd_in);
}

void light_driver(){
if((light->value()<BLOCK_FOUND))
navigatelnput.block found = 1;
else if('navigatelnput.block_found)
navigatelnput.block found = 0;

movelnput.block found = navigatelnput.block found;

if((movelnput.block found)&&(light->value()>150))

movelnput.block _up = 1;

void rotation_driver(){

rot_sensor_axel = ROTATION_1;
rot_sensor_dir = ROTATION_2;

if(reset_rot_sensor_axel)
ds_rotation_set(&SENSOR 1, 0);

reset_rot_sensor_axel = 0;

void motor_driver(){ //move forward

motor_a_dir(axel_motor_dir);
motor_a_speed(axel_motor_speed);

//turn motor

switch(turn_motor_dir){

case left_turn:
motor_b_dir(fwd);
motor_b_speed(turn_motor_speed);
break;

case right_turn:
motor_b_dir(rev);
motor_b_speed(turn_motor_speed);
break;

case no_turn:
motor_b_dir(off);
motor_b_speed(turn_motor_speed);
break;

motor_c_dir(arm_motor_dir);
motor_c_speed(arm_motor_speed);

14

N

Code Tasks

void lcd_task(){
lcd_in = (x<<8)|(y);
// lcd_in = rot_sensor_axel;
//lcd_in = light->value();

void beep_task(){
static note_t ourmusic[11];

static int i=0;
/larray here

beep_in[0].pitch=ourmusic[i].pitch;
i++;

if(i>10) i=0;

void move_task() {
static Turn_State turn_state = start;
static int done_acked = 1;
static int do_once=0;

moveOutput = 0; //accept next command by saying
not done

switch(movelnput.action_state) {
case right:
switch(turn_state) {
case start:
case turning:
case moving:
case left:
switch(turn_state) {
case start:
case turning:
case moving:
case forward:
switch(turn_state) {
case start:
case turning:
case moving:
case stopped:
default:

else {}

15

N

Navigation Task

4 void navigation_task () {
static Action_State action_state = stopped;

if((action_state==stopped)) {
switch(dir) {

case forward:

case right:

case left:

case backward:

} else if('navigatelnput.done_moving) {
navigateOutput = action_state;

} else { //else ack the end of move
action_state = stopped,;
navigateOutput = action_state;

¥

return;

16

N

Conclusion

#Difficult to balance task complexity with
ecode complexity

#Hardware is imprecise ®

#Ecode Infrastructure limits the design of
tasks

#0xen are good

17

References

N

&a

H. Choset, Coverage for robotics — A survey
of recent results, Annals of Mathematics and
Artificial Intelligence (2001) ppl13-126.

L.Villa, LegOs HOWTO,
http://legos.sourceforge.net/

The NCGIA Core Curriculum in GlScience,
http./7/www.ncgia.ucsb.edu/qgiscc/

18

