
1

Boustrophedon BanditTM

Doug Densmore
Will Plishker
May 9, 2002
EE290o Final Demo

2

Outline

Goals
Coverage Path Planning Algorithms
Design Issues
System Structure
� Grid System
� Overall System Picture
� Code Segments
Conclusion

3

Physical Goals

Sweep a predefined, obstacle free,
environment for a predetermined
target.
Once the target is acquired, return to
the point at which the search started
with the target in tow.
Perform the task with no human
interaction.

4

Software Goals

Potential to discuss time safety
Task and driver separation
Inner task communication
EMachine structure

5

Coverage Path Planning
Algorithms

Emphasize the space swept out by the robots
sensor.
Requires integrating the robot’s footprint
(detector range) along the coverage path.
Similar to the traveling salesman problem but
instead of just visiting neighborhoods, one
must visit all points in the target environment

6

Coverage Path Planning
Algorithms

Four types
� Heuristic (and random), approximate, partial-

approximate, and exact cellular decomposition.

Many variations within each to include
obstacles and multiple searching parties.
We focused on exact cellular decompositions.
These are sets of non-intersecting regions
and therefore planning is reduced to planning
motions from one region to another.

7

Exact Cellular Decompositions

Boustrophedon Morton Order

Pi-Order

These patterns often used
in raster scan

Boustrophedon means “way
of the ox” in Greek.

8

Physical Design Issues

Environment
� Lighting, search surface, search size,

traction

Vehicle
� Weight, sensor input limitations, funneling

mechanism limitations

9

Software Design Issues

Trigger logic vs. Task Logic
� Put effort into tasks and kept basic trigger

system. Same behavior, potentially time
safe.

Granularity of Task
Mode Switching

10

System Relationships

Navigation
� Tracks location, turning

decisions
Beep
� Plays notes from “Mary

Had a Little Lamb”
LCD
� Displays information such

as position, rotation and
light measurements.

Move
� Powers motor for one X

or Y movement

Navigation

Move

Beep

LCDLCD

Move

11

Grid System

Based on simple x and y
coordinates
Theoretically the
movement required to
make a change in x is
equal to the distance to
change y.
Starting point is (0,0)
Location in reference to
the starting point.

Two Turns

Two Turns

One Turn

Change in (X,Y)

Returning to origin

12

Overall System Diagram

Beep Task

LCD Task

Move TaskNavigation
Task

Motor
Driver

Rotation
Driver

Inter-Task
Driver

Light
Driver

Target
Beep
Driver

LCD
Driver

Inter-Task
Driver

Light
Sensor

Rotation
Sensor

LCD
Screen

MotorsInter-Task
Driver

Beeper

13

Code Segments
ecode[0].opcode = call; ecode[0].driver = beep_driver;
ecode[1].opcode = call; ecode[1].driver = lcd_driver;
ecode[2].opcode = call; ecode[2].driver = rotation_driver;
ecode[3].opcode = call; ecode[3].driver = motor_driver;
ecode[4].opcode = call; ecode[4].driver = intertask_driver;
ecode[5].opcode = call; ecode[5].driver = light_driver;
ecode[6].opcode = schedule; ecode[6].task.fp = beep_task; ecode[6].task.priority=2;
ecode[7].opcode = schedule; ecode[7].task.fp = lcd_task; ecode[7].task.priority=1;
ecode[8].opcode = schedule; ecode[8].task.fp = navigation_task; ecode[8].task.priority=1;
ecode[9].opcode = schedule; ecode[9].task.fp = move_task; ecode[9].task.priority=1;
ecode[10].opcode = future; ecode[10].index = 20;

ecode[20].opcode = call; ecode[20].driver = rotation_driver;
ecode[21].opcode = call; ecode[21].driver = lcd_driver;
ecode[22].opcode = call; ecode[22].driver = motor_driver;
ecode[23].opcode = call; ecode[23].driver = intertask_driver;
ecode[24].opcode = call; ecode[24].driver = light_driver;
ecode[25].opcode = schedule; ecode[25].task.fp = lcd_task; ecode[25].task.priority=1;
ecode[26].opcode = schedule; ecode[26].task.fp = move_task; ecode[26].task.priority=1;
ecode[27].opcode = future; ecode[27].index = 0;

14

Driver Code
void intertask_driver(){

moveInput.action_state = navigateOutput;
navigateInput.done_moving = moveOutput;

}

void beep_driver(){
dsound_play(beep_in);
wait_event(dsound_finished,0);

}//end beep

void lcd_driver(){
cputw(lcd_in);

}

void light_driver(){
if((light->value()<BLOCK_FOUND))

navigateInput.block_found = 1;
else if(!navigateInput.block_found)

navigateInput.block_found = 0;

moveInput.block_found = navigateInput.block_found;

if((moveInput.block_found)&&(light->value()>150))
moveInput.block_up = 1;

}

void rotation_driver(){
rot_sensor_axel = ROTATION_1;
rot_sensor_dir = ROTATION_2;

if(reset_rot_sensor_axel)
ds_rotation_set(&SENSOR_1, 0);

reset_rot_sensor_axel = 0;
}
void motor_driver(){ //move forward

motor_a_dir(axel_motor_dir);
motor_a_speed(axel_motor_speed);

//turn motor
switch(turn_motor_dir){
case left_turn:

motor_b_dir(fwd);
motor_b_speed(turn_motor_speed);
break;

case right_turn:
motor_b_dir(rev);
motor_b_speed(turn_motor_speed);
break;

case no_turn:
motor_b_dir(off);
motor_b_speed(turn_motor_speed);
break;

}

motor_c_dir(arm_motor_dir);
motor_c_speed(arm_motor_speed);

}

15

Code Tasks
void lcd_task(){

lcd_in = (x<<8)|(y);
// lcd_in = rot_sensor_axel;
//lcd_in = light->value();

}

void beep_task(){
static note_t ourmusic[11];
static int i=0;

//array here

beep_in[0].pitch=ourmusic[i].pitch;
i++;
if(i>10) i=0;

}

void move_task() {
static Turn_State turn_state = start;
static int done_acked = 1;
static int do_once=0;

moveOutput = 0; //accept next command by saying
not done
switch(moveInput.action_state) {
case right:

switch(turn_state) {
case start:

case turning:
case moving:

case left:
switch(turn_state) {
case start:
case turning:
case moving:

case forward:
switch(turn_state) {

case start:
case turning:
case moving:

case stopped:
default:
else {}

16

Navigation Task
void navigation_task () {

static Action_State action_state = stopped;

if((action_state==stopped)) {
switch(dir) {

case forward:
case right:
case left:
case backward:

}
} else if(!navigateInput.done_moving) {

navigateOutput = action_state;
} else { //else ack the end of move

action_state = stopped;
navigateOutput = action_state;

}

return;
}

17

Conclusion

Difficult to balance task complexity with
ecode complexity
Hardware is imprecise �
Ecode infrastructure limits the design of
tasks
Oxen are good

18

References

H. Choset, Coverage for robotics – A survey
of recent results, Annals of Mathematics and
Artificial Intelligence (2001) pp113-126.
L.Villa, LegOs HOWTO,
http://legos.sourceforge.net/
The NCGIA Core Curriculum in GIScience,
http://www.ncgia.ucsb.edu/giscc/

